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W'e calculate nonperturbatively and for small Q the cross section cr(Q) for a scattering process to occur
with loss of four-momentum Q to unobserved photons, a quantity which may be measured by observing the
net recoil to all other particles. The calculation proceeds by means of a threshold theorem which asserts
that for small Q, cr(Q) —0.0P(Q), where o.

o is independent of Q, and P(Q) is the spectral of the coherent
state ip of bremsstrahlung photons defined by a "(k)ip = i(2n) "'g, u", (u, k) 'ip, where a "(k) is the
annihilation operator for a photon of four-momentum k, and e, and u, are the charges and four-velocities of
the scattered charged particles. Although ~II is not in the Fock space, the evaluation of
P (Q ) E. & (Q op) ) ere P p is the operator of total electromagnetic four-momentum, is straightforward.
The resulting function P(Q) simplifies if Q is near the light cone, where the bulk of the probability
is in fact located, P(Q) —8(Q )8(Q')[lC(1 + B)] 'B(Q'/2) 'Is (Q)exp[F(Q)], where Is(Q)= —(27r) '[g, &, u, (n, Q) '] ) 0, B = Jdfr Io(Q = 1, g = fr), and F{Q) is given explicitly in the
text, satisfies F(XQ) = F(Q) —B ink, and is a smooth function as the light cone is approached. The
spectral function exhibits two scaling laws, one governing the approach to the origin along a ray
lim), pA. cr(XQ) = cr0P(Q), the other governing the approach to the light cone at fixed energy Q = E and
angle ft limiu s[(E —I/I)' P(E,Q)] = const X [I'{1+ B)] 'BE 'I&&(k)exp[F(k)], where k = (E,Efc)
For e+-e annihilation at 3 on 3 Gev, exp[F(k)] = E exp[F(fc)] produces a 30%%uo angular modulation.

I. INTRODUCTION

The recoil due to the four-momentum Q of unob-
served photons emitted in a scattering process is
a familiar phenomenon. The dependence of the
cross section on Q may be measured experimental-
ly giving the four-momentum spectral function
o(Q). We calculate this quantity nonperturbatively
for small values of Q, Q=0. The first step is a
threshold theorem which states that for small Q it
is of the form

where oc is independent of Q, and P(Q) is a uni-
versal function of the charges e, and four-velocities
u, of the charged scattered particles that is en-
tirely independent of the nature of the scattering
process. 'The theorem states, furthermore, that

P(Q) is the four-momentum spectral function

of the completely coherent state 4 of bremsstrah-
lung photons defined by

to ultraviolet divergences, the projection (1.2) cuts
off all integrals over photon

momentary

at IkI=Qc,
or less, so our concentration on the infrared phen-
omenon is undisturbed by ultraviolet difficulties.

The calculation of P(Q), to which the bulk of this
article is devoted, poses an interesting challenge
to theory because the state (1.3) is not in the pho-
ton Fock space owing to infrared divergences. Our
final expression for P(Q) depends in an essential
way on the non-Fock character of the state (1.3),
which is intriguing for an experimentally measur-
able quantity. How the mathematical idealization
involved here applies to the actual laboratory situ-
ation is discussed in Sec. VI.

To illustrate the non-Fock character of the state
(1.3), suppose we write it as

t

+=exp d k2 a& k euu, ~ 0 0,
{I

where Q is the vacuum state, and expand in powers
of e, so the n-photon amplitude is of order e".
Then in zeroth order one has P'o'(Q) =(i (Q), and
the naive first-order expression

e ui'
a"(k )4 =

(2 ),~, Q (1.3) (1.4)

where P„p is the operator for the total four-momen-
tum of the electromagnetic radiation, and a"(k) is
the annihilation operator for a photon of momentum
k. [Our sign convention for electric charge is such
that charge conservation is expressed by Q, e, =0,
so that (1.3) is a transverse state k a(k)4' =0.]
Although the state (1.3) is not normalizable owing

(v)=
(2 r (Q. @)

is recognized as the four-momentum spectral
function of individual bremsstrahlung photons.
[Our metric convention is g&,= diag(1, -1,—1, -1)
so I, (Q) is positive because &t&"=Q, e,u,"(u, ~ Q)

' is
spacelike, being orthogonal to Q, iji ~ Q=g, e, =0
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F(A, Q) =F(Q) —Bink:.

Here B represents a dimensional anomaly:

(1.7)

by charge conservation. ] Now whereas individual
photons are, of course, not detectable down to zero
frequency, the quantity f P(Q)d'Q, which repre-
sents the probability that all photons together have
total four-momentum Q in the volume V of four-
space, must be finite even if U includes the origin.
On the other hand, J P&'&(Q)d4Q displays the ele-
mentary infrared divergence of bremsstrahlung
photons, JIQ(k)(2&v) 'd'k, so that (1.4) is not part
of a correct expansion of the exact spectral func-
tion P(q).

The essential features of P(q) are contained in a
simple asymptotic expression P"(Q) which is ac-
curate near the mantle of the light cone, where the
bulk of the probability is in fact concentrated,

P"(q) =Ice(q')e(q')[r(1+B)] 'B(-.' q')' '

&& I,(Q) exp[F(Q)],

where N is a normalization constant, and F(Q),
given in Eq. (5.28), is a smooth function as the
light cone is approached, satisfying

is of nominal order e', and the probability of ener-
gy loss less than E,

E«E) f=E«, )EQ
0

is of leading order e .
For Q on the light cone, Q" =k"=(E,Ek), the ang-

ular modulation provided by exp[F(k)]
=E ~exp[F(k)] is of order 37% in e'-e annihila-
tion at 3 on 3 GeV energy, exp[F(0')]/exp [F(90')]
=1.37. The large size of this effect is due to a
(logarithm)' dependence of F(k) on the beam ener-
gy, Eq. (5.28). The sign of the effect produces a
relative further enhancement of I,(k) where it is
large to begin with, which manifests the positive
correlation of bosons in the coherent state (1.3).

