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The instantaneous Coulomb interaction is studied in the SU(2} Yang-Mills theory. The Coulomb Green s

function and instantaneous Coulomb potential of a static quark-antiquark pair are evaluated for a
background gauge field A', (X) that is spherically symmetric and of long range, i.e., that is of order ~%~

as g~ co. The field A,'(W) is of the same form. as the Wu-Yang magnetic-monopole field. Expansion of
the Coulomb Green's function in vector spherical harmonic functions reduces the problem to a radial

problem. It is shown that the background field changes the asymptotic form of the instantaneous Coulomb
interaction; specifically for the monopole field the correction term is of the same magnitude as the ordinary
Coulomb interaction at large distances. In addition, the instanton contribution to the qq potential energy is
calculated in the temporal-gauge formulation of the theory, and compared to the instantaneous Coulomb
interaction. This calculation illustrates the interpretation of instantons as tunneling field configurations. The
possibility that long-range field fluctuations with the magnetic-monopole form occur in an ionized meron

phase of quantum chromodynamics is discussed.

I. INTRODUCTION

This paper is a continuation of the study of the
instantaneous Coulomb interaction in the pure
Yang-Mills theory with gauge group SU(2) that was
begun in Ref. 1 (which will be referred to as I in
this paper). In I the Coulomb Green's function and
the instantaneous Coulomb potential for a static
color-singlet quar&-antiquark pair are described
for a background gauge field A,'(x) that is spheri-
cally symmetric and of short range. In the pres-
ent paper these quantities will be examined for a
background field with the same angular form that
is of long range. A gauge field A, (x) is said to be
of long range if it is asymptotically of order ~x~

as )x~ -~. This asymptotic behavior is associated
with magnetic monopoles; the field to be studied
here is similar to the Wu-Yang magnetic-mono-
pole field. ' There have been suggestions that long-
range gauge fields are relevant to the problem of
quark confinement in quantum chromodynamics
(qCD).'-'

The background gauge fields considered in I and
in this paper are large gauge fields in the sense
that they are of order 1/g where g is the coupling
constant. Similar large gauge fields occur in cal-
culations of the qq static potential that use semi-
classical techniques, e.g. , of the instanton con-
tribution to the qq potential. ' Therefore in order
to compare the instantaneous Coulomb potential
to the semiclassical potential, the instanton con-
tribution to the potential will be calculated in this
paper as well. The derivation presented here dif-
fers from that of Ref. 6 in that it is done in the
temporal gauge and it uses a generalization of the
Wilson-loop formula' that avoids the introduction

of a singular string operator to approximate the
q state 8

The instantaneous Coulomb potential (ICP) for a
qq pair in an SU(2) color-singlet combination I,
= 0 in the background field A,'(x) is defined as"'

u (r, r' ) = - -,' g ' d sx S, G,s (x, r)&, G„(x, r' ),

where r and r' are the positions of the quark and
antiquark, and G„(x,x') is the Coulomb Green's
function defined by the equation'

-D,s, (x)&, G„(x,x')= & &s(x —x'),

where the covariant derivative D„, (x) is.
(1.2)

D,„,(x) = b,s 8; —ge „,A„(x) .

2 x'
A,'(x) = —e„i —, b(x), (1.4)

where x = ~x~ and the dimensionless radial function
b(x) approaches a nonzero constant b, as x-~,

If the background field A', (x) is of long range, then
the field-dependent term in D„, (x) and the deriva-
tive term both decrease as )x) ' as [x( -~. There-
fore a long-range gauge field has a greater effect
on the large-distance behavior of u(r, r') than a
short-range field does. It is shown in I that a
short-range background field does not affect the
asymptotic behavior of the qq potential; it is ar-
gued that the effect of short-range fields is equi-
valent to a charge renormal. ization. '

The background field to be considered is of the
form
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b(x) - b, as x-~;

thus A', (x) is of long range. The value of the con-
stant &, will be left unspecified except that it will
be assumed to lie in the range 0 b, -1, .It will be
argued that the value 6, =

& is of particular inter-
est. For b, =-, the field A', (x) is precisely the Wu-

Yang monopole field. ' The field A', (x) is trans-
verse, s;A','(x}=0.

The effect of the long-range gauge field A', (x)
on the ICP of a static qq pair has been discussed
before. '"" The aim of the present paper is to
give a more complete analysis of this effect than
was given before. To be specific, it is shown in
I that the spherically symmetric field in E»I. (1.4)
allows separation of angular and radial variables
in E»I. (1.2) for the Coulomb Green's function
G„(x,x'). Then if the radial function b(x) has a
simple form so that the radial problem can be
solved, G,~ (x, x') and the ICP can be analyzed in
detail.

The ICP u(r, r') is not of fundamental signifi-
cance because it is not gauge invariant. Never-
theless, it is possible that a qualitatively correct
model of the exact gauge-invariant qq static po-
tential would be provided by the potential V(r —r')
defined by

V(r —r') =(&j»»(r, r')~&), (1.6)

where )Q) is the vacuum state of the Coulomb-
gauge theory. There are several reasons for
studying the potential V(r —r') as a model of the

qq static potential. First, it is a generalization
of the ordinary Coulomb potential of an Abelian
gauge theory. To be specific, there exists a gauge-
invariant »Iq state for which V(r —r') is the poten-
tial energy of the quarks, and the state is defined
in such a way that if the gauge group is Abelian it
is the exact qq state. Since the exact state is the
gauge-invariant state with lowest energy, V(r —r')
can thus be thought of as an estimate of the qq
potential in the sense of the variational principle.
These remarks will be verified later in this sec-
tion.

Second, V(r —r' ) partially takes into account
the nonlinearity of the non-Abelian gauge theory by
the dependence of u(r, r') on the gauge field A', (x).
Thus studying V(r —r' ) is at least a start toward
understanding the difference between quark inter-
actions in non-Abelian and Abelian theories.
Third, in Coulomb-gauge perturbation theory, the
instantaneous Coulomb interaction is precisely
the term in the Hamiltonian that produces the
antiscreening of color charge, which is the origin
of asymptotic freedom in QCD." If asymptotic
freedom and infrared slavery have the same or-
igin, then V ( r - r' ) may itself show some sign of

quark confinement. Fourth and last, it might be
argued that although more complex effects due to
the self-couplings of the gauge fields would change
the potential, they could only lower the energy
and would therefore tend to oppose quark confine-
ment; this is the case, for example, in Coulomb-
gauge perturbation theory in which transverse
gluon Quctuations partially shield the color char-
ges in the same way that Quctuations of the elec.-
tron-positron field shield electric charges in
quantum electrodynamics. " So in summary, even
if V(r —r' } ignores some important effects of the
gluon self-couplings, itmay Still show some sign
of the essential difference between the qq poten-
tial in @CD and the ordinary Abelian Coulomb po-
tential.

The meaning of the background field A.,' (x) can
be seen from E»I. (1.6) for V(r r'). -The ICP
u(r, r') is a functional of the gauge field A, (x);
the potential V(r —r') is the vacuum expectation
value of u(r, r'). The background field A,'(x) can
thus be thought of as a vacuum Quctuation of the
gauge field operator. This is made more appar-
ent by introduction of the vacuum wave functional
(A', [ Q), the probability amplitude for vacuum

fluctuations A', (x).' ' The potential V(r —r' ) can
be written in terms of (A,' ) 0) as

V(r - r') =
dAt (x)) (A») 0))'»»(r, r'); (1.7)

it is the average of »»(r, r') over all vacuum fluc-
tuations A, (x) weighted by the probability distri-

butionn

j (A' ( Q ) [
'. The vacuum functional

(
(A»

~

II)
(

is not known, but it can be expressed formally as
a path integral'"

)(A'( n))'=-
Jl dA'.»(~)e-'&"'&

x 5(A,"(x,0) -A,' (x)), (1.8)

where the variable x refers to a four-dimensional
Euclidean space, S(A) is the Euclidean action of
the theory, and integration over Faddeev-Popov
ghost field variables is left understood; Z is a
normalization factor. To justify the use of a long-
range field A,'(x) of the form (1.4) it might be re-
marked that the contribution of an isolated meron
solution' to the path integral in E»I. (1.8) creates
a vacuum Quctuation of precisely this form where
&(x) —2 as x-~." If there is an ionized meron
phase, ' ". typical vacuum Quctuations would be
superpositions of the field in E»I. (1.4). This paper
describes an attempt to understand the effect of
such vacuum Quctuations on the quark-antiquark
potential energy.

