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Covariance problem in two-dimensional quantum chromodynamics
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The problem of covariance in the field theory of a two-dimensional non-Abelian gauge field is considered.
Since earlier work has shown that covariance fails (in charged sectors) for the Schwinger model, particular
attention is given to an evaluation of the role played by the non-Abelian nature of the fields. In contrast to
all earlier attempts at this problem, it is found that the potential covariance-breaking terms are identical to
those found in the Abelian theory provided that one expresses them in terms of the total (i.e., conserved)
current operator. The question of covariance is thus seen to reduce in all cases to a determination as to
whether there exists a conserved global charge in the theory. Since the charge operator in the Schwinger
model is conserved only in neutral sectors, one is thereby led to infer a probable failure of covariance in the
non-Abelian theory, but one which is i.dentical to that found for the U(1) case.

I. INTRODUCTION

Non-Abelian gauge fields have of late been in-
creasingly looked upon as one of the more pro-
mising approaches to a theory of the strong inter-
actions. This trend has motivated a number of
investigations into two-dimensional versions of
such models in the hope that some insight might
be gained into the general features of their four-
dimensional counterparts. However, because of
the more singular behavior of the inverse Lapla-
cian in one spatial. dimension, it has generally
been recognized that the covariance proofs which
are presumably valid in four dimensions do not
apply in the two-dimensional case. In fact, the
first suggestion that something might be amiss for
two-dimensional gauge theories seems to be Zu-
mino's suggestion that the Coulomb gauge formu-
lation of the Schwinger model"" is not covariant.
He observed' that the equation

(-s'+ e'/~)j"(x) = 0
I

of the Schwinger model implies that the charge
operator

Q= f j (x)dx

satisfies the equation

(8,'+ e'/~)q = 0.
Thus the global charge operator Q is not conserved
unless it vanishes. Since one cannot require Q to
vanish identically if the canonical formalism is to
be retained, Zumino concluded that *'the Coulomb
gauge formulation of the theory is not truly covar-
iant unless one is willing to restrict oneself to
states of zero charge. "

Although Zumino's conclusion is valid, it has
become usual to base assertions of eovariance or

noncovariance upon an examination of the Dirac-
Schwinger commutator condition'

i[T"(-x), Too(x')] = [Toi(x)+ Toi(x )]&,5(x, - x', ) .

'A proof following this route was in fact supplied by
the author' with the result being that the covar-
iance-breaking terms were found to be proportion-
al to

lim [j '(L) —j'(—I )].
g ~ oo

Since Brown's solution' shows that this does not
vanish, one establishes noncovariance in a very
satisfying way —namely the proof depends on the
nonvanishing of the same combination (1.1) as that
which leads to the conclusion that &oQ 0 0 even
though ~„j"=0. 'Thus Zumino's comment is easily
understood within the context of Ref. 5.

Although one would expect intuitively that the
covariance question would be answered similarly
for the non-Abel. ian case as for the Abelian, re-
cent work on this problem has asserted otherwise.
In particular, Li and Willemsen' have claimed
that the Poincare algebra, is satisfied (a result
which may be shown using Ref. 5 not to be valid).
Bars and Green' have asserted on the other hand
that the problem is intimately associated with the
non-Abelian nature of the fields and have concluded
that the theory is covariant only in the color-sing-
let sector. In this paper it is shown that in fact
the covariance question has essentially nothing to
do with the non-Abelian aspect of the theory. 'The

covariance-breaking term in the Poincare algebra
is found to be identical to that of Ref. 5, provided
that for the current one takes the conserved total
current operator rather than just the spin-& con-
tribution.

In the following section the results obtained
earlier' in the Schwinger model are summarized
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and also strengthened by explicit consideration of
the asymptotic properties of the current operator
and energy-momentum tensor. 'Section IV presents
the non-Abelian version of this theory and is fol-
lowed in Sec. V by a discussion of Lorentz trans-
formation properties leading to the claims sum-
marized above. A brief conclusion presents some
consequences of the results obtained.

