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We study the long-range interactions between an arbitrary number of finite-energy monopoles in non-
Abelian gauge theories with spontaneous symmetry breakdown. The Higgs fields may belong to either the
adjoint representation or to an arbitrary representation of the gauge group 6 with residual symmetry group
U(1). We use the conservation properties of the stress-energy tensor to calculate the instantaneous force on
monopoles starting from given initial field configurations. We show that when the Higgs fields belong to the
adjoint representation of 6, the stress-energy tensor vanishes everywhere in the Prasad-Sommerfield limit
leading to a "no-interaction" result for a system of monopoles (or antimonopoles, but not both). When the
monopoles are widely separated, one may picture each of them as consisting of a "core" outside which (the
exterior region) the Yang-Mills gauge potentials obey free-field Yang-Mills equations. We find exact
solutions in the exterior region (exterior solutions) and show how they determine the desired long-range
interactions through the stress-energy tensor. One is led to a very simple physical interpretation of the
interactions as consisting of Coulomb-type attractive or repulsive forces due to magnetic charges and
Newtonian or Yukawa-type attractive forces due to Higgs fields. We show how these forces differ when we
have massive and massless Higgs fields. In the massless case, the Coulomb and Newtonian forces do not
have the same strength in general. From this result and also the mass spectrum, we find that the
conjectured symmetry between gauge particles and finite-energy monopoles is limited to the case when the
Higgs fields belong to the adjoint representation.

I. INTRODUCTION

Monopoles in non-Abelian gauge theories cor-
respond to static, finite-energy classical solu-
tions of a set of coupled nonlinear equations. It
is believed that such monopoles play an important
role in our understanding of the elementary-part-
icle interactions. For the development of a full
quantum dynamics of such monopoles, it will be
helpful to understand the interactions between
them at the classical level. .'Towards this end
several papers have appeared recently. "All of
these papers, however, consider the 't Hooft-
Polyakov' monopoles which are spherically sym-
metric. The purpose of the present paper is to
generalize these results to the case when mono-
poles are not necessarily spherically symmetric,
the gauge group is an arbitrary compact group,
and the Higgs fields are not necessarily in the
adjoint representation. When the Higgs fields do
not belong to the adjoint representation, we as-
sume that the spontaneous symmetry breaking is
such that there is a unique surviving U(1) sym-
metry so that there is a unique electromagnetic
direction in the gauge space.

In the case of static, spherically symmetric
monopole field configurations, the asymptotic be-
havior of the electromagnetic component corre-
sponds to that of magnetic monopoles with quanti-
zed magnetic charges. The quantized magnetic
charge can be identified as the topological charge
of the underlying Higgs fields. Each monopole or

Bntimonopole in such models can be considered
approximately as consisting of a "core" in the in-
terior of which there is a strong coupling between
the Yang-Mills and the Higgs fields. Outside this
core, which we may call the exterior region, the
covariant derivatives of the Higgs fields vanish,
and thus the gauge potentials obey the free-field
Yang-Mill. s equations. Suppose we now consider
a system consisting of an arbitrary number of
such monoyoles or antimonopoles or monopoles
and antimonopoles. 'The existence of such solu-
tions' has not yet been proved, but it is reason-
able to suppose that there are such solutions, al-
though in general we do not expect them to be
static. When the monopoles are far apart, each
individual monopole may be characterized by a
core and one may study the l.ong-range interaction
forces between such cores. 'The interactions bet-
ween. extended objects are of course complicated.
However, the force acting on a monopole due to
others can be defined from the stress-energy
tensor by integrating the total force flow through
a surface enclosing the monopole. If this surface
is chosen far from the core (but excludes cores
of other monopoies), then the force flow through
the surface is totally insensitive to the shape, and
the total force acting on the monopole has a well-
defined meaning. In order to calculate this force,
the only information that is needed is the initial.
configuration of the fields in the exterior region.
A detailed study of interactions between two wide-
ly separated 't Hooft-Poiyakov monopoles (anti-
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monopoles or a monopole and an antimonopole)
was carried out.

'This paper is organized as follows: In Sec. II we
define our notations, the Lagrangian, etc. , and
review how the stress-energy tensor leads to the
force equation. In Sec. III we investigate a pa, rti-
cularly simple system, namely, the Higgs fields
belonging to the adjoint representation and in the
Prasad-Sommerfield' limit (V-0). In this case,
the stress tensor vanishes everywhere and there-
fore static solutions for an a,rbitrary number of
monopoles (or antimonopoles, but not both) may
exist. 'This no-interaction result is analogous to
a similar result in the case of instantons. ' In Sec.
IV we study asymptotic fields for a. single mono-
pole with an arbitrary representation for the Higgs
field. In Sec. V we find exact exterior solutions
for a multimonopole system in the general case.
In Secs. VI and VII we use these solutions to dis-
cuss the interactions between monopole plahmas
for massive and massless Higgs fields, respec-
tively. 'The form of the interactions is strongly
determined by the mass of the Higgs fields be-
cause it determines w'hether the Higgs fields
participate in the long-range interactions or not.
In Sec. VIII we discuss the results in the SO(3)
model when the Higgs fields belong to an arbitrary
isospin representation. Finally, in Sec. IX we
discuss the bearing of our investigations on the
recent conjecture' concerning a possible sym-
metry between monopoles and the fundamental
vector bosons in such theories.