The outline of the paper is as follows. In the
remainder of Sec. I the potential V(r —r') will be
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[s) = q~(r)K(A)qt(r')l 0) i (1.10)

where q(r) and q(r') are nonrelativistic quark and
antiquark field operators and

~
Q) is the vacuum

state of the pure gauge theory (i.e., without
quarks). The operator K(A ), which is a functional
of the gauge fields A,'(x) and a matrix that acts in
the color space of the static quarks, is chosen
such that the operator q (r)K(A) q (r') is gauge
invariant. Under a gauge transformation g(x) the
gauge field transforms as

A f (x) =g(x)[A, (x)+&; ]g~(x),

where A,.(x) = —ig2o', A„(x). The function K(A)
must transform according to'

K(A') = g(r) K(A) g~(r') (1.12)

to ensure that q~Kqt is gauge invariant. The phy-
sical qq state is the state

~
s) with minimum ener-

gy; the energy of that state is the exact qq static
potential. Therefore the problem is to find the

derived as a variational estimate of the qq static
potential in the temporal-gauge version of the
theory. ' ' In Sec. II the Coulomb Green's function
G,» (x, x' ) and ICP u(r, r ') for the background field in
Eq. (1.4) will be analyzed. Angular and radial varia-
bles will be separated as in I by expanding Q„(x,x ')

in vector spherical harmonic functions. Two
angular modes of special significance will be
examined in some detail. In Sec. III the instanton
contribution to the qq potential energy will be de-
rived in a temporal-gauge formulation, and the re-
sult compared to the ICP calculated here and in I.
In Sec. IV the calculations will be summarized.
Finally the Appendix provides a simple general
proof of a theorem4 regarding the distribution of
negative eigenvalues of the differential operator
-D„,(x) 8, .

To verify that the potential V(r —r') is a varia-
tional estimate of the exact qq static potential,
consider the temporal-gauge version of the pure
Yang-Mills theory, i.e., the gauge in which the
time components of the gauge fields are required
to vanish A,' = 0. The canonical fields are the gauge
field A,' and the color-electric field E,'; the can-
onical commutation relation is

[E,'(x), A''»(y)]=-i 5„5,, 5'(x-y) . (1.9)

Gauss s law, D,b,. E„=j,where j, is the color
charge density of the quarks, is imposed in this
gauge as a constraint on the physical states; then
physical states are invariant under time-independ-
ent local gauge transformations. ' " A general
gauge-invariant state containing a static quark at
r and antiquark at r' can be written'

functional K(A) that minimizes the energy and

obeys the condition (1.12). Also the operator K(A)
is taken to be unitary, Kt(A) K(A) = 1.

When the operator K(A) acts on the vacuum state
[0) it creates a coherent state of the color-electric
field E,' (x). Since K(A) is unitary K(A) shifts E,'
by

K (A)E.'(x)K(A) =E'. (x)+E', (x), (1.13)

where

E ', (x) =Kt(A)[E,'(x), K(A)]

=Kt(A)
' ('),
iM'(x)

the second line follows from the commutation re-
lation (1.9). Themeanfield E', (x) is a functional of
A, ,' and a matrix operator in the quark color space.
The energy of the state

~
s) can be shown to be'

(1.14)

H=-, d'x s E„'+B„.' s s s

d'xtr QE,'xE,'x 0,
where tr means trace over color indices.

There are presumably many functionals K(A)
that satisfy Eq. (1.12). One of them is the string
operator Kr(A) defined by

Kr(A) =P exp~ — ds ~ A.

where I is a path in x space from r' to r, and P
indicates path ordering. The mean field E, (x) as-
sociated with Kr(A) is nonzero only Along I'. To
be precise, let x(s) be a parametrization of I',
with 0~ s& 1; then E,'(x) can be written

E,'(x) =g
4 p

ds 5'{x-x(s)}ds

x K~r(, ) (A)-,'o, K„&,) (A),

where I'(s) is the portion of the curve I'from r'
to x(s). Because E', (x) is singular the energy of
the state constructed with Kr(A ) is divergent.

The choice of K(A, ) for which the energy is
V(r —r') derives from the process of Coulomb
gauge fixing. Let U(x;A. ) be the gauge function
that transforms A,:(x) to the Coulomb gauge"; that
is, the transverse field A, (x) gauge equivalent to
A, (x) is

A,. (x) = U'(x;A)[A, .(x)+ S,. ]U(x;A),
(1.18)

s,A,. (x)=0.
The gauge function U(x;A) transforms under the
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gauge transformation of A;(x) in Eq. (1.11) accord-
ing to

Z,.(x) = —B,.(p(x) . (1.28)

U(x;A') =g(x)U(x;A) . (1.19)

Therefore a functional K(A) that obeys the condi-
tion (1.12) is

K(A) = U(r;A)U (r';A) . (1.20)

E', (x) =gV„(x)[B,. G~, (x, r) —B,.G~, (x,r ')]

The mean field Z', (x) corresponding to this choice
of K(A) can be shown to be

Thus the potential V(r -r') of Eq. (1.6) is an
estimate of the qq static potential in the sense of
the variational principle, for a trial state that
is exact for an Abelian theory. These remarks
are intended as a justification for studying this
potential.

Finally it might be pointed out that the formula
(1.1) for the ICP u(ri r') has a simple interpreta-
tion in the language of electrostatics. Integration
by parts in Eq. (1.1) plus use of the definition (1.2)
of G„(x,r') leads to the expression for u(r, r');

x U(r')-,'o, U~(r'), (1.21) u (r, r' ) = --,'g' d'x G„(x,r)p, ~ (x, r' ), (1.29)
~l

where G„(x,x') is the Coulomb Green's function
defined in Eq. (1.4) and V„(x) is

V., (x) = —,
' Trc, U(x)c, Ut (x) . (1.22)

The background field that defines G„(x,x' ) is
A, (x) [Eq. (1.18)]. The energy H of the state ~s&

defined by K(A) is

Q=sg dx 0 8 Q~ x, 1 —8 G~ xyr 0

=&el —lu(r, r) —-',u(r', r')+u(r, r ) I
"& (1.23)

where (1/g)B, e(x) is the longitudinal part of A, (x):

where u(r, r') is the ICP defined in Eq. (1.1). The
first two terms in Eq. (1.23) are quark self-energy
terms"; the final term is precisely the potential
V(r —r') of Eq. (1.6).

Furthermore, the trial state
~

s& defined by this
choice of K(A) is the exact qq state if the theory
is an Abelian gauge theory, for in that case the
operator K(A) creates precisely the Coulomb
field of the static charges at r and r'. To be
specific, in an Abelian theory with gauge group
U(l) the gauge function U(x;A) is

U(x;A) =e' '"', (1.24)

where

p„ (x, r' ) = 6„V(x —r' ) —~ ,A,' (x)B,. G„(x, r' ) .

(1,30)

The Green's function G„(x,r) can be interpreted
as the scalar potential at the point x due to a static
quark at r, and p„(x, r') as the charge density at
x due to the static antiquark at r'. Then the poten-
tial energy u(r, r') is the integral of the product of
the scalar potential and the charge density, as in
electrostatics. The charge density p„(x, r') is the
sum of two terms. The term 6„5'(x—r') is the
charge density of the antiquark itself and the term
-g~,A„'(x)B,. G,„(x,r') is the charge density of the
gluon fields that is induced by the antiquark, since
—B,G„(x,r') can be interpreted as the electric
field at x due to the antiquark. This induced color
charge density, which owes its existence to the
presence of vacuum fluctuations of A', (x) and the
color-electric field —B,.G„(x,r') of the antiquark,
has the effect of changing the point charge of the
antiquark into a charge distribution of nonzero
spatial extent. The presence of this induced charge
density is the physical origin of the asymptotic
freedom of QCD; it antiscreens the point charge.

A, (x) =A,. (x) + —B,-co(x) . (1.25)

ll. THE INSTANTANEOUS COULOMB POTENTIAL

FOR A LONG-RANGE BACKGROUND FIELD
i

Then the functional K(A) is simply

K(A)=exp( —i d'xX Vi ),
where y(x) is the ordinary scalar potential

(1.26)

(1.27)

and the mean field Z, (x) is the Coulomb field

In this section the Coulomb Green's function
G„(x,x') and instantaneous Coulomb potential
(ICP) u(r, r') will be examined for the background
field A', (x) of the form (1.4), (1.5). The most in-
teresting question concerns the effect of A', (x) on
the large-distance behavior of these quantities.