II. THE SCHWINGER MODEL

The Schwinger model can be described by the
Lagrangian

2 =-,'ign"s„g+ 4F""F—~„

zF~ "-(& A„—8„A„)+ej"A„,

Corresponding to this, one has the electric field

LF"= —,'e e (x —x')j'(x')dx,'.
-L

Using the fact that

& T""=0
P

one can easily compute

[&, T"(x)]= i(x'~' —x's')T" —2iT" —i( ', eL)F"-s,q
where the Lorentz generator E is defined to be

K =x'I' —Jl x'T"dx,

and the momentum operator I' is given by

where the current operator is formally defined by
the limit

j~(x) = lim —,'g(x) o."qtlt(x')

and the charge matrix j is given as

P = dx T"dx,

with

This easily yields

(2.2)

where

In the Coulomb gauge

A. , =Q,

and one is led in the usual way to consider the
equation

~2+0 ej0 (2.1)

x,j' x dx,

is the dipole operator. It is to be noted that the
anomalous term in (2.2) cannot vanish except in

q = 0 sectors because of the equation

As the inversion of the Laplacian in one spatial
dimension gives a function which does not vanish
for large values of its argument, it was proposed
in Ref. 5 that one handle this complication by
placing the system in the one-dimensional box

lx l

~ I and solving (2.1) using Dirichlet boundary
conditions. By further requiring that the Hamil-
tonian

f L
H = T"dx, ,

where

~+~isi4+ 2Foi

yield equations of motion which are identical to
the Lagrangian equations, there results as the
solution to (2.1)

A'(x) = --,'e lx —x'
l
j'(x')dx,'+ ,' Leq, —

-L

where

L

q = j'(x)dx, .
L

and one consequently infers that the model cannot
be covariant except in those neutral sectors.

Despite these formal operator results there
exist at least three technical points which de-
serve consideration in view of the existence of
Brown's explicit solution of the model. These have
to do with the asymptotic behavior of (i) j'(x), (ii)
T"(x), and (iii) T"(x) and T"(x). We consider
each of these in turn.

As seen from Eg. (1.1) the combination j'(I )—
j'(-L) cannot vanish in all sectors if the noncon-
servation of the global. charge operator is valid.
Using Brown's Ecl. (3.7) (taking out a factor of e
to correspond to a trivial current redefinition)

&ol(j'( )0(,)' ' ' 0(,.)), lo) ( „...)

2A

X Xa X$ p
~ ~ X2g

one obtains by straightforward manipulations that

«l[j'(~L x')e(x. ) e(x..)].lo)e(x

=+i — q, exp -i — x —x,'

&& G(x, 7. . . $ xgg),
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thus confirming the asserted results

The asymptotic behavior of T" is of interest in
that the presence of the box itself is expected to
break translational invariance. This is not ap-
parent so long as one commutes P with P(x) with

~x,
~

(L but could conceivably affect such things as
[H, P]. Probably the easiest way to handle this is
to write

P = T 'dx, — T"dx, —
CO L

f -L

4 oO

T"dx, ,

and to note that translational invariance is restored
for L-~ provided that T"(+L) vanishes sufficient-
ly rapidly. This is verified by merely observing

from Brown's solution that the coupling term is
irrelevant to the computation of T."Bnd that trans-
lational invariance is thus restored for L-~
exactly as it would be for a free field in such a
box.

Finally one considers T ' and T" where the l.at-
ter is given by

Since one can verify by inspection of Brown's solu-
tion that the first term in each of the operators
goes to zero for large values of its spatial argu-
ment, one requires only a calculation of matrix
elements of (E»)' to complete the demonstration
of consistency between the formal operator ap-
proach and the exact solution.