II. BASIC FORMALISM

Let G be a compact group with the generators
T, n= 1, 2, . . . , 4 obeying the commutation rela-
tions

[T 7$] L Svyy (2.1)

where & denote the matrices of the adjoint re-
presentation. The matrices of the representation
4(x) are denotedby t, (f )'~=-(t ) ',
a, 5=1,2, . . . , k.

The Lagrangian Z(x) invariant under the usual
local gauge transformations is given by'

-g(x) = —,
' E""E„„+~ (D"4)'(D„4)'+ V(4), (2.3)

where C ~ are the structure constants of G. %e
are interested in a Lagrangian R(x) consisting of
a. set of gauge fields A„(x) which belong to the ad-
joint representation of G and a, set of Lorentz
scalar fields C'(x), a= 1, 2, . . . , k which belong to
an arbitrary real representation of G. Let

(2.2)

{2.4)E""= Eaa„ra = S„A„—S„A + e[A„,A„],
D 4 ' = S„C'+ e(t a)"Aae~

and the potential V(C ) is a function of 4, bounded
below, invariant under G, and restricted to be a
fourth-degree polynomial. 'The field equations
that ensue from the Lagrangian (2.3) are

(2.5)

9VD"D y= —,p, (2.5)

D„E""= -eJ"(4), (2.7)

where
gv, a (@ f aDv@) (2.8)

The symmetric stress-energy tensor T"" that
follows from the Lagrangian {2.3) and the field
equations (2.6) and (2.7) is

Tuv EaxaEva + (Da@)a(Dvc, )a +ave

and it is conserved, that is,

8 T""=0,

by virtue of the field equations. From (2.10),

(2.9)

(2.10)

d x&) = dS'T ]~, (2.11)

where

where

-25@(Dgc')'(D~C')' —5,)V(C ), (2.12)

1
~~ OA +gg '

%e also note for future reference that the static
Hamiltonian P or the total energy of the system at
t=0 is

H= Toodx= d'x gD, 4 'D)4'+~E, E( +V 4

(2.13)

and the static field equations are

D,.D]4 =—,8&
i gc, ~ (2.14)

P) ——To)

is the momentum density, 0 is an arbitrary volume
in space, and S is the surface enclosing this vol-
ume.

From (2.11), with the appropriate choice of an
initial data set, one can derive the instantaneous
force on a monopole (anti monopole). ' If we choose
the initial data set corresponding to a static con-
figuration in the A.0=0 gauge at any given instant
t, say, t=0, then

where D x F=-gJ. (2.15)
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After choosing an initial data set, we can calcu-
late' the instantaneous force on a monopole due to
another monopole or antimonopole by considering
the integral of T,

&
over a sphere surrounding the

monopole. Owing to the stress-energy conserva-
tion, one does not have to calculate the integral
over such a sphere. One can, for example, con-
sider a plane midway between the two objects. In
practice even this is not necessary. It turns out
that one can make an analogy between the T,&

ob-
tained and the T,&

for Coulomb and Newtonian
fields. From this analogy one can read off the
forces from our knowledge of the latter cases.
Further, it will turn out, as we shall see, that we
shall not need the explicit forms of E, and A, but
only their existence, their general forms, and
topological properties.

For the purposes of the next section, we note
that when 4 belongs to the adjoint representation,
we can write

D)4 = s)4+ e[A ), 4 t, (2.16)

where both 4 and A, are now matrices of the same
dimensionality. Consequently, as first noted by
Bogomol'nyi, ' we can write the Hamiltonian den-
sity T« in the form

Too= 2(D,4 +F, -)(Dp™+E;)
a s, (C E, )+ V(C), (2.11)

where the second term is a total divergence term
whose integral gives the total magnetic flux 4gm
where m is the magnetic or topological charge
associated with the field configurations and hence
constant. 'The first term is a positive-definite
quantity, and further, it is the norm squared of
the vector (DP aE, ) This situa. tion gives rise
to an interesting no-interaction theorem when the
potential V(4) =0. We shall discuss this interest-
ing case in the next section.