It is shown in I that Eq. (1.2) for G„(x,x') can
be reduced to a radial equation if G„(x,x' ) is ex-
panded in vector spherical harmonic (VSH) func-
tions. ' " As in I the VSH functions will be denoted
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D„„(6,dp) where the indices o', n, m take the val-
ues u(r, r') = --,'g' Z —[2(n+o)+1]

4m

g=-1, 0, 1,

n=0, 1, 2, . . . if can=+1,

n=1, 2, 3, . . . if a=0, -1,
m=0, +1,a2, . . . , a(n+ o) .

(2.1)

x P„(r "r')X„'(r, r'), (2 '!)

X„'(r,r') =g„(r,r')

where P„ is the Legendre polynomial of degree
n and the radial function X„'(r,r') is

D„'„(8,rp) =xVY„"+,(8, dp)+ (n+ 1)rY"„„(8,dp),

D„'„(6,y) =Vx [xY„(8,dp)],

D„„'(6,(p) =xVY„",(6, y) nr Y„,-(8, (p),

(2.2)

where ~„are the scalar spherical harmonics and
(x, 8, y) are the polar coordinates of x.

The Coulomb Green's function may be expanded
in VSH functions as

The index n is an orbital angular momentum quan-
tum number, and (n+ o) and m are total angular
momentum quantum numbers. The VSH functions
D„'~ fined by' '

+ dx g„'(x, r)2b(x)f „' g„'(x, r' ) .
0

The two terms in this formula for u{r, r' }can be
identified with the contributions from the two
terms in the charge density p,„(x,r') in the elec-
trostatic analogy [Eqs. (1.29), (1.30)].

In I the functions g„'(x, x') andX„'(r, r') are cal-
culated for a short-range field for which b(x) is
zero for x greater than a scale parameter p. For
such a field the radial Green's function g„'(x, x')
is asymptotically proportional to x " ' as x-.
The resulting ICP u(r, r') is of the form

G„(x,x') = Q K„' D„'„,(6, dP)g„'(x, x')
3 2

u(r~ r )= —
16 i ~ ~d

~

+6u(rc r ) j16m I
r-r' (2.9)

x[Da (8d ~d )] g (2.3)

1 (n+o —m )! 1
4n (n+o+m)! n(n+1)

(2.4)

where (x, 8, dp) are the polar coordinates of x, and
the normalization constant E„' is

the first term in this formula is the ordinary Cou-
lomb potential, and the correction term bu(r, r')
contains the dependence on the background field.
The potential du(r, r') decreases to zero as [r ~

as ~r~ -~ with r fixed and is symmetric with re-
spect to interchange of r and r'. For r and r'-
much larger than the scale p, bu(r, r') is approx-
imately

(2.10)

It is shown in I that the radial Green's function
g„'(x, x') obeys

d' 2 d n(n+1)—,5(x-x') = —,———+x' Ax x dx

where M is a dimensionless constant that depends
on the magnitude of the background field. At suf-
ficiently large distances bu(r, r') is negligible
compared to [r —r'~ '. Translation invarianee is
restored in I in a heuristic way; the translationally
invariant potential v(r —r ) considered there is

2b(x) f: g'. (x, x'), (2 6)

where the constant f „' is +d fd' dc(r —cc, F —c), (2.11)

f„' = -n, f'„=1, f„' =n+1, (2.6)

and b(x) is the radial function that determines
A,'(x). Also the ICP u(r, r') is shown to be a sum
over contributions from modes with quantum num-
bers (n, o):

where g is a parameter with units (length) ' that
can be interpreted as the density of field Quctua-
tions of the given form in the vacuum. ' The asym-
ptotic behavior (2.10) of hu(r, r ) implies that the
correction term in Eq. (2.11) is proportional to
[r —r'~ ' at large distances and thus
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3 2

16m )r-r'

a+i A

Doo=es y

A

Do, +I =~i+ i&2 ~

(2.13)

]3y Eq. (2.6) the constant f,' is equal to zero so the
equation for the radial Green's function g,'(x, x') is
independent of b(x). These modes are not affected
by A,'(x). Thus the radial Green's function is just

g,'(x, x') =- 8(x -x')+ —,8(x x), (2.14)

and the contribution to G„(x,x') is

Thus the effect of short-range vacuum fluctuations
of the gauge field on the large-distance behavior
of V(r —r') is equivalent to a charge renormali
zation. The constant M is positive for the back-
ground field considered in I.

In this paper the ICP u(r, r' ) will be studied for
the long-range field in Eq. (1.4). Only two of the
angular modes will be examined in detail, namely
those with quantum numbers (n, v) = (0, 1) and with

(n, v) =(1, -1). These modes are the most interest-
ing ones for reasons that will be explained. The
analysis of other modes would be a straightforward
generalization.

First consider the case (n, v) = (0,1) . The VSH
functions D,' are

This particular angular mode has been discussed
before'. ' for the background field A. ', (x). Here a
simple definite choice of the radial function b(x)
will be made and the corresponding radial Green's
function g, '(x, x') calculated explicitly. This al-
lows a more complete discussion of the nature of
the contribution from this mode.

The equation for the radial Green's function
g (xx )1s1, d' 2 d 2 4b(x)—,6(x -x') = —,-- —+ —,——,x' 'x dx x x

x g, '(x, x') (2.18)

where b(x)- b, as x-~. In order to illustrate the
behavior of g, '(x, x'), let b(x) be simply .

0 1f X+~P
b(x) =

x lfx~cp
y

0 p2

(2.19)

where the scale p is arbitrary. Since b(x) - x' as
x-0, the field A.,'(x) is nonsingular at x=O. The
discontinuity of b'(x) at x = p is unphysical but does
not introduce any divergences in the'quantities to
be discussed. Large-distance effects should be
relatively insensitive to the precise behavior of
b(x) for xS p.

The equation for g, ' (x, x') can be solved by in-
troducing two zero-mode functions' y, (x) that sat-
1sfy

G"' "(x x') =—6 —8(x x')+ —8(x' x)
1 1 1

x

(2.15)

Finally the contribution to the ICP u(r, r') from
modes with (n, v) =(0, 1) is

d 2 4b(x)-- —+ ——
rp (x) (2.20)x ck x x

and in addition the functions tp, (x) (y (x)) are
specified to be regular at x =~ (x = 0). The radial
Green's function is given in terms of y, (x) by

P

u"' "(r, r') = — g 8(r —r') -+ 8(r' —r) —,1e~

g, '(x, x') = x[8(x -x')(p, (x)cp (x')

+ 8(x'-x)rp (x)y, (x')], (2.21)
(2.16)

The importance of the mode (n, v) = (0, 1) is that
its contribution to G,~(x, x') and u(r, r') is the one
that decreases most slowly at large distances, as

' and Ir( ', respectively. Then when r-~ the
ICP u(r, r') approaches u"' "(r, r'), which is just
the ordinary Coulomb potential for large r. The
contribution from this mode responsible for the
asymptotic Coulomb form of G„(x,x' ) and u(r, r' )
is unchanged by the presence of the background
field At (x).

Next consider the modes with (n, v) = (1, —1). The
VSH function D»' is

where the constant ~ is determined by the Wron-
skian

(2.22)

q (x) =cj,(qx)

where

(x( p), (2.23)

The solution of Eq. (2.20) for y,(x) is straight-
forward if b(x) is of the form (2.19). The interior
solutions (x & p) are

y, (x) =c,j,(qx)+cp, (qx)

A

D~() r (2.17) q'=4b. A' (2.24)
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j, and y, are spherical Bessel functions" and c„
c„and c are constants. The exterior solutions
(x& p) are

p) V+).

q, (x) = —
iXi

xi" p) ~+i
q) (x) =o( —

i +(1-o.) —
ip) xj

(x& p), (2.25)

where

v = —2+ (~ -4bo) (2.26)

and u is a constant. Note that y, (y ) is regular
at x =~ (x = 0). The exterior solution in Eq. (2.25)
is valid for b,-,. If b, » ~ then v is complex and
the expressions in Eq. (2.25) are no longer real.
For the moment it will be assumed that b,-,.
This restriction does not rule out the most inter-
esting case b, =-,' in which A', (x) is the Wu-Yang
monopole field.