There are two distinct scaling laws revealed by
P(q). The first,

p(&&.q) =X' 'p(q),
governs the approach of Q to the origin along a ray
The second governs the approach of Q to the mantle
of the light cone at fixed energy. With Q"
= (E, iQ i 5), it is conveniently expressed in terms
of the light-cone varia. ble Q =E —iQ(:

B=— dkIQ(k), (1.8a) lim[(q )' 'P(E, Q, k)]
Q

(1.8b)

B= (-1) ~ e,e, g, ~

(2v) ~ tanhg, ~
' (1.8c)

E, (E)= JE'(Q'=E, Q)d'Q (1.10)

where p, ,) 0 is the hyperbolic angle between u,
and u„cosh'), ,=u, ~ u, . lt is proportional to e' and

plays a role analogous to a running coupling con-
stant. It may be thought of as the effective strength
of the coupling to the low-frequency radiation field
characteristic of the scattering process. It is a
convenient measure of net charge scatter, and

grows logarithmically with momentum transfer.
Because e' =(137) ' is small, B is small at labora-
tory energies, and the function P(Q) -P "(Q) is, at
fixed energy Q', concentrated near the mantle of
the light cone, and in the limit

iim B(q')' 'e(q') =5(q').
B~O

Note that the left-hand side is nominally of order
e', whereas the right-hand side is independent of
e. The exact nonperturbative calculation replaces
the no-photon spectral function 5 (Q) and the one-
photon spectral function proportional to 5(Q') by a
radiative tail which extends inside the light cone
that is of nominal order e4. The energy spectral
fun'ction

=II[r(1+B)]-'BE' I,(k) exp[F(k)]

=II[1 (1+B)] 'BE 'IQ(k) exp[F(k)], (1.12b)

where k"=(E,Ek), I,(k) =E'I,(k), F(k) =F(k)+BlnE.
The first scaling law provides a precise statement
of the threshold theorem v(q)-vQP(Q):

lim A,
'

c(AQ) =o P(q).
O

(1.13)

where the limit is finite.
We also present a simple exact expression for

the energy spectral function P, (E) =fP(E, Q) d'Q.
Because P, (E) is not an invariant function of the
u„ it is convenient to make the frame dependence
explicit and define

E,(E, ~)-=fE(Q)&(E —~ 'Q)r'Q, . (1.15)

where 7 is a unit future timelike four-vector, 72

=1, 7 ) 1. This quantity is an invariant function
of ~ and the u, that coincides with P, (E) for r

'The second provides a precise statement of the
asymptotic relation near the light cone P(q)-P"(Q), namely, P"(Q) is an invariant function of
Q and the u, satisfying

li X'msP(E, Xq, k) =lim X' P~(E, A.q, k),
X.~O o

(1.14)
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= (1, 0, 0, 0). The frame dependence is measurable
by making cuts in P(Q) along different planes nor-
mal to different v. In Sec. III, P, (E, 7) is calcu-
lated, with the remarkably simple result

preceding article, ' and rederived by Hilbert-space
methods in Appendix B. It is shown there that
photon wave functions P (k) with low-frequency
limit

P, (E, 7) =N[r(I+B)] 'Be(E)E
P I

&& exp P e,e~K(u„u„r)
a, b

(1.16)

limey"(k)=i(2ii)'~' f p( )iii(i' i—iiT k) 'ii, 'd'ii,
Q) ~P

(1.17)

where K(u„u„7'), Eq. (3.5), is the kernel for
zero-frequency photons calculated explicitly in the

where in practice p(u) =g, e,5'(u —u, ) ua, possess
the finite Lorentz-invariant inner product

(y„p,)+ (p„p,) =-
2

dk d~1n(a(u) —[&u'y, „(k)(-g„„)g„(k)]+ ', p, ( u)K( „u„u)Tp, ( u),
8 d Q~

0 a(o

(1.18)

where ~ = (1, 0, 0, 0). Although this one-photon inner
product is indefinite, in second quantization the in-
frared coherent states, namely, with low-frequency
limit (1.3), have a positive-definite inner product
'The zero-frequency photon kernel also appears in
the formula for P(Q). In particular, F(k) in Eq.
(1.12) may be written

E(k) = lim Q ee, K(u„u„)7—Bin(Q')'~'
Q ~O ~a, b

(1.19)

where Q"=(E IQIk)=(q')"T", k=(E,») q
=E —IQI. The zero-frequency photon kernel ac-
quires a direct physical meaning from these form-
ulas for the observable spectral functions of elec-
tromagnetic radiation near threshold, where it is
the only ingredient after the power law and the one-
photon formula. It appears in the exponent be-
cause the coherent state is an exponential in the
creation operator.

The energy dependence of P, (E, T) given by
e(E)Es ' is an old result of quantum electrodyna-
mics, first conjectured by Schwinger' and subse-
quently derived by Yennie, Frautschi, and Suura3'4

The nonperturbative contribution to the radiative
tail of the g particle was calculated by Yennie, '
and radiative effects in high-energy scattering
were reviewed by Tsai. ' 'The problem of calculat-
ing P(Q) was posed by Kulish and Faddeev7 and had

previously been considered by Kibble, ' who ob-
tained the scaling law P(XQ) =A'P(Q). Recently. ,
Chahine' has calculated the energy spectral func-
tion P, (E, 7') in the Breit frame for the scattering
of a single charged particle, which corresponds to
evaluating K(u„u„~) for T"=(u, +u~)"Iu, +u~I '. An

advantage of considering the generic frame, be-
sides being necessary for calculating P(Q), is that
K(u„u„7 ) is a function of the three hyperbolic
angles which form the sides of the hyperbolic tri-

t

angle on the unit hyperboloid defined by u„ub, and
7 that almost possesses triangular symmetry, see
Eq. (3.5d). On another occasion, the author" has
presented an exact expression for P(Q), which,
however, was not notably explicit. It is obtained
here by direct application of the method used in
the preceding article. '

In Sec. II the threshold theorem is established.
In Sec. III A, P, (E, T) is calculated, and in Sec.
III 8 the radiative tail of a missing massive parti-
cle is expressed in terms of it. In Sec. IV an inte-
gral representation of P(Q) is obtained, Eq. (4.23),
which, however, requires analytic continuation for
values of B less than three. [Recall that B is of
order (137) '.] In Sec. V the asymptotic form of
P(Q) near the light cone is obtained, which is valid
for small values of B. This section also contains
a qualitative discussion of the energy-momentum
spectral function and a numerical example. The
concluding Sec. VI contains a discussion of how the
idealization involved in the particular non-Fock
representation (1.3) describes the actual laboratory
situation, and a comparison with the photon mass
and Hilbert-space methods. Asymptotic expres-
sions for the zero-frequency photon kernel may be
found in Appendix A. In Appendix B it is shown
that traditional Hilbert-space methods lead to the
same calculation.