The technique employed is that of Brown with the
result that his Eq. (3.'t) generalizes to

&0 l(j'(x)j'(x )0(xi)' ' ' l(x")).10&e(x„.. . , x „)= (qas),

(ques)~&(x

—x, )~(x —x~)G(x„.. . , x, )
aq II 1

(2.3)+ « l(j'(x)j'(x')) 10&G(x„.. . , x,„).
From (2.3) one obtains after subtracting the vacuum expectation value of (E„)' the result

(0 ((t[F"(+ L, x')]' —(0 [[F"(+ L, x')]' )0&]q(x,)
. &(x

~2 I /2
= e' q,q, —,', K(x' —x,')e(x' —x') exp i — ([x-' —x'[+ [x' —x', [) .

cg ~1

This coincides with what is obtained from a com-
putation of the matrix element of 4Q', i.e. , with
the asymptotic operator values of (F»)'. One thus
confirms the expected nonexistence of H as a well, -
defined operator in the limit L -~ for charged
sectors. On the other hand, the principal aim of
this calculation, namel. y, the displ. ay of the close
correspondence between the operator manipula-
tions of Ref. 5 and Brown's solution, has been
successful and serves to make credible the subse-
quent extension to the non-Abelian case. 1"his con-
trasts with the approach of Bars and Green, 'whose
assumptions concerning the asymptotic behavior
of j"(+L) are demonstrably incorrect for the U(1)
model and certainly unsatisfactory as an assump-
tion in the non-Abelian case.

III. THE NON-ABELIAN MODEL

In carrying out the extension to a non-Abelian
gauge field we choose a description of the theory
in terms of the Lagrangian'

2iga"sp —2—mgpg+ ,' E—,""E'„„—
——,

' E;"( A'„—s„A'„+ieA„t'A„)+ ek,'A'„,

where for convenience all fields are taken to be
Hermitian and 0," is the current operator

As usual the matrices t' and T' are respectively
the regular representation and any convenient re-
presentation of the group. Since we elect to work
in the Coulomb gauge,

and there follows in the usual way the constraint
equation

-7'2A' = eP'.a a (3.1)

Thus one has a formulation in which the gauge
field is expressed in terms of the spinor field so
that there are no true dynamical degrees of free-
dom associated with the former.

At this point one is confronted with the problem
of the inversion of the one-dimensional Laplacian,
the unsatisfactory handling of which seems to be
the root cause of the failure of some of the earlier
attempts at this problem. Solving Eq. (3.1) in the
interval ( L, +L) we use the -Green's function'

appropriate to Dirichlet boundary conditions. This
allows one to write'
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L

A,'= -ae x, —x,' k, (x')dx,'+ ~ Le@,
I

h,'(+ L)]. Similarly one obtains from [8,h,"] the re-
sult

2I, ' '+

avithout loss of generality. In writing (3.2) use has
been made of the definitions

s„(h,"—iA„ t, F"')= 0

as required by the Lagrange equation

&„E,""= ek,"-ZeA„t,E"".

(3.4)

(3.5)

A' Ao(+ L)

and of the charge operators

o." —. S„-eT,A'„+ mP P = 0 .

Using the forms

T"= 2it~, -s,f+ 'm(P&-+ '(F )'-,

Toi (3.3)

as prescribed by the conserved canonical energy-
momentum tensor, one finds that consistency re-
quires

thereby yielding

L

)x, -x,'~h.'(x')dx,'+ .' LeQ. —

pl
F."= ,'e e(x, ——x,')h,'(x')dx,'.

Q, -=ho'(x)dx,
"-L

and dipole operators
L

xPo(x)dx, .
-L

As pointed out in the Abelian case in Ref. 5 one
must now infer the form of the operators A,', by
requiring that the Hamiltonian JI generate the time
development of g as required by the Lagrange
equation

The conservation law (3.4) is now expressible as

where j," is the total current operator

The commutator [H, F,"]is somewhat more in-
teresting. Here one obtains

i[I,F-."]= ej.' he[i—.'(L) +i.'(-L)] (3.6)

Since, however, (3.5) evaluated for p =1 at x=+L
together with the result

F,"(+L)=+ e,'Q. -
implies the necessary vanishing of the symmetri-
cal combination j,'(L)+j',(-L), the consistency of
(3.6) with the Lagrangian equations is ensured. It
is also of interest to note that the condition j'(L)
+j '(-L) = 0 has been shown here to hold for the.
Abelian case by direct reference to Brown's solu-
tion. %ith this then the consistency question be-
comes a matter of determining the behavior of the
theory under pure Lorentz transformations, the
subject to which we now turn our attention.