The parameter n that determines the exterior
part of y (x) is found by matching interior and
exterior solutions of (p (x) and q'(x) atx=p; the
result is

1 ~ j,(z)
2v+ 1 j,(z)

(2.2V)

where z =qp=2b', '. The %ronskian a is easily
computed to be

1—= (2v+1)o.p .
K

(2.28)

The constants c, and c, will not be needed in what
follows.

The asymptotic form of q, (x) at large x (i.e.,
x& p) depends on the value of b,. In contrast, for
a short-range field' cp, (x) -x ' as x-~, independ-
ent of the field. This change in the asymptotic
form of (p, (x), and thus of the radial Green's func-
tion g, '(x, x'), is the significant difference be-.
tween the cases of a long-range background field
and a short-range field. The origin of the differ-
ence is that in the eovariant derivative D„, (X)

[Eq. (1.3)] the derivative term 5„8, and the field-
dependent term -ge„,A„. (x) are both of order

' as I xl - if A,' (x) is of long range.
The radial Green's function g, '(x, x') is given

in terms of rp, (x) in Eq. (2.21). The interesting
question is the nature of the large-distance be-
havior of g, '(x, x'). To be definite consider the
value of g, '(x, x' ) for x &x' & p:

x g(x x') „+, +g(x x)x"'

(2.30)

When b()=0, v=1, and G",(,
' ' (x, x') is asymptoti-

cally (i.e., as ix) -~) negligible compared to
G" "(x x'). But for b, =-,', v=0, and G"' "(x,x')
is comparable to G",; "(x,x'). The asymptotic be-
havior is important because G,~(x, x ) is the an-
alog of the electrostatic scalar potential at the
point x due to a charge at x'. A slowdecrease of

G„(x,x') at large distances implies that the influence
of the charge at x ' is large at large distances. The
mode (n, o) = (1,-1) is analogous to the dipole contri-
bution to the scalar potential, and thus is expected to
decrease as ixi '; but the background gauge field
changes the asymptotic behavior to ized

" ' which
decreases more slowly.

Finally the contribution of the angular modes with

(n, o) = (1, —1) to the ICP u(r, r' ) is, by Eqs. (2.7),
(2.8),

2

(2.31)

where

X,'(r, r') =g, '(r, r')

+ dxgi' x,x 4b x g&' x,~' .
0

(2.32)

Again the interesting question is the nature of
u"' '(r, r') for large distances. Consider the case
~ & ~'» p. It can be shown that the radial function
&i'(r, r') is approximately

Then g, '(x, x') is proportional to x " '. For b,
=0, v=1 so g, '(x, x') is proportional to x ' as
x-~. For b, & 0, v& 1 so g, '(x, x') decreases
more slowly than x ' as x-~. In particular for bo
=-,' the exponent v vanishes and g, '(x, x') decreases
only as x ' as x-~; this is the same asymptotic
decrease as that of the radial Green's function of
the long-range mode (n, v) = (0, 1). Finally for b,

v& 0, and g, '(x, x') decreases even more
slowly than g,'(x, x' ).

If x and x' are both much greater than p, the
second term in Eq. (2.29) ean be neglected. Thus
at large distances x, x' » p the contribution of the
mode (n, v) = (1, —1) to the Coulomb Green's func-
tion G„(x,X') is

G"' "(x,x') =—x x'Wi 1 ~ ~ 1
gy y 4 g b 2 +1

(l, '(x, x') = (—
) n(—) + (( —a)(—,)

(2.29)

(r')" 8bp 4bp

(2.33)
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this result can be derived directly from the exact
solution for gP(x, x') or more simply from the ap-
proximate form in Eq. (2.30). Again the exponent
v determines the large-distance behavior of
u"' "(r, r'). For bp =0 the radial function Xj (r, r')
has the free form X& (r, r') = 3r—'/r B. ut i'or bp

&0, X& (r, r') decreases more slowly than r as
r-~. The logarithmic factor ln(r/r') comes
from the interaction of the quark at r with the glu-
on charge density induced by the presence of the
antiquark at r' [see Eq. (1.30)].

For the magnetic-monopole field bo ——
& the expo-

nent v vanishes, so asymptotically (with r & r')

late u(r, r') for a background field that is an arbi-
trary superposition of fields of the form (1.4)
centered at an arbitrary position. This problem
has not been solved for a long-range background
field. Simply shifting the position of the monopole
field in Eq. (1.4) to the point c and integrating
u(r —c, r —c}over c is not a correct way to re-
store translation invariance.

The discussion of the nature of the problem for
bo & fq has been deferred until now. Equations
(2.24) for the exterior solutions of y, (x) are not
valid for bp &$ because then v is complex. Rather
the exterior solutions (x & p) should be written

u"' "(r,r')=- r r"' —5+2ln —,.
16m

(2.34) y,(x)=c, — cos bin-+rj, (x& p) (2.37)'x P

In this case the magnitude of u ' "(r, r') is com-
parable at large distances to u"'j'(r, r') How. ever,
the directions of the forces implied by these po-
tentials are quite different because of the angular
factor r r' in u"' j'(r, r'}. The force associated
with the potential u' '"(r, r') is, for large r

3 2

16' r (2.35)

the quark is attracted toward the origin. But the
force associated with u"' "(r, r') is, for large r

2

F" "=-~ ~r(r- r') 8+4ln —',
16m r

-r' 5+2ln —,r' (2.36)

which has a complicated angular dependence. For
r r'=+1, i.e., both quark and antiquark on the
same side of the monopole, F"' "is in the direc-
tion —r. For r r' =0, F"' ' is in the direction
of +r', i.e., perpendicular to the direction toward
the origin; and for r r' =- 1, i.e. , quark and anti-
quark on opposite sides of the monopole, F' ' "
actually points in the direction + r, away from the
origin. This angular dependence is perfectly sen-
sible when b& ——0: The term F"' "is a small di-
pole correction to F' '" that makes the force point
in the direction of —(r -'r') rather than —r. But
when 50 =2, the dipole correction F"' "is of the
same magnitude as the radial force F' '". Thus
the force for the background field A,'(x} is very
different from the ordinary Coulomb force.

The ICP u(r, r') is not translation invariant be-
cause the background field A,'(x) is centered at the
origin. Of course the potential V(r —r') of Eq.
(1.6) is translation invariant because it is the aver
age of u(r, r') over all possible vacuum fluctuations.
To restore translation invariance as was done in
I [see Eq. (2.11)] it would be necessary to calcu-

where

(4b ~)1/2 (2.38)

where p. is real. It is a simple matter to find the
interior and exterior solutions R(x} and to match

and g, and c, are constants. However, both of
these solutions are singular at x= ~; thus a radial
Green's function gjj(x, x'} regular at x= ~ cannot
be defined by Eq. (2.21). If the radial Green's
function is not regular at x=~, quantities such
as the ICP that involve an integral of the Green's
function over all space are not well defined. For
instance, the radial function Xjj(r,r') that deter-
mines u"' '(r, r') is divergent unless y,(x) de-
creases to zero more rapidly than x as x

The exterior solutions y,(x} for bp ~ $ are
smooth functions of x and have no nodes; while
for bp &Pp the solutions osciliate rapidly as x- ~
and have an infinite number of nodes. The origin
of this difference is that when bp ~ $ the differen-
tial operator in Eq. (2.20) has no normalizable
eigenfunctions with negative eigenvalue, while for
bp &$ the operator has an infinite number of such
bound-state eigensolutions. The negative eigen-
values for bp &$ accumulate at the value zero.
This property of the spectrum of the differential
operator in Eq. (2.20) depends only on the value
of bp = lim, „b(x}, and is independent of the pre-
cise behavior of b(x} for finite x. This property
was proven by Bender et a/. who used an argu-
ment involving the WEB approximation. In the Ap-
pendix a simple general proof of this result is
given.