II. THRESHOLD THEOREM

Let S„(p,k, .k„) be the S-matrix element for
emission of n unobserved photons, where p repre-
sents the set of momenta p, of all the other parti-
cles. To satisfy the mass-shell constraints and
the constraints owing to energy-momentum con-
servation, the p, are expressed in terms of Q
=—k, + ~ ~ ~ +k„and a remaining set e of kinematically
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S„(P„k,. k„)=S„(,k, k„). (2.1)

l

independent variables, so S„is a function of the a
and the photon momenta k„.. . , k„:

For convenience we shall suppress e. The desired
. cross section for fixed o. and Q is the sum over all
final photon states consistent with energy-momen-
tum conservation:

o(q)=(s, l'e'(q)+g(x)) ' f (dk). (dk ).Is (k, 'k )I*e'(k, + '+k. —q),
sf= 1

s)o '

rr(q)=(kx) fd xe r*:e)S ) +P(el) 'f (dk, )(dk,„),S„(k, k„)S„,(k, k„)
n= 1

where

S (k k)=S(k k)e "&''
fl jx 1 n n 1 . n

Here, for each variable k„... , k„, the expression

(2.2)

(2.3a)

(2.3b)

dk, ,*k 2k —= (2.4a)

symbolically represents the inner product, derived in Appendix B,

f ( kd)d(k)d (k) =, (-—,') fdk f dre(cere [re'k,"„(k)(-se")d „(k)),
0

(2.4b)

Eq. (P5.29), which is the first term of Eq. (1.18), the second and zero-frequency term (p, p) being already
exponentiated, Eq. (2.12). Here k =(u), k) = (u(1, k) and a is a finite scale-breaking parameter. Note that the
cross section has precisely the form of a four-momentum spectral function

Pe(q)=(k, e'(S., —q)k)=(ke)' f deere'*(k, e ' *k),

where P„is the total four-momentum operator, and the state 0 is described by the wave function 4
= fkl'„(k, ' 'k„)), 4'„(k, k„)=S„(k, k„).

Define the asymptotic spectral function by

o "(Q) =limy' so(yQ). ,

(2.5)

(2.6)

where B remains to be determined, and change variables from x to x'=~x, and from to ~'=~ '~. Upon
dropping primes, one obtains

)ee

g"(q)=lima '(2))) ' d'xe'o'" ~S, ~'+Q(nl)~ (dk, )„~ (dk„))„
X~O rf= 1

&& X"S+(~k„... , ~k„)~"S„,-.,(~k„.. . , Xk„), (2.7)

where (dk)~, is the inner product (2.4b) with a re-
placed by ~z. From the low-energy theorem,

where Q„(k) = Q(k)e
"' . From Eq. (2.4) we have

lim es„(~k, . ~k„)=(-s)"y(k, ) ~ ~ ~ y(k„)S„
0

(2.8a)

dk ~, * k, k =Bink+ dk, *k „k
(2.10K)

we obtain .

e u"

(2 )3)(k g k e (2.8b)
=a in'+ ((t, y, ), (2.10b)

where B is now defined by Eqs. (1.8). With this
identification of B, the limit A. -o is finite and gives

o"(Q) = ~S ( limA. (2w) d~xe'o' o-(q) = IS, I'(Se)' fd xe" «)r(((r'd, )),'*,
(2.11)

& exp (dk))„P*(k)@,(k), (2.9) thereby establishing the threshold theorem: The
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S, =C exp(-'(p, p)), (2.12)

where C is an invariant function of the u„and
(p, p) i s a strictly zero-frequency contribution,
represented by the second term of Eq. (1.18), and
given explicitly below, Eq. (3.5). It is interpreted
as an inner product, with kernel g, of zero-fre-
quency photons. 4 With

threshold spectral function o"(q) is identical with
the spectral function of the state 0 = (4„],4„
= (-i) (t)(k, ) ~ (t)(k„)S0 which is coherent at finite
frequencies with coherence function (t)(k), Eq,
(2.8b), which is the bremsstrahlung amplitude.

According to Eqs. (P6.29) and (P6.30), or Appendix
8, one has for the no-photonemission amplitude So,

a''(q) =-I C I'P(q) =-o~(q) (2.13)

which diverges at (@=0. From Eq. (2.4) we have

this gives"

p(Q)=(ex) ' f p'xe' '. *exp((p p) e (p, p)).
(2.14)

As discussed in the preceding article, the quantity
((p, p)+ ((()), (t), )), Eq. (1.18), is invariant and fin-
ite. It replaces the naive expression

(2v) ' f d'k(2(d) 'Q„*(k)( g""-)(t)„(k)e '

1
(Q, QE) =-— dk d(u Inace [&u'(t)„*(k)( g"")(I)-)„(k)e '"'],8

(2.15)

1

(ee)' f (~ x' —E ~ E) "(eee'(x' —e Ee)) ' (2.16)

where y = Jds-e lns is Euler's constant. The spectral function P(q) is now expressed as the Fourier
0

transform of a function which is analytic in the future tube, and hence it vanishes outside the future light
cone.

III. TWO SIMPLER PROBLEMS

A. Energy spectral function

It is easier to evaluate the energy spectral function

P, (E, 7)= fp(Q)e(E 'Q)i( ()

than the energy-momentum spectral function P(q). To perform this integration we choose coordinates with
time axis aligned along r From E.q. (2.14) this gives

P, (E, )=(& )
' f i(( "' *p((pp) + (P, P, )), ,

where P, = (t)&~, -„,&. From Eq. (2.16) we have

((()), (t), ) =B in[ac~(a+it) '),

(3.1)

(3.2)

so

P, (E,7) =(ae&) exp((p, p))(2n) ' dte's'(a+it)s,
~ OO

P, (E, v ) = (ae~)'[I'(I+B)] Be(E)E exp(( p, p)) .
'There remains only to substitute for

(3 3)

(3.4)

(p, p) = Q e,e,K(u., u,),
a, b

Eqs. (1.18) or (P6.30), or, making the frame dependence explicit,

(3.5a)

(3.5b)T(7) =-(p, p) =pe,e,K(u„u„7),
a, b

where K(u„u„T) is the kernel for zero-frequency photons 4As . shown in the Appendix of the preceding
article, K(u„u„7') is an invariant function of u„u~, 7'
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K(u„u„T)=K((i). „y., y, ), (3.5c)

(3.5d)

where g, ~, (I),, and g» are positive hyperbolic angles which form the three sides of the hyperbolic triangle
whose vertices on the unit hyperboloid are given by u„u~, and v, so that cosh(, =u, ~ T, cosh), =u, v,
cosh/, , =u, ~ u„and, by Eq. (PA24),

K(Q, („(()„y())=[(2v) tanhg, (,] '[R(—,'((1), ~ +g, +y~))-R( —,'(P, +P, g,—,))
+ R(-.'(y. ..+y. —y, )) + R(-'(q. .,+ y, j—.)) -R(y. ,.)],

where

R(y) = J[ d /tanh
0'

(3.5e)

0) and q is small and calculate

R (L) = lim q' o, (L = m + g, L = 0), (3 8)

is a Spence function. For g =5 this reduces to E(L)=o, , lim2' ' J (QP='+m—2 EQ=-i&l
g ~o

K(0, g„y,) = [(2v)' tanh)I), ] 'y, . (3.5f) x(2E) 'd'P. (3.9)
We thus obtain for the energy spectral function in

a generic frame the explicit expression
Because the support of P(Q) is inside the future
light cone, the integrand vanishes unless

P, (E, &) =(ae~) [I'(I+B)] 'B8(E)E m+ q ~ (p'+m')'~'+ )p[, (3.10)
P

x exp e,ebK u„u„&
a, b

(3 5) so p is of order g. The change of variables p =gp'
gives, wi.th

'The energy dependence of this expression is familmm

iar, but the explicit frame dependence appears to
be a new result.