[K, g] =i(x s' —x's')g ——io', g+ T'~&,p,

where

(4. 1)

f I
A, =-', e, ,- ~x, —x,' ~F,"(x')dx,'.

IV. LORENTZ-TRANSFORMATION PROPERTIES

Using the usual formal expression for K the
generator of Lorentz transformations with T" given
by (3.4), one derives by straightforward calcula-
tion the result

It is of interest at this point to complete the
calculation of all the commutators of 0 and the
momentum operator P with g, h", and F"" The.
validity of

[P, Xi=is, X

for all X is established by inspection provided that

lim ko (+ L) = 0,
gazoo

a result which is reasonable and also expected in
the light of Brown's solution of the Schwinger
model [as opposed to the corresponding result for

The fact that g undergoes a gauge transformation
under the operations of the Lorentz group is not,
of course, an unexpected phenomenon. It is fami-
liar from quantum electrodynamics as well as the
case of four-dimensional non-Abelian gauge theor-
ies. As g is the only independent dynamical vari-
able in the model under consideration, the trans-
formation properties of k," and I","" can readily be
determined from (4.I). Thus one obtains

[K, h,"]=i( ' xsx's')h; —ie""k'„+t, , A h,"

while for I'"" there follows
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[K, F'"]= i(x's' x'—s')F'"+ i.„il, F,""

+i ,'eL-[j,'(L) —j,'(-L)]. (4 2)

[K,H]= iP—+i ', eL-(AO, -Ao )B,Q

= -iP+i~e'LD, BOQ, . (4 4)

As will shortly become apparent, it is onl. y the
presence of the last term in (4.2) which stands in

the way of proving covariance. 'Thus despite the
obvious convenience of settingj, '(L) j,'( —L) -eq. ual
to zero, the example of the Schwinger model
(where that term is definitely not zero in non-
singlet sectors) indicates the prudence of not
neglecting it. Furthermore, since

the physical content of the last term in (4.2) will
be most transparent if one writes it as

'The central problem of the verification of the
Poincarb algebra can now be undertaken. This
task is simplified considerably by the fact that no

modification of the canonical. energy-momentum
tensor has been allowed in the present approach.
'Thus T~" satisfies the equations

so l.ong as the Lagrangian equations of motion are
valid. Keeping this fact in mind one computes the
commutator of K with T" using (4.1) and (4.2)
thereby obtaining

[K, T"]=i(x's' —x'&,)[-,'ign's, g+ ,'mppg-+ —,'(F."—)']

--'4~,s'( —-'4s&4 —2~ (o'& T'4s, ~.
i ~eLFO'8 Q-,

-

= -', i(x'S' —x'&')T" —2iT" —i ,'eLF"~ Q-a 0 a'

(4.3)

Upon integration over the remaining spatial coordi-
nate Eq. (4.3) becomes

It is striking that except for the presence of the
gauge group index the extra term in (4.4) which
breaks Poincare invariance is identical to that
which follows from the last equation of Bef. 5 for
the Abelian case.

V. CONCLUSION

In this paper the results obtained ear1ier for the
case of the Schwinger model. have been extended to
the non-Abelian theories. It has been seen that the
results are identical in every way provided that
the Poincare-breaking terms in Ref. 5 a.re re-
placed by corresponding expressions involving the
total conserved-current operator. 'This remark-
able result is at variance with al1. previous ap-
proaches to the covariance problem in that these
other attempts have claimed that special effects
are associated with the non-Abelian nature of the
field.

There is on the other hand the one disadvantage
here relative to the Schwinger model that one does
not ha.ve ava. ilable an exact solution. If, however,
one were to find nonconservation of charge either
in all sectors or in nonsinglet sectors, then the
failure of covariance would clearly follow. Be-
sults which could establish the existence or non-
existence of conserved global charge operators
would thus be of considerable interest in the
realm of two-dimensional quantum chromody-
namics. "
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