For the specific choice of b(x) in Eq. (2.19) the
bound-state eigensolutions can be calculated ex-
plicitly. The bound-state problem under consider-
ation is

d 2 d 2 4b(x)—j/, PR(x) = —
p

——+~—
2 R(x), (2.39)

dx x dx x x
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them at the boundary x=p. This leads to an eigen-
value condition for p, :

u pff'. i »(p p) +@+i'(Qp)
Jf„i»(u p)

'
ii(Q p)

where

(2.40}

(2.41)

and t/ is given in Eq. (2.26); also K„+f /2(z) denotes
the modified cylindrical Bessel function regular
at Iz I

= ~. For bo &I8 the order v+ ~ of E„,&/2 is
real and the left-hand side of Eq. (2.40) is a,

slowly varying function of ]LL; then it can be shown
that Eq. (2.40) has no solution. But for bo &$
the order v+-,' is imaginary:

v + —,
' = ib = i(4bo —

4
)'9 1/2 (2.42)

The Bessel function K, , (i/. p) has an essential sin-
gularity at iL p = 0; as p. p -0, R,, (p p) is asymp-
totically

Jf;, (p. p) icos(b-ln —,'p. p+ 8),
where

(2,43)

(2.44)

(2.46)

Since fields with bo ———,
' + & and —,

' —& are gauge
equivalent, any difference between their effects
may be a gauge artifact. In particular, the singu-

The right-hand side of Eq. (2.40) is a smooth func-
tion of p, while the left-hand side varies from -~
to + ~ an infinite number of times as p, —0 because
of the essential singularity. Thus in this case the
eigenvalue condition (2.40) has an infinite number
of solutions which accumulate at p, = 0.

The parameter b0 has been left unspecified. How-

ever, it can be argued that the value bo ———,
' is of

special significance. First, for that value the
field A,'(x) is precisely the Wu-Yang monopole
field, which is a static solution of the field equa-
tions. Second, it has been shown that in the path
integral formula for the vacuum functional [Eq.
(1.8)] meron paths produce vacuum fluctuations
that are of the form of A,'(x) with bo ——2."

Finally, and most importantly, a field A,'(x) of
the form (1.4) with lim„„b(x) = bo can be gauge
transformed to another field A,"(x) of the same
angular form but with lim, „b'(x) =1 —bo. I et
g(x) be the gauge function

g(x) =e"'"'/"= i~ x . (2.45)

If A,'(x) is transformed by g(x) the resulting field
A."(x) is

larity that occurs in the ICP u(r, r') at bo =$ may
be a gauge artifact that would not be present in a
gauge-invariant quantity. Indeed if b0=$ the dif-
ferential operator -D„;8, has a zero mode signal-
ing the ambiguity in the definition of the Coulomb-
gauge field that was pointed out by Gribov. "

The contribution of the angular mode with quan-
tum numbers (n, v) =(1,—1) has been discussed in
some detail. Other modes can be discussed quali-
tatively by examining the radial potential [n(n+ 1)
—2b(x)f„']/x that occurs in Eq. (2.5) for the radial
Green's function g„'(x,x'). For a =0 or -1 the
field-dependent term is attractive (for bo&0) so
g„'(x, x') falls off less rapidly at large distances
than it would for bo ——0. For 0 =+ j. the field-depen-
dent term is repulsive so,g„'(x,x') falls off more
rapidly. Also, since the centrifugal term is pro-
portional to g while the field-dependent term is
proportional to n or 1, the effect of b(x) is less
important for larger values of n. The modes dis-
cussed above, (n, v) =(0, 1) and (1,—1), are thus
the most interesting ones in that they are the most
slowly decreasing at large distances. The mode
(1,—1) is affected most by the long-range part of
b(x} because the ratio of the field-dependent term
to the centrifugal term is largest for that mode.

It is not possible to say whether long-range
vacuum fluctuations would produce quark confine-
ment, i.e., a qq potential V(r —r') that diverges
as I r —r'I -~, because the problem of restoring
translation invariance (i.e. , of computing the ef-
fects of a superposition of long-range fields) has
not been solved. Calculations in which transla-
tion invariance is restored artificially ' suggest
that confinement might result.

Another approach to the calculation of the qq
static potential is the semiclassical approach. In
the next section a derivation of the instanton con-
tribution to the qq potential will be given and the
result compared to the ICP discussed here and in
I.

III. A SEMICLASSICAL CALCULATION OF THE

QUARK-ANTIQUARK STATIC POTENTIAL

The purpose of this section is to derive the in-,
stanton contribution to the qq static potential. and
to compare the result to the instantaneous Cou-
lomb potential (ICP) calculated in Sec. II and Ref.
1. The derivation of the instanton contribution to
be given here differs from that of Callan et gl. ' in
two respects: It is done in the temporal gauge
(A'= 0) formulation of the theory, and it starts
from a generalization of the Wilson-loop formula'
that avoids the introduction of a singular string
operator to approximate the qq state. The exten-
sion of the derivation from instantons to other
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classical configurations such as meron pairs
would be straightforward.

It is interesting to derive the instanton contribu-
tion in the temporal gauge because that is the
gauge in which the instanton is most naturally in-
terpreted as a tunneling configuration. '

The starting point for the derivation is a device
for computing the energy of a static qq pair that
is a generalization of the Wilson-loop formula.
Consider the matrix element W(T) defined in the
temporal-gauge formulation of the theory by

W(T) = tr(Q
i
Kt(A) e " K(A)

i
Q), (3 1)

W(T) =intr(Q iK'(A) in)(niK(A) i
Q)e '~ . (3.2)

Because K(A) obeys Eq. (1.12) only gauge-invari-
ant states that contain a quark at r and antiquark
at r ' in an SU(2) singlet combination contribute to
the sum over in). When T-~ the lowest-energy
state in) for which (niK(A) i

Q) is nonzero is the
dominant term in the sum; that state is the exact
qq state. Thus as T-~

W(»-tr(QIK"(A) Iqq)«ql«» IQ)c "'"'
~2e"TE(R ) (3.3)

where E(R) is the energy of the qq pair and R
= ir-r'i.

Equation (3.3) provides a formula that can be
used to compute E(R). If K(A) is taken to be the
string operator K„(A) [Eq. (1.16)], then Eq. (3.3) is
the temporal-gauge version of the Wilson-loop
formula. ' But since Kr(A) is singular the matrix
element (qqiKr(A) i

Q) is actually zero. The for-
mula (3.3) could still be used to compute E(R) if
some momentum cutoff were introduced. Al-
ternatively a nonsingular functional K(A) could be
used. In the following calculation, however, this
problem turns out to be irrelevant: It will be

where K(A) is any functional of the field operator
A,'(x) that transforms according to Eq. (1.12) under
a gauge transformation of A,'(x); tr means trace
over SU(2) indices of K(A). If the complete set
of eigenstates of H is inserted in Eq. (3.1), W(T)
can be rewritten

shown that to calculate the instanton contribution
to E(R) it is not necessary to specify K(A) beyond
the requirement that it obey Eq. (1.12).

The matrix element W(T) can be viewed in two
different ways. First, K(A) creates a coherent
color-electric field E',(x); the energy E(R) is
something like the energy of this mean field. This
is the view taken in Sec. II and Ref. 1, where K(A)
is the Coulomb-gauge functional (1.20). On the
other hand, the factor e" is the Euclidean-time
translation operator, so W(T) can be rewritten

W(T) = tr(Q
i

Kt [A(x, T/2)]K[A(x, —T/2)]
i
Q),

where

A,'(x, x,) = e"*4A,'(x) e "'4 .

(3 4)

(3 &)

This view is more suitable for deriving the in-
stanton contribution to E(R). In addition it is
useful to write W(T) in terms of the vacuum wave
functional (A,'i Q) defined in Eqs. (1.7), (1.8) as

w(T} few!(=x}&}}~a'}

x trK~ [A(T/2)]K [A(—T/2)](A,' i
Q) . (3.6)

In the semiclassical approximation the path in-
tegral (1.8) for

i (A,'i Q)
i

' is dominated by paths
that are near the local minima of the action S(A);
these paths are the instanton solutions. 'o Then
(A,'i Q) is negligible unless A,'(x) lies near such a
path. Furthermore, in the semiclassical approxi-
mation the time dependence of the field A, (x,x,) in
the integrand of Eq. (3.6) is just that dictated by
the classical equations of motion. Therefore the
instanton contribution to W(T) is obtained by re-
placing K[A(x,+T/2)] in Eq. (3.6) by K[A(x;+T/2)]
where A', (x,x4) is an arbitrary multi-instanton
solution, and by approximating the functional in-
tegral over all field configurations by an integral
over the collective coordinates that determine
A,'(x,x4). As usual the dilute-gas approximation
must be used. Then A,'(x, x4) is a superposition
of instantons (and anti-instantons) and the collec-
tive coordinates are a position c (c), scale p (p),
and global SU(2) orientation &v (2) for each in-
stanton (anti-instanton). 2' The matrix element
W(T) is, in this approximation,

n

W(T) =—g —,. —, ,d'c, dp, ,' d'c, dp, ,' ((A) trK" [A(T/2)]K[A( —T/2)1, (3.7)

where the normalization factor N is, in the same approximation,
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In these expressions the factor I/n! n! is a Boltz-
mann counting factor and 2m2 is the volume of the
group SU(2): 2n=J'd3+. The density parameter
g(A) measures the relative probability of the
multi-instanton solution A,'(x, x4), and is propor-
tional to the volume of Gaussian fluctuations
around A,'(x, x4) in the space of Euclidean field
configurations. To be precise, the path integral
formula (1.8) for ~(A,'~Q)~' implies that g(A) is

$(A) =e ""&det '~'M(A), (3.9)

where M(A) is the differential operator for the
quadratic field fluctuations, defined schematically
by the relation

S(A + BA) = S(A) + 6AM(A) 6A + higher order .