B. Four-momentum of a missing particle

The preceding result may be applied to calculate
the radiative tail of a particle observed in a miss-
ing-mass experiment. In such an experiment the
four-momenta of all particles but one are mea-
sured precisely, apart from some infrared pho-
tons. Here we calculate the dependence of the
cross section on the missing four-momentum L,"
in the neighborhood of the threshold for production
of the missing particle, as in Ref. 5. Thus, if nz

is the mass of the missing particle, then q -=(L')'~'
-m is small. 'The dependence on L," is given by"

P, (L) =o, , jP(L —P)(2E)'d'P, (3.7)

where P(Q) is the energy-momentum spectral func-
tion of the photons, and p" = (E, p) = [(m' + p ')'~2, p j
is the four-momentum of the missing particle. Un-
less L' ~m', o, (L) will be zero. We evaluate the
integral in the frame where L is at rest L = (m+q,

m+ g —E =m+ q —(m'+ q'p")'~'-g,

R(L)=P, (2m) '2' J (P'Q= Q2=- 2')2dE' 'P,

(3.11)

E(L}=P, ,(2m) '2' jP(tf EP)d'P. =,(3.12)

R(L) =o, ,(2m) '(ae~) [I'(I+B)j 'B

x exp g e,e,K(u„u„v.)
) a, b

where v = L/(L')'~', which is independent of 7i.
From Eq. (3.8) we conclude that for small q, o,
=pe 'R(L), and

(3.13)

= [(L')'~' —m] = (L' -m') [(L')'" + m]-'

=(2m) '(L'-m')

We thus obtain the threshold dependence of the
cross section on the missing four-momentum

One recognizes that the integral is P, (q, 7'), which
we evaluated in the rest frame of I., and hence by
Eq. (3.8),

o, (I.) =o, Q(2m) '(ae&) [I'(1+B)] 'B8(L —m')8(L )[(L' -m')(2m) '] exp g e,e~K(u„u„T)
e, b

where ~ = L/(L')2~'.

(3.14)

IV. EVALUATION OF THE ENERGY-MOME%TUN SPECTRAL FUNCTION

We now turn to the main problem which is the evaluation of the energy-momentum spectral function
P(Q). For a first orientation, observe that the support property P(Q)=8(Q')8(QQ)P(Q) and scaling law
P(XQ) =X~ 'P(Q) established in Sec. II allow us to set
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P(Q) = e(Q')0(Q')M' 'P(~), (4.1)

P, (r, ) = s dg(&),
P(r)

(4.3)

where Q"=Mr", and v is a unit future timelike vec-
tor. If this expression is substituted into the defin-
ition of the frame-dependent energy spectral func-
tion we obtain

p, (B ..)= .fM p(. )-3(B M. ..)M dM d.(.)
(4.2)

where for r" =(cosh/, sinhi)x},

dg (r ) =- sinh'Jt)dg dx

is the invariant volume element on the unit timelike
hyperboloid v' = 1. With P, (E, r, ) =Es 'P, (w, ), this
gives

which expresses the frame dependence of the ener-
gy spectral function as an integral transform of the
scaled energy-momentum spectral function. Since
we have calculated P, (T, ) in Sec. III, our labors
would be over if we could invert this integral
transform. Our final expression for P(7) will, in
fact, be precisely this inversion which shows that
knowledge of the energy spectral function in all
frames is equivalent to knowledge of the energy-
momentum spectral function.

We evaluate P(Q), Eq. (2.14), in a frame where
the time axis is aligned along Q, [4) = (M, 0),
=Mg, and introduce spherical coordinates, ~"
=(x', rx). To exploit scaling we further transform
from xQ to s= x/Qr, so x and s are homogeneous
variables and r is a scaling variable. With fd'x
= J dx f" ds J"dr r' we obtain from Eq. (2.16)

(p, p)+ (g, (t)„)=Bin(ae)'/r)+T, (s, x),
I

T,(s, x)=(p, p)+ 2 2 dk g Q
'-'

~
In[a+i(s —k x)].

)r 0 uc- uo

The integration over r in Eq. (2.14) may be performed for B & 4 with the result

(4.4a)

(4.4b)

4)O

P(Q) = (ae&) M I'(4 —B)(2w) dx ds(e —js) exp[T, (s, x)] .J.„ (4.5)

By distorting the contour in various ways, various representations of P(Q) are obtained. The one shown in

Fig. I gives

P(Q)=(eev) M (2w) I'(4 —B)(-2(einwB) f dx dss e' M' exp[2(sx)J . ,
0

(4.6)

This expression represents P(Q) only for B&3. We will later continue in e to all positive B. Inspection of
Eq. (4.4b) shows that the phase of exp[T, (s, x)] is exp(-zvB/2) for s &1. Because P(Q) is real, it is suffic-
ient, after dropping (-i), to take the imaginary part of the integral from s =0 to s=1. This gives, with s
= tanhv,

P(Q)=(eew) M (-l)[I(B—3)J '(2'w) 'Iwn fdx f dveosh' (sinhv) ' exp[2', (v, p)v( ,)iwBJ, -

1 / e,u,'

T2(v, x) = (p, p)+ —
( 3

2 d$ g ' ' In[a+i(sinhv-coshvx k)],2 2v33
Q 0 0

(4.7a)

(4.7b)

where ( p, p) is given in Eq. (3.5a), and we have used I'(4 —B) sin~B =-[[/I'(B- 3).
'The integral over 0 in the expression for 7, will be obtained by analytic continuation of the kernel K, Eq.

(3.5). Let a" be the real unit spacelike four-vector

a" = (sinhv, cosh vx},

a =-1, and let r" be the complex unit timelike four-vector T"(Ip„„)r'=1,
/r" —= (cosh(v+ ,'A' —ie), s—inh(v+ —,

' iv —i@)x)

(4.8)

(4.9)

ol

&"= ~"+io",
where e is the infinitesimal future four-vector (e, 0), so the logarithm appearing in Eq. (4.Vb) may be
written

In[a+i(a' —a k)] =In(r'-7 ~ k).
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According to Eqs. (P, A2) and (P, A3),

K(u„u, ) =K, ( (I,)b)+Kf(u„u, ),
1
2 Q 'Qb 0 ~ tat

Kf( at ub)
(2 )3

dk
( p k)(~ k)

1 ( a ua
Qg —ug '

(4.10)

(4.11)

so with (p, p) =Q, be,e,K(u„u, ) we have for T„

T, (v, x) =Q e.e, K, (y, b)-,2'„dk
Eq. (4.7b),

~ k)(8b- ub 5) T —w ~ k J ' (4.12)

where 7 is given in Eq. (4.9). Comparison with Eq. (P, A14) shows that the second term is precisely
Kf(u„ub, w), with w = (cosh), sinhgx) continued in p to p = v+ ,iv ——ie, with v real. Hence we have

T, (v, x) =Q e,ebK(u„u„e+io) = T(e+ia),
ebb

in the notation of Eq. (3.5b). We thus obtain from Eq. (4.7a)
eo

P(Q) =(aef) M '(-1)[(2m)'I'(B —3)] 'Im
J dx dv cosh'v(sinhv) ' exp[T(e+io)+ ,'i'—J,

0

(4.13)

(4.14)

where o"= (sinhv, coshvx). With T(7') = ( p, p), the desired spectral function is exhibited here as an integral
transform of the exponential-of the zero-frequency photon kernel, analytically continued.