In the temporal gauge a multi-instanton config-
uration A, (x,x4) with instanton positions c, (i
= 1,2, . . . ,n) and anti-instanton positions e& (j
= 1,2, . . . ,n) tunnels successively from one homo-
topy class to another, the number of tunneling
events being n+ n. In the dilute-gas approxima-
tion the positions c,- and c& are widely separated
so they can be ordered in (Euclidean) time, c,'
(c~4& ~ ~ .~ &c~4„- [where now c&, (0=1,2, . . . ,n+n)
stands for either instanton or anti-instanton posi-
tions]. During the time intervals between tun-
neling events the field A,'(x, x4) is a pure-gauge
configuration. For example, if c, «x4«c, ,&,

where c, , is the position of the instanton (or anti-
instanton) that follows c„ the field is approxi-
mately

In the dilute-gas approximation the parameter
g(A) factorizes into the product of contributions
from each instanton

A'(x, x,) = G(x, x4) B,Gt(X, x4),

where

(3.15)

(3.10)

where g(p) is the value of $(A) for a single instan-
ton with scale parameter p, which was computed
by 't Hooft and whjch can be wrjtten

G(x, x4) =g, (x —c&)g&(x —c,) ~ ~ g, (x - c,) (3.16)

fg, (x —c~) should be replaced by gt&(x —c~) for anti-
instantons]. In particular, in the limits x4-y~
the multi-instanton solution A,'(x, x4) tunnels be-
tween the pure-gauge configurations

2 ", 4
"

2

( ), 8t -8w

.g'(I/up). -r'(I/up) (3.11) G(x)B,G (x) for x4=+~,A'(x, x4) =
0 for x4

——-~,
(3.17)

g, (x) Bg~&(x), for x, =+~,
A& x|x4

0, for x4
——-~,

where

+ (x) e&5 xa(r&

7jr
&(&) =(,2~ 2)&)2 ~

(3.12)

(3.13)

The strict equality in Eq. (3.12) holds at x~ = +~,
but this form is a good approximation provided
only

~
x~ —C4(» p where c4 is the time coordinate

of the instanton. Any time-independent gauge
transformation of A', (x,x,) is also a temporal-
gauge version of the single-instanton field. Sim-
ilarly the anti-instanton field A'„(x,x4) has

gt&(x) B&g&(x), for x4 ——+~,
A

&
$x y x4)

0, for x4
——-~.

(3.14)

where c is a numerical factor of order 1, p. is the
renormalization point, and g'(I/&up) the running
coupling constant of the renormalization group.

The evaluation of the right-hand side of Eq. (3.7)
will be described in some detail. The result of
the calculation is given in Eqs. (3.35), (3.36).

In the temporal gauge, the single instanton field
A'„(x,x&) tunnels between pure-gauge configurations
with gauge functions in different homotopy clas-
ses"

A'(x, +T/2) = G(x,+T/2) B,G"(x,~T/2),

where by Eqs. (3.15), (3.16)

(3.19)

G(x,+T/2) = T g&(x —cg) i g&(x -'c)),
Y

cg kT/2) cg ~ +T/2,
(3.20)

where again T stands for time ordering. The pro-,
ducts over i and j only include values of i and j for
which the instanton positions c, and c& lie earlier
in (Euclidean) time than +T/2.

where

G(x) = Tg&(x —c&) ' ' 'g&(x —cq)g&(x —c&) ' ' g&(x —cp),

(3il8)

and the symbol T indicates a time ordering of the
product of g, 's and g, 's: g, (x —c&) stands to the
left of g, (x —c;.) if c& (c&,, i.e., if c, occurs earlier
than c, Note that the field A,'(x,x,) is continuous
in x4.

Now what is needed in Eq. (3.7) for W(T) are
the fields A'(x, yT/2). In the dilute-gas approxi-
mation, A~(x, x4) is a pure-gauge configuration for
most values of the position coordinates c, and cz,
i.e., except when c, or c& is within a distance p of
x4. Therefore in this approximation A'(x, +T/2)
can be approximated by
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If A,'(x) is a pure-gauge configuration

A'(x) =g(x) S,-g1(x), (3.21)

then by Eq (1. .12) the value of the functional K(A)
1s

K(&) =g(r)g'(r ') . (3.22}

This fact, combined with the approximation (3.19)
for A,'(x, +T/2), makes it possible to evaluate the
factors K[2(+T/2)] that occur in the integrand in

Eq. (3.7) as

K[2(aT/2)]= G(r;+ T/2)Gt(r';+T/2) .
The integrand in Eq. (3.7) is thus

(3.23)

trKt [A(T/2)] Kg( —T/2))

=trG1(r ';—T/2) G(r ', T/2) [Gt(r, —T/2) G(r, T/2)]t,

(3.24)

where by Eq. (3.20)

Gt(x;-'T/2)G(x; T/2) = T g, (x —c,)g11(x —e&}
&I f

(3.25)

and the product II&
&

includes only those terms for
which T/2 -~c', &T/2 and T/2--c~ ~T/2. At
this point the functional K(A) drops out of the
problem entirely; thus the precise choice of K(A)
is unimportant so lang as it obeys the condition
(1.12) so that Eq. (3.22) holds. In the semielassi-
caL approximation the matrix element W(T) does
not distinguish between singular functionals such
as the string functional and smooth ones. The
distinction comes about when quantum fluctuations
of the fields are included.

With these simplifications the matrix element
W(T) becomes

W(T) =Zg„—,„—, „d'c;dp, .;h(p;) 2 ~ „,.d c,dp, h(P&) 2 ~

I

&&tr T g,(r'- e,)g,(r'- c&) T~ g11(r —c,)g, (r —c,.), (3.26)

where T* means antitime ordering (later times
stand to the left of earlier times).

In the discussion so far, and in particular in Eq.
(3.26), the dependence on the SU(2} globaL orienta-
tions of the instantons has been suppressed. This
dependence must be restored as follows. Let g(1d)
denote the global SU(2) rotation matrix that deter-
mines the SU(2) orientation of an instanton. For
a single instanton, the gauge function g, (x —e) be-
comes, for the rotated instanton, g(&d)g, (x —c); for
an anti-instanton, g, (x —c) becomes g(&d)g, (x —c) .
For the multi-instanton field A'(x, x4), the instan-
tons can be rotated separately, and have orienta-
tions &d&, 1d J; but A'(x, x4) must remain continuous
in x~. Thus if any given instanton is rotated, then
all those that occur later must be rotated by the
same amount. Specifically, the factors g, (x —c,)
and g](x —c,.) that occur in Eq. (3.26) must be re-
placed by

(j) I

g1(x-c&)- T... g(~;)g(1d&) g(1d&)g1(x-c;),

(3.27)
q ~ i())

g1(x —cg) T, i. , g((d 1')g(Mr ) g((dj)g1(x —c~) )

where the product Pi;. &, (or g, . , ) is only overvv(4) (~)

terms for which e, , and e, occur earlier than e;
(or c,).

Now the averages over SU(2) orientations can

be done. The integrand is independent of the
orientations of instantons that occur at times
later than +T/2; for these instantons

(3.26)

For the instanton with the largest time coordinate
less than T/2, the rotation matrix g(1d, ) occurs in
the form

2 g(~1)g1(r e')g1(r c1)g

=I~ trg1(r ' —c&)g,(r —e;), (3.29)

where I is the 2X2 unit matrix; this equation fol-
lows from the formula

d co3

g~11(1d)g8i~s(1d) —g5 ~~r5811i .2r' (3.30)

Thus after this group average has been done, the
product of gauge functions in (3.26) reduces to the
same form but with the last instanton with c4 & T/2
eliminated, and the integral over the orientation
of the next to the last instanton can be. done in the
same way. The time ordering of the product of
group elements is such that the matrix product
collapses to a scalar product as the group averages
are done (see also Ref. 6). After all group aver-
ages have been done, W(T) is simply
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2~1 1
W(T) =—~—

&

—, d4c, dp, f(p, ) —,
' trg, (r ' —c»)gt(r —c»)

(3.31)

=2 8 'Tf n-V+f1-&

)(pT) g ~ ~ g (

(I —T')" " "T" 't) c d'p ((p)
t V P

I

d'c~dp~&(p ) —,
' trgt(r '- i,)g, (r -8,) .