The continuation is easily effected. By Eq. (3.5), K(u„ub, 7) is a function of the three invariants g, „g„
and gb at values defined by cosh), b=u, ~ u„cosh), =u, 7 =coshgd', —sinhpx ~ u„and a-b As .p is continued
from real positive values to P = v+ —,i)T —ie, the invariants (C), are continued to values determined by

I'

cosh/, =u, (6+i(x) = E +iua(7= e+i slnhv, ~a a
0' sinhv4a h~x a ~ (4.16)

=cosh[va+ biv —ie],
namely,

p, = v, + iv/2 —ie and a -5,
where v, = v, (v, x), defined by

(4.15)

is real. We thus have

K(u„ub, e+ba) =K(y, „v,+ ,'imt v,-+ —', iw) . (4.1'l)

From Eq. (3.5) one obtains explicitly

K (u„u„e+io) = Ks (u„u„a) +iK,(u„u„a), (4.18a)

K„(u., u„o) =(2s) '(tanhp, b) '[$(-,'(v, +v, + q, )) —b$(-,'(v, +v, —Ij), b))
I

+R(2 (4o, b+ b))

t 11 ~2

j( at bt )
(2 )2

(4.18b)

-1 +I
cosh[-,'(v. +v, +g. . )]b
cosh[-,'(v, + v, —g, b)]

which, for a = b, reduces to

K„(u„u„o)=(2n) 'v, tanhv„

Kf(u„u„o) = (2w) '(v/2) tanhv, ,

(4.18d)

(4.18e)

where

C.X X 1E 'IE E 'IL X 'E 'E 'IE X 'IE 'L IE

N c,

FIG. 1. Distortion of contour of integration from C&

to C2.

R (g) = dx x/tanhx,

s(t)=f axx)xn)tx=-.'a(st)-a(()),
0

and we have used

(4.18f)

(4.18R)
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X2+1/2 c 7}

It (q + ,'iw-) B-(X, + ,'iw—)= du u/tanhu
Z +Z/2g 7l

dv(v+-,'in) tanhv

P(7') = -(2w) '(B —3)(B—2)(B—I)

x dp, g) sgn o' ~ 7

&&(2i) '(c+ig 7)P, (c+ig). (4.23)

=S(~,)- S(~,)+-.'iwin
coshAr

(4.18h)

It may be verified by substitution that this is true
if gj'+3.

Introducing the real and imaginary parts of
T(a+ ig)

T(e+ig) =T„(g)+iT, (g),

Trd j(g) = Q egefKs r(u s ubs g)
gnb

(4.19a)

(4.19b)

V. SPECTRAL FUNCTION NEAR THE LIGHT CONE

To describe the approach to the light cone Q' =0
of the spectral function P(Q), we introduce vari-
ables E, v, $ defined by Q"=E(1,vk), so P(Q}
=P(E, v, k} and the light cone is approached as v

-1. Vfe shall calculate

one has, from Eq. (4.14),

P(Q)=(acr) M (-l)[(2w)'I (B—3)] '

dx dvcosh'v(sinhv)s '

& sin[T, (cr) + —,
'

wB] exp[Tn(g)] . (4.20)

Recall that this integral represents P(Q) in a
frame with the time axis aligned along Q. To ob-
tain it in a generic frame, note first that Trd(g) and

7', (g) are invariant functions of g and the u„and
that with g = (sinhv, coshvx) the invariant g ~ Q

equals Msinhv in the special frame. Second, the
unit spacelike hyperboloid possesses the Lorentz-
invariant volume element

dp(g) =dxdvcosh'v, -~ & v& ~.
Consequently, we have in any frame

P(Q) = (acr)n(2w)'r(B —3) '

(4.21),

&& exp[Ts(cr)] sin[Tr(g)+ 2 wB], (4.22)

which is the desired expression for the energy-
momentum spectral function, valid for I3&3. In

Sec. V an analytic continuation will be exhibited
which is convenient for evaluating P(Q) in the
neighborhood of the light cone Q' =0.

As a final remark, recall the integral transform
(4.3),

S', (v, )= f (v, v) 'r (v)ds (v).

With r, = (cosh), sinhPx) it shows that P, (r, ) is ana-
lytic in the strip -w/2 & Im(I) & w/2, and consequent-
ly P, (e+ig, ) is well defined for any P(v). [In our
case P, (7., ) is a particular function which, by Eq.
(4.18f), is analytic in -w & Img & n )Compariso. n of
Eqs. (3.6) and (4.22} suggests that the inverse
transform is

P (0) =B' lim-{(Q')' P(Q)j( (5.1a)

P, (k) =B 'lim {[E'(1—v )]' P(E, v, k)), (5.1b)
y ~1

where k is the four-vector k"=E(I,k) defined on the

future light cone. %'e shall find that it is a finite
Lorentz-invariant function of k and the i„so the
approach to the light cone is described by a power
law in (1 —v) or in Q =E(1 —v}:

P(Q) -B(Q )' '(2E)' 'P, (~}. (5.2)

The basic technique for continuing from B &3 down

to all positive B is by partial integrations. As-
suming B&3, an integration by parts on e may be
performed, with no contribution from the lower
limit of integration. 'The asymptotic limits, as o.- I or v-~, of T„and Tl are calculated in Ap-
pendix A, where it is shown that

lim [T,(cr) + -,' n B] = 0
C~l

(5.5)

This power law in Q may be thought of as the ra-
diative tail of a missing photon, analogous to the
radiative tail of the missing massive particle dis-
cussed in Sec. III B.

In Eq. (4.22) for P(Q) we introduce as a variable
of integration o. =tanhv, so that

o"= (sinhv, coshvx) =coshv(a, x),

dp(g)e(g ~ Q) =dxdcn(co hs)v'8(n v ~ x), —

and we have

P(Q) =(asr)'[(2w)r(B-3)] 'E' '
1

x( () f dk dv(v —vsvsv) rr(s, s),
tr COSe

(5 3)

where the z axis of the angular integration has
been aligned along k, and

Jf(a.', x) = (coshv) exp[T„(o)] sin[T, (g) + —,
'

wB] .
(5.4)



2020 DANIE L Z%AN ZIGER 20

and that

E(x) =-lim (Ts(o)+Blncoshv), (5.6)

given in Eq. (A14), is finite, so there is no contri-
bution from the upper limit either, and we have

P(Q) = (ae)'}'[(2v)'I (B—2}] 'E' '

(5.6) we have

8
H—(n, x) = exp[E(x) ] —T,(n), (5.11a)Bn, Be

which with Eq. (A10) gives

&& dx ) dn(n —vcos8) ' H(n, x).
veos8 Be

H(—n, x) = -2m'I, (x) exp[F(x}],
Bo.

and so

(5.11b)

P(q) = (ae~)'[(2v)'I (B-1)] 'E'-'q,

J=J1+ J1.Z

(5.6)

(5.9)

where J, is the contribution from the upper limit

(5.7)

his provides a continuation to all B &2. A second
integration by parts on e yields

2, = —(2v) f dp() —v cove) t ( )e2xp[ (P)J2, (5.)2)

where Io(x) is defined in Eq. (1.8b). This expres-
sion needs no further continuation and represents
J1 for al 1 B. A fter the change of v ariable

cos8=1 —(1 —v)v 'y,

or
a-2J, = dx(1 —v cos8) ' H(n, x)Be

(5.10)
1 —v cos 8 = (1 —v) (1+y),

and J, s is given in Eq. (5.16). From Eqs. (5.5) and so

2' 2v(1 v)

J, =-2J['(I —v') 'v ' dp dy(1+y) '(I~e~),
0 0

where Ioe~ is evaluated at cos8= 1 —(1 —v)v 'y, we form

2r eo

lim (1- v)' sJ; =-2J[' d(II) dy(l+y)s '(I,e~)(cos8=1, Q) .
v~1 0 0

A

For 0 & B & 1 this integral is convergent, and recalling that the z axis is aligned along 4, we have

lim (1 —v)' sJ, = 4JJ'(B —1) 'I, (k) exp[F(k) ] .
v ~1

%'ith J =J, + J» there remains to consider
I

J = — t& de e-vcosg B BG' Qeg
v case

(5.13)

(5.14)

(5.15)

(5.16)

An integration by parts on cos6[ is sufficient to continue this expression to all positive B. Calling J, the
contribution at cosg =-1, so that

J=J1+ J2+ J2Z

and recalling that the z axis is aligned along k, we have

1

Z2 =-2v[v(B-1)] ' dn(n+v)' '(8/Sn)'H(n, -k),

(5.17)

(5.18)

or, with n =-v+(1 —v)g so (n+ v) =(1 —v)z and 1+ n = (1 —v)(1+@),

(5.19)

and thus

(1+v)/(1 v)

J, =-2vv '(B 1) '(1 —v) dz—z '(8/sn)'H(n, -k)
0 Df = -v+ (1 vp

In the limit v-1 o)f (1- v)' J, (v) only the most singular term in the integrand at n=-1 survives. With H
=exp(X}sin(T, + ,'xB), where X=T„+Blncos-hv, we find from Eqs. (A9), (A10), (A12), and (A16) that the
leading singularity of (8/sn) H(n, —k) near n= —1 is given by

exp[E(k)] sinvB(B/sn)'X = exp[E(k)] sinwB(-2v)I, (k)(1+ n) ',
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lim (I —v)' zJ, =(2n)'(B —1) 'jo(k) exp[E(k)] sinzB dzz (I+z) '.
The integral converges for 0& B & 1, giving

lim (1 —v)' sJ, = -,' (2w)'(B —1) 'Io(k) exp[F(k)] .
v~1

(5.20)

This equals the contribution from J„Eq. (5.15), and J',s is annihilated in this limit. We thus obtain from
Eq. (5.8)

lim(1 —v)' P(E, v, k) =(ae~) [I'(B)] 'E I,(k) exp[E(k)] .
v~1

This establishes the finiteness of P, (k) =8 ' lim„, [E'(1—v')]' P(Q), with

P, (k) = (ae") [I"(I +B)] 'E 2' zIO(k) exp[F(k) ] .
This may be expressed covariantly. %Kith

2

I,(k) =E-'I, (k)= ', P ' 02z', u, k

and

(5.22)

(5.23)

E(k) -=E(k) —BIm, (5.24a)

F(k)=Q
2 .' ' [lln(u. ku, k)+»2]y. ,, +&lz y. ,~+» ' I+&(2 y. ,~+» '.

k I]l-&(y..~) .
2z ' tanhg, ~

(5.24b)

by Eq. (A14),

P (k) = (ae&) 2' [I"(1+B)] I (k) exp[E(k)] (5.25)

is a manifestly invariant function of k and the u, defined on the future light cone.
We define an asymptotic spectral function P"(Q) to be an invariant function of Q and the u, which satisfies

lim (Q')' 'P"(Q) =Iim (Q')' 'P{Q) (5.26a)
v~1 E,% v ~1

which we write as

P(Q) -P"(Q) . (5.26b)

This definition is not unique. We may regard I(k) and E(k) as limiting values on the light cone of functions
I(Q) and E(Q) defined inside the light cone. Such an extension off the cone is also not unique, but it becomes
so if we regard each term in the sums (5.23) and (5.24) as the value on the light cone of a function of the
three independent invariants u, u~, u, Q, and u, Q (a Priori it could also depend on Q') namely

(5.27)

E(Q)= g 2
' ~ [—,'ln(u, Q u~ Q)+In2]P, ~+R —,'(P, ~+1n

+8 —,'i g.„+In '
J

-Rbp, , ,)I., ( u, ~ Q'r~

This gives the simple expression

P"(Q) = (ae~)z[I (1+B)] '8(QO)8(Q')B( —,Q')z 'Io(Q) exp[E(Q)] .

(5.26)

(5.29)

(5.30)
'E,k

From the asymptotic limit (A2) one has

An alternative asymptotic spectral function P'"(Q) features the zero-frequency photon kernel Let 7."
= Q"/(Q')' ' and let g, ~ 0 be the hyperbolic angle defined by cosh/, = u, ~ v, then

lim [g, + ln(Q2)' 2] = ln(2u ~ k) .
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}'(k}=}im Qe,e,}((u„u,x}—Bln(Q }''),
y~1 a, b

where K is the zero-frequency photon kernel, Eq. (3.5), and thus

(5.31)

(5.32)P"'(Q) =(ae}') [I'(1+B)] '8(Q')8(Q')2' B[(Q')' '] 'I (7') exp e,e„K(u„u~, 7)
a,

To compare with low-order perturbation theory, suppose B is small. In this case P"(Q), Eq. (5.29), is
concentrated near the light cone. [And we presume the same is true for P(Q). ] It contains a, factor
B(1—v)s '8(1- v), which for small B approximates the Dirac 5 function

limB(1 —v)s '8(1 —v) =5(1 —v),
B~O

P(Q) = 8(E)(ae&'E)sE '5(1 —v)I, (k) exp [F(k)],
for B=0, which compares with the first-order perturbative expression

(5.33)

(5.34)