The overall factor of 2 comes from the overall trace in Eq. (3.26). The productII» (and II,) runs over
those values of the indices that correspond to instantons (and anti-instantons) that occur in the time inter-
val (-T/2, T/2).

Finally the sum that remains [Eq. (3.31)] is familiar from statistical mechanics; it resembles the parti-
tion function of a perfect gas. This sum can be evaluated by partitioning the states into classes for which
the number of instantons (anti-instantons) that occur in the time interval (-T/2, T/2) is &) (v). Let I. be
the total length of the time axis, kept finite for the moment. Then W(T) is

ft& l 1
d c dp $(p) p trg&(r —c)gt(r —c) d c dp $(p) p trgi(r —c)g&(r —c}

cll

the combinational factors ("„}and („') are binomial coefficients. The sums exponentiate

(3.32)

W(T) = —exp 2(1 —T} d'c dp g(p) + T d'c dp $(p) [-,' trg, (r' —c)gt(r —c) +-,' trg~((r'- c)g,(r- c)] . (3.33)
N

Similarly the normalization factor N is

N=exp 2L d'edp p (s.s4}

Thus W(T) can be written

W(r) = 2e 's'"&,

where the qq energy E(R) is

p()t) =f tt cf t)p ((p) [p —-' trpt(r ' —c)p((r —c) —-' trp((r ' —c)pt(r —c)] .

(3.35)

(s.s6}

This formula was derived by Callan et al'. who

used the Wilson-loop formula and a I.orentz-in-
variant background-field gauge-fixing procedure.
The temporal-gauge derivation is more compli-
cated but it illustrates explicitly the interpreta-
tion of i:nstantons as tunneling configurations and
sheds some light on the meaning of the Wilson-
loop formula in semiclassical calculations.

The energy E(R) was calculated in the semi-
classical approximation. Thus E(R) does not in-
clude the usual Coulomb energy of the free theory
(i.e., with g=0) which arises from the influence of
the Gaussian quantum fluctuations of the gauge
field around A,'(x) =0.24 The effect of these fluc-
tuations on EC [A(gT/2)] is absent in the semiclassi-
cal approximation because in this approximation
A~(x} is set equal to A,'(x} in the integrand, and the
quantum fluctuations are ignored. In particular, ,

the gauge field A,'(x) is approximated as a pure-
gauge configuration [Eq. (3.19)] and K[A(+T/2)] is
then just evaluated for that value of A,'(x} [Eq.
(3.23)]. This is why the value of W(T) is indepen-
dent of the choice of Z(A), in marked contrast to

4u(r, r ') =—[2 —» trg, (r)gI(r ') ——,
' trg, (r)g, (r ')l,

p
(3.38)

or by Eq. (3.13) for g, (x),

b.u(r, r') =—[1 —cosn(r) cos(&.(r')
P

r" ' sino. (r}sino. (r')] . (3.39)

the Abelian theory, which can be completely solved
and in which W(T) depends on K(A) because of the
small fluctuations. '

Since E(R) does not include the ordinary Cou-
lomb energy, it should be compared not with the
complete ICP but with the correction term [the
second term on the right-hand side of Eq. (2.11)]
produced by the background field. This compari-
son can be made by writing E(R) as

E(R) =f tt'c —p'((p)ctt(r —c,r' —c), (8 87)
p

in accordance with Eq. (2.11); then b,u(r, r'), which
is to be compared to the ICP, is
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Note that hu(r, r') vanishes for r = r' because then
the qua. rk color charges cancel.

At large distances, i.e., for x,r'» p, ng(r, r') is
approximately

(3.40)

The first two terms are quark self-energy terms
that depend only on the position of one of the
quarks; the third term is the interaction potential

(3.41)

which has the same form as the correction to the
ICP for a short-range background field [Eq. (2.10)]
that was calculated in I." The large-distance
behavior of the translationally invariant poten-
tial hv(r —r') that follows from Eqs. (3.41) and

(3.3V) is

(3.42)

which is Coulombic. The fact that the instanton
contribution to the qq potential is asymptotically
proportional to j r —r'j ' is in accordance with
the idea that instantons produce short-range va-
cuum fluctuations, which affect the large-distance
behavior of the potential only to the extent of re-
normalizing the charge. '

The formula (3.36) was derived for the instanton
solution. It could be extended to other classical
paths such as the meron pair that are sufficiently
small at large distances, but not to the isolated
meron, which decreases slowly at infinity. Never-
theless, one might naively ask under what circum-
stances the potential du(r, r') would decrease
more slowly than r 2 as v ~. Equation (3.38)
indicates that nu(r, r ') can be large at large r if
the gauge function g(r) does not approach 1 as r

The classical path A,'(x, x,) that interpolates
between 0 at x4=-~ and g8,-g at x4

——+~ would
then be of long range for finite x4, and produce
long-range vacuum fluctuations in the path inte-
gral (1.8). Of course such fields are beyond the
realm of applicability of Eq. (3.35). But these re-
marks are meant to suggest that the effect of
paths that produce long-range vacuum fluctuations
in semiclassical calculations of the qq potential
might be similar to the effect of the long-range
background field on the ICP described in Sec. II.

IV. SUMMARY AND DISCUSSION

In this paper and in I the instantaneous Coulomb
interaction has been described for a background

field A,'(x) of the spherically symmetric form (1.4).
The problem of computing the Coulomb Green's
function and the instantaneous Coulomb potential
(ICP) for a static quark-antiquark pair in a color-
singlet combination was treated by separating
radial and angular variables and thus reducing the
problem to a radial problem. The radial problem
was analyzed for simple choices of the radial
function b(x) that defines A,'(x).

The background field A,'(x) considered in I was
taken to be of short range, i.e., A,'(x) decreases to
zero fa.ster than j x j

' as j x j
—~. It was

shown that the long-range part of the instantaneous
Coulomb interaction is unaffected by the back-
ground field. To be specific, the contribution to
the ICP due to the background field, denoted
bu(r, r') in Eq. (2.9), decreases as (r) 2 as ) r[

In addition, translation invariance was re-
stored in I by averaging the ICP over background
fields that are arbitrary superpositions of the
short-range spherically symmetric field A, (x), in
the dilute-gas approximation. The resulting trans-
lationally invariant potential v(r —r') is propor-
tional to j r —r'j ' at large separations. Thus the
effect of superpositions of a short-range back-
ground field is, at large distances, equivalent to
a charge renormalization. This point was illus-
trated in I by considering a background field not
only of short range, but in fact sharply cutoff at an
arbitrary range p: A,'(x) =0 if ~xl, ~ p. The charge
renormalization found in I is positive, consistent
with the presumed infrared slavery of QCD.

Now in this paper a long-range background field
has been considered. Here it was shown that the
asymptotic dependence on jxj of the contribution
to the Coulomb Green's function G,~(x,x') with
given angular form depends on bo, the magnitude of
the long-range field, in contrast to the case of a
short-range field. In particular the contribution
to G,~(x,x') of the modes with angular quantum
numbers (n, o') = (1,-1), which is of order [x ~

~ for
a short-range background field, is of order jx j

" '

with 0 ~v&1 for O-bo- —,'. For the most inter-
esting case, in which the background field is a,

Wu-Yang monopole field (ho = —,'), the correction to
G,,(x,x') due to the field is asymptotically of order
jxj ', i.e., comparable to the ordinary Coulomb
Green's function with A,'(x) =0. Similarly the
correction to the ICP u(r, r') due to the background
fi.eld is of order jrj 'lnjrj at la,rge j rj.

The problem of restoring translation invariance,
i.e., of treating a superposition of fields of the form of
the long-range field A, (x), has not been 'considered in
this paper. This problem has two parts: defining
a superposition of long-range fields, and compu-
ting the ICP in such a configuration. The solu-
tions of these problems are not at hand, so it is



not possible to say whether long-range fields
would produce a confining qq potential. 4'5 But the
fact that superpositions of a short-range field,
even one that is sharply cutoff, produce a poten-
tial of order ~

r —r') ' suggests at least that
superpositions of a long-range field might change
the asymptotic dependence on ~ r —r '~, and per-
haps even lead to confinement of the charges.