P'"(Q) = 8(E)E '5(1 —v)I, (k) . . (5

As e'-0, then exp[F(k)]-1, B-O, and the two expressions agree. However, whereas the first-order
perturbative expression diverges at E = 0 when integrated,

J(P((}}d'(}=fP((}}E'dEv'dv d$,

Eq. (5.34) gives a finite probability for energy loss less than Eo into dk, namely

P (Q)E'dEv~dv = (ae&E, )sI, (k) exp [F(k)] . (5.35)
0

The relative probability for energy loss into dk is

Io(k) exp[F(k) ], (5.37)

which is the first-order perturbative expression modulated by exp[F(k)]. As bosons in a coherent state,
the photons are positively correlated, so we expect exp[F(k)] to enhance the one-photon distribution where
it is large and reduce it where it is small. To confirm this and to estimate the .magnitude of the effect,
consider e+-e annihilation into neutrals [or heavy charged particles, so factors of (1 —vcos8) are not
important]. If the electron and positron have four-velocities (1 —v') '~'(1, 0, 0, v) and (1 —v') ~'(1, 0, 0, —v),
so I,(k)=I,(cos8), F(k)=F(cos8), then

e' v'(1 —cos'8)
Io (c0s8 )

(2&)3
—v cose',4(1 —v'cos'8)

F(cos8) =
(2 )

2

(5.38)

(5.39)

1+v2, 4(1 —v2cos 8) 1+ v } 1+ v } 1 —vcos&
ii~ ln 2 ln +Q 2ln + pin

v 1- 1 —v 1+vcosg
&

1+ v j 1+ vcosp ti 1+ v+B & ln + —,'In ~-R ln
1 —v 1 —vcos8i 1 —v i

One finds that for v relativistic, I,(cos8) has its
maximum at two lobes near the beam axis at
cos8 ~=a [1—v '(1 —v')], and a minimum at
cos8=0. For 3 GeV on 3 GeV one obtains

(5.40)exp[F(cos8~, )]/exp[F(0)] = 1.37.
The relatively large 37/g effect occurs because of
the ln2 terms in (5.39) and implicit in R(g) ——,tP.
In particular, one has

2 2 2E
—,'ln' = 2 &n2 =176

1 —v m

at E =3 GeV.

VI. CONCLUDING REMARKS

The threshold theorem for the energy-momen-
tum spectral function was derived in Sec. II in the
mathematical limit of strictly zero four-momen-
tum. On the other hand, it is clear that our de-
scription of the scattering process is an idealiza-
tion which breaks down at some sufficiently small
frequency u;„. For example mj~ may be the up-
per limit in frequency of incident coherent radia-
tion which has been neglected, or it may be the
very small width of a long-lived unstable particle
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that has been treated as stable. The formula which
we derived for P(Q) will be useful if there is a
range of photon energies v greater than ~;„but
smaller than some +~», determined by the mo-
menta p, Of the charged particles, where the tra-
ditional bremsstrahlung spectrum holds. (In prac-
tice this range may extend over many decades. )
'To justify this, suppose that for ~ & ~~» the out-
going radiation is coherent a"(k)4 = p"(k) 4' but that
the coherence function P"(k) is given by

as the cancellation occurs here for finite a.) The
analog is quite close if the state 0 is of the form
4 =SCo, where 4 0 is a Fock state and the S matrix
is calculated according to the method of the pre-
ceding article, ' namely the integral over virtual
photon momenta, fd4kg„„(k'+is) ' ~ ~, is re-
placed by

f (2v) '~' Q e u"(u .k) '

0
(6.1)

requires a sum over all photon numbers to give a
positive probability because the one-photon inner
product (1.18) is indefinite. This is the analog of
the sum over final states. Secondly, the finite pa-
rameter c which appears in the inner product
(1.18) reappears in P(Q) as the factor as. The
same factor of a~ will also occur in the normaliza-
tion integral, so if the state 0 is normalized, the
spectral function P(Q) will be independent of g.
This is the analog of the cancellation of the photon
mass A. out of cross sections. (Of course, the pho-
ton mass cancels out only in the limit ~-0, where-

only for &u&tu . (The sum goes over incident and

outgoing charged particles. ) For &u «u;„we a,s-
sume only that lim Oa&g"(k) is finite. Inspection
of Eq. (2.16) shows that in this case the contribu-
tion to the inner product (p, g„) from e & +;„is
of order (+;„x)ln(em, .nx). Furthermore, as the
scaling operations of Sec. II show, the significant
values of x are of order 1/Q, so the contribution
to P(Q) from a& & v;„ is of order ((o;„/Q)ln(&;„/
Q), which is negligible for &u;„«Q. Thus, al-
though no experiment is performed at zero energy,
and although only at mathematically zero energy
are the Fock and non-Fock representations dis-
tinguished, as long as low-energy photons are well
described by the traditional bremsstrahlung form-
ula (1.3), the corresponding non-Fock representa-
tion will be a convenient mathematical idealization.

It may be illuminating to compare the present ap-
proach and the familiar photon mass method. 4 'The

reader wil'i have observed that the spectral func-
tion cr(Q) -ooP(Q) was calculated by taking into ac-
count only the real bremsstrahlung photons,
whereas the photon mass method requires a can-
cellation of real and virtual infrared divergences
in the sum over final states. However, two signif-
icant features of the photon mass method do sur-
vive in the present treatment. Firstly, the co-
herent non-Fock state defined by the low-energy
bremsstrahlung spectrum

which differs by a partial integration, and the re-
sulting (8(' contains the factor a s.

T' he present article illustrates how the method
of the preceding article may be used to calculate
observable quantities. However, it is by no means
restricted to states of the form (1.3) which are co-
herent at finite frequencies, but may also be used
perturbatively. To do so simply requires the sub-
stitution just mentioned for virtual photons, and
for real photons

d'k(2(o) ' ~ ~ ~ =— dk
2

similarly gets replaced by

de) CO 4) ~ ~ ~

I 8
dk d(min(a(u) —[(u' ~ ~ ~ ] .2 0 8(d

[The additional zero-frequency photon contribution
in Eq. (1.18) is calculated once and for all and ex-
ponentiates. ]

We have seen that scaling laws with anomalous
dimension dominate the energy-momentum spec-
tral function of electromagnetic radiation u(Q) for
small values of Q. For this the scsle breaking
mechanism, introduced in the preceding article'
by means of the Hertz potential, is a convenient
vehicle, and the resulting formalism has allowed
the calculation of the threshold spectral function
P(Q) in a straightforward manner. It could also be
calculated by other methods. In particular, the
work referred to in Ref. 4 shows that the photon
mass method and dimensional regularization leads
to the same inner product (1.18) and hence the
same calculation, and in Appendix 8 of the pi'esent
article it is shown that this is also true of tradi-
tional Hilbert-space methods. '4 Whatever one' s
method of choice, it is significant that the kernel
for zero frequency ph-otons, Eq. (3.5), is the only
ingredient in the final expression for the threshold
energy-momentum spectral function. Because this
is the fundamental experimentally accessible quan-
tity associated with the infrared problem, it ap-
pears that the basic infrared mechanism. is laid
bare in the one-photon inner product (1.18) which
is characterized by this kernel.
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lim [v, (v, x) —v, (v, x)] = a ln

Using these results and

K,(- o) =-K,(o),

one finds from Eq. (4.18c)

(A6)

(A7)

R(-y) =-R(y),

lim [R(g)+ 2$] =+7[2/12,
Q~P eo

and from Eq. (4.18g}

(A1)

(A2)

APPENDIX A: ASYMPTOTIC PROPERTIES OF THE

:ZERO-FREQUENCY PHOTON KERNEL

Note first, from the definition of R(g), Eq. (3.5),

and hence from Eqs. (1.8) and (4.19b)

lim T,(o) =*', mB-

and also, with Q=tanhv,

(A 9)

lim T,(n, x) = -2]]'Io(ax) .
n ~z

(A10)

lim K~(u„u„o) =a(2n) '(tanhg, ,) ' —,'mP. .. (A8)
'p +koo

lim ' (v, x) =1,

lim [S(y) + —,'y' j = ~w'/24.
tt) ~ ao

Note next that with o"=(sinhv, coshvx) and

sinhv, =o u, =coshv(tanhvu, —u, ~ x)

one has

lim [v,(v, «) —v] = a ln(u', w u, ~ x),

(A3)

(A4)

(A5)

Similarly, from Eq. (4.18b) one has

Ks(-o) =K„(o),

lim [T„(o)+ B ln coshv j =E(+x),

lim [T(r) +BI nochsg]=F(+x),
It]-+ y co

where 7." = (cosh), sinh]i) x), and

(A 11)

(A 12)

u(k) =P e, e, [(2e)'tunhk„] 'I[-'1n(u,' —u, k)+-', 1n(u,"—u, k)etn2]2, ,
a, b

t p u'- u
(A14)

where for g =5 the diagonal summand reduces to a" (k) -a"(k)e"" (B2)

e,'(2n) 'In[2(u.' —u. k)].

Finally, we record that with Q =tanhv and

X(n, x) = [Ts(o)+ Blncoshv],

BX „„1+Q
(n, x) = -2)]I,(nx) ln + reg,

BQ 1 —Q

(A15)

(A16)

Here a~~(k) is a Fock representation of the canoni-
cal commutation relations

[a~+(k), a~(k'}j = —g)2, 2(k) 6 (k —k'), (Hs)

so that there exists a normalized state, call it lP),
with (PlP) =1, which is annihilated by a~~(k):

where reg is a function which is analytic in Q at
Q =+1.

a",(k)ly& =0

or, by Eq. (Bl),
"(k) lt& = 0"(k) le& .

(B4)

APPENDIX B: HILBERT-SPACE DERIVATION

We wish to calculate the threshold spectral func-
tion in the Hilberkt space where the photon annihi-
lation operator a" (k) is represented by

a" (k) = a"„(k)+y" (k),

and the translation group by

eu"
Itm ~y" (~k— (B6)

where Q, e, =0 (see Introduction). We assume
Q(k) to be quite regular, as required below, apart

In these expressions P~ (k) is a transverse classi-
cal function k (t)(k) = 0 with low-frequency limit:
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from this singularity at the oxigin. Because this
wave function is not square integrable, a" (k) is
a non-Fock (i.e. , not equivalent to a Fock) repre-
sentation of the canonical commutation relations.

The representation a~~(k) is irreducible, so we

may conclude that the generator P" of the transla-
tion group (B2) has the usual form

=(2.)-'

v(q) = (2v) ' d'xe'o'"y'(x),

(B10)

(B11)

d kP" = at(k)( —g' )a~(k)k", one would like to write the integral in Eq. (B9) as
the difference

F(x) =-&y I exp(-a'x) ly&, (B8)

to within an additive constant which we take to be
zero since we are not considering the momentum
of other particles.

Consider next the matrix element of the transla-
tion operator in the coherent state 1P),

d k0*(k)(-g"')y,(k)e-"'- 2„e,*(k)(-g"')y,(k).

This is not possible because of the infrared di-
vergence owing to (B6), but an integration by parts
on m gives instead

d k
y'(x) =exp Pg(k)( g"')y-, (k)(e '" "—1)

(B9)

E(x) = exp(&P, &Pg) exp(-&P, P)),
where

(B12)

The characteristic appearance of the difference
(e ' '*- 1) renders this integral finite at &u =0 de-
spite the low-frequency limit (B6). Equation (B9)
may be proved tediously by expanding in powers
of x, or more briefly, as follows. We have

B„P(x)= &p1 exp(-iP ' x) (-iP&)1$)
d'4

(-ik„)G(k, x),

where

G(k, x) = &y1 exp(-iP x)a~(k) (-g' )ai(k)1$)

=&$1exp(-zP x)a', (k)1$)(-g')P~(k)

=&alla'. (k)e "'"exp(-iP x)14»(-g"')4i(k)

p(- P )14»4,*(k)(-g"")4 (k)

=P(x)e.*(k)(-g"')y,(k)e

This gives

x [~'yP (k) (-g" ')y, ,(k)],
(B18)

with P„„(k)-=g„(k)e '4'", is recognized as the fi-
nite inner' product (2.4) and a is an arbitrary con-
stant. In order to perform the integration (B11),
it is convenient to make a I orentz-invariant fac-
torization, which Eq. (B12) is not, and write in-
steadu

P (x) = exp[&p, p) + &p, pg) exp [-&p,p) —
&p, p) ], (B14)

where the term in brackets is defined in Eq.
(1.18). The Lorentz invariance of this inner pro-
duct was proved in Ref. 1, and the evaluation of
the spectral function in the state 1Q) now proceeds
as in Sec. II, with the result given in the text.

A dense set of states is obtained from 1P) by ap-
plying polynomials in the creation operator

8„P(x) =F(x) (-ik„)y,*(k)
6'4 a'(f) =

2
a""(k)(-g .)f"(k), (B16)

or

x (-g'~)@„(k)e "" where f '(k) is a transverse square integrable pho-
ton wave function. Because the translation (B2)
may be written

a„E(x)=F(x)s„
d'k

y„*(k)
2(d

x ( gKK)y (k)(e-l4'x 1)

The solution to this equation with E(D) = 1 is given
in Eq. (B9).

In order to calculate the spectral function in the
state 1p),

a~~(k) a"„(k)e'4 *+P" (k) ('e'4' —1), (B16)

it is easy to verify that for sufficiently regular
f"(k) the threshold spectral function is unaffected
by the above polynomials. (This is also true for
off-diagonal matrix elements. ) We have proved
that the threshold'spectral function has the stated
form for a dense set of states in the Hilbert-space
representation defined by (B1), (B2), and (B6).
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