The background field A, (x) was identified in
these papers as a vacuum fluctuation of the gauge
fields. The vacuum expectation value of the ICP
was assumed to be a model of the qq potential. It
was argued in I that the short-range background
field considered there is similar to the vacuum
fluctuation of the gauge field produced by an in-
stanton solution in the path integral formula for
the vacuum functional fEq. (1.8)]. The fact that
instantons do not affect the long-range behavior of
the qq potential beyond an effective charge re-
normalization, as shown in Sec. III, can be under-
stood as a consequence of the fact that the vacuum
fluctuations that they produce are superpositions
of a short-range field. '

It has also been argued that the meron-field con-
figurations in an ionized meron phase of the
theory would produce long-range magnetic-mono-
pole vacuum fluctuations. " The existence of such
vacuum fluctuations was also suggested by Man-
delstam. ~' 6 Thus merons, if they do occur in
path integrals, would play the very special role
of being the origin of long-range vacuum fluctua-

- tions.
The possibility of the existence of a simple

ionized meron phase in QCD6 is suggested by an

analogy with the disordered phase of the two-di-
mensional spin model called the XY model. This
analogy was described in detail in Ref. 12. The
high-temperature disordered phase of the XF
model results from contributions to the partition
function from vortices in the spin field. " These
vortices are analogs of merons in the Yang-Mills
theory in that they produce long-range vacuum
fluctuations (these terms being suitably defined" ),
which lead to the disorder. These long-range
vacuum fluctuations do not occur in perturbation
theory, in either the XF model or QCD." Some
nonperturbative mechanism is needed to produce
them. The analogy between vortices in the XW

model and merons in @CD suggests that the mech-
anism is ionization of vortices or merons, since
this is indeed the mechanism that operates in the
XF model.

Thus the model of the qq static potential that has
been advocated in these papers consists of two
assumptions. First is an assumption about the
nature of the vacuum fluctuations: These are
assumed to be of the spherically symmetric form

(1.4) with translation invariance restored by
averaging over all superpositions of this form.
Second is an assumption about the effect of these
vacuum fluctuations on the qq potential energy,
which is assumed to be adequately represented by
the instantaneous Coulomb potential (ICP). This
model is simple, and can be interpreted in terms
of familiar concepts from electrostatics. Al-
though it is naive, the model is a natural one to
study for a sign of confinement. For example,
the instantaneous Coulomb interaction is precisely
the term in the Hamiltonian that accounts for the
antiscreening of color charge, which is the origin
of asymptotic freedom, in the Coulomb-gauge cal-
culation of the qq potential in perturbation theory. "
Furthermore, this model for the qq potential gives
a result similar to the potential found in semi-
classical calculations, as indicated by the similar-
ity between the potential calculated in I and the
instanton contribution calculated in Sec. III.

The instanton calculation in Sec. III is inter-
esting in its own right. It illustrates in an expli-
cit way the temporal-gauge interpretation of in-
stantons as tunneling paths. And it illustrates
the fact that the semiclassical calculation ignores
the effects of the Gaussian quantum variations of
the fields around the classical solutions.
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APPENDIX

The eigenvalue problem in Eq. (2.39) is

—p. 'R(x) = —,———+~-, A(x) . (Al)
d2 2 d 2 4b(x)

coax x dx x x

The purpose of the Appendix is to show that this
equation has no solution if bp ~

&~
but has an infin-

ite number of solutions if bo &—,', , where bo
——limb(x)

as x-~. The eigenvalues p for bp &~6 accumulate
at the value p=0. This result is independent of
the precise nature of b(x) for x finite; for the sake
of definiteness it will be assumed that b(x) -cx'
as x-0 and that b(x) increases monotonically from
0 to b, as x varies from 0 to ~.

This property of the spectrum of eigensolutions
of Eq. (Al) can be proven by changing the variables
that occur in the equation, and examining the re-
sulting alternative equation. Let the independent
variable y and dependent variable y(y) be defined
by
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y = lnpx,

y{y) = p 'x'"R(x),
(A2)

where the eigenvalue p, is positive. In terms of

y and q(y) the eigenvalue equation is

where

+ V(p y)p'{y)
dy

V(p;y) = s"+-', —4&(p 's') ~ (A.4)

The range of the variable x is 0 + x & ~ since x is
a radial coordinate; thus the range of y is -~ «y

The eigenfunction R(x) is normalizable, so

eigenvalues have accumulated, because the opera-
tor h with p, = 0 has a continuum of negative eigen-
values. Therefore the number of eigenvalues p.

oi Eq. (Al) is infinite, and the eigenvalues accumu-
late at p, =0, as claimed. '

Additional insight into this problem can be
gained by a qualitative examination of the solution
q(y) of the zero-mode equation (AS) for p. =0. If
bo &

—,6, the zero-mode solution qr(y) for p. =0 is
not regular because V(0;y) &0. If bo&&~~ then the
zero mode for p, = 0 is in the continuum of eigen-
solutions for the potential V(0;y) = 82" +4 —450.
In that case, the solution y(y) is asymptotically,
as y--~, of the form

x2dxp~ x = dy e~~y~ y
0 w QQ

(A6) q {y)-ccos[6y+q] (y- — ), (A6)

Equation (A4) is a one-dimensional Schrodinger
equation with the potential V{p;y) and energy
eigenvalue zero. That is, the original eigenvalue
equation (Al) has an eigenvalue p, if the operator
-d /dy + V(p;y) has a normalizable zero mode,
i.e., an eigensolution with eigenvalue zero.

The potential V(p;y) grows exponentially as y
—~, and approaches +~4 as y - -~ for any positive
value of p, , since b(x) -0 as x-0. On the other
hand, as p-0 with y fixed the potential V(p, ;y)
tends to 82'+

4
—450.

If bo &&~ then V(p;y) & 0 for all p, . Then the
eigenvalues of the differential operation —d /dy'
+ V(p, ;y) are positive. Thus for b, -,'6 the eigen-
value problem (Al) has no solution.

If b~ & —,', , however, then V(p, ;y) is negative if p,

is sufficiently small and y large and negative.
For any positive value of p. the operator h
=—-d /dy + V(p, ;y) has a finite number of negative
eigenvalues with normalizable eigenfunctions, be-
cause V(p;y) -+r as y--~. But for g=0 it has
a continuum of negative eigenvalues extending down
to the value ~ —4b0. Thus when p. is sufficiently
large the operator k has no negative eigenvalues.
As p, decreases, the largest value of p. for which
this operator h has a negative eigenvalue is the
largest eigenvalue of Eq. (Al). As p, decreases
further, the range of y over which V(p, ;y) is nega-
tive increases, and thus the operator k has more
negative eigerivalues; each value of p. at which an
eigenvalue of h passes from positive to negative
is an eigenvalue of Eq. (Al). Finally when p
reaches p, =0 an infinite number of negative

q (y) =c,(p,)e"" (A8)

for y sufficiently large and negative.
The implication of these equations for the eigen-

function R(x) with eigenvalue p, is, by (A2), that
I

1
R(x) = pc, (p)x '~'cos[51npx+q(p)] for p sxs —,

]L{,

(A9)

R(x) =c,(p) p,"'x for x «p . (A10)

In order for p to be an eigenvalue of Eq. (A1), the
x dependence of these functions must be the same
for x=p. The spacing between eigenvalues de-
creases to zero as p, -0 because of the rapid os-
cillations of R(x) for x &p [Eq. (A9)] a,s p, -0,
which makes it possible to m@tch the functions in
Eqs. (A9) and (A10) at x =p with only small changes
in p, . This qualitative remark is verified quanti-
tatively in the case of the particular choice of
b(x) examined in Sec. II, given by Eq. (2.19).

where 5'=450--' and g is a constant phase shift.
Similarly, for p, small the potential V(p, ;y) is ap-
proximately e"+ —,

—450 for a large part of the
negative y axis, specifically for 0 ~ y ~lnpp where

p is the characteristic scale in x over which b(x)
varies from 0 to b0. Thus a zero-mode solution
with ]U, small is, over that range of y, approximately

q (y) =c&(V) «»[~ y+@(p)].

On the other hand for y - -~, V(p;y) --' so
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