III. NO-INTERACTION RESULT IN THE BOGOMOL'NYI-

PRASAD-SOMMERFIELD LIMIT

%hen the Higgs field belongs to the adjoint re-
presentation of the gauge group and the Higgs po-
tential is allowed to become zero after the spon-
taneous breakdown, one obtains an exact result
for the stress tensor. It is well known that under
the two conditions just stated the minimum of the
static energy. is reached by those solutions of the
second-order field equations which satisfy the
first-order Bogomol'nyi condition

E,.=+D)C . (3.1)

If we now compare this equation with the expres-
sion (2.12) for the static stress-tensor density, we
see at once that when (3.1) is satisfied the stress-

tensor density vanishes identically:

(3.2)

It then follows from (2.11) that the force on any
arbitrary volume vanishes:

d
Tgdsg = 0,dt (3 3)

IV. ASYMPTOTIC FIELDS OF SINGLE MONOPOLES

Since solutions of the field equations in the gen-
eral case, when the potential is not zero and/or
the Higgs fields do not belong to the adjoint repre-
sentation, are not known, our discussion for that
case must be limited to the long-range forces. 'To

discuss these forces one prerequisite will be to

where S denotes the surface enclosing the volume
g. We conclude that any solution of (3.1) is in
static equilibrium. 'This no-interaction result is
the analog of the known no-interaction result for
self-dual instantons' and it suggests that, just as
in the instanton case, solutions to (3.1) other than
the known spherically symmetric one may exist.

Although the result (3.3) is exact for all spatial
configurations, one may perhaps obtain abetter
intuitive understanding of it by considering the
case in which it describes monopoles which are
widely separated in space. First. we note that
since for each separated pole, Eq. (3.1) is known
to describe a monopole or antimonopole according-
ly as the sign is plus or minus, and the same sign
must hold throughout space, Eq. (3.1) can only
describe a pure monopole or pure antimonopole
system [the mixed systems are presumably des-
cribed by configurations which do not satisfy (3.1)
and hence are not in static equilibrium]. The re-
sult (3.3) then shows that such a set of monopoles
(or antimonopoles) will not exert any long-range
forces on one another —their magnetostatic re-
pulsion will be balanced by the Higgs attraction.
This cancellation was first observed by Manton' in
the case of two monopoles. Note that the cancella-
tion will take place for any solution of (3.1), not
merely for spherically symmetric or SU(2) mono-
poles. 'The long-range cancellation of the magnetic
and Higgs fields actually follows directly from
(3.1) as will be shown explicitly in Sec. VII.

The physical picture described above for widely
separated monopoles suggests that in the more
general case where they are not widely separated,
the condition (3.1) could be taken as the definition
of a pure monopole (or pure antimonopole) system.
Equation (3.3) then says that there is no interaction
between pure monopoles or pure antimoriopoles for
any spatial configuration once the Bogomol'nyi
bound' is satisfied.
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find the asymptotic form of the fields for a single
static (not necessarily spherically symmetric}
monopole, and in this section we find these asym-
ptotic forms. For simplicity, and because it is
the most physically relevant case, we shall. assume
that the little group of the potential minimum is
U(l), that is, that the electromagnetic direction in
the Lie algebra is unique.

I.et us first consider the asymptotic behavior of
the fields imposed by the finite-energy conditions.
The finite-energy conditions' make it natural to
assume the leading asymptotic forms 0&

&'h=~ p, +—,~h,
X j (4.11)

static field equation (2.14) one obtains

Q 2 +'
(D'0)'I +2(DP)' »+g'&9 =~..

(4.10)

where on the right-hand side we have used the fact
that 8 V/&4 = 0, since 4 = c&f& is a potential mini-
mum, and we have neglected terms with higher
powers of h. Taking the inner product of (4.10)
with P, we obtain

lim rA(x) = a(&u) and lim 4 (x) = cP(&g),r- rm oo

(4.1) where

for the static gauge and Higgs fields respectively,
where v are the polar angles, a(&u) and P(&o} are
finite, and c is a constant which allows P(&u} to be
normalized to unity. Furthermore,

dg(~)=0 where d=r&+a™(~)t (4.2)

From (4.1) it follows that

lim ~'F (x) = ~(~) =- f I (~)t ' (4.3)

(4.5)

where n (~) is the unit vector in the unique elec-
tromagnetic direction in the Lie algebra,

n((o)P((o)=-n ((o)t P((o) =0. (4.6)

Using (4.2) we also have

[dn(&u)]Q(&o) = 0, where dn(~) = rVn(&u)+ [a(&u), n(a&)]

(4. I)

and hence, using the uniqueness and unitarity of
n((o},

dn((u}= 0,
Equations (4.1)-(4.8) contain all the information
on the asymptotic fields which can be obtained
from the finite-energy conditions.

To obtain further information we must use the
static field Equations (2.14) and (2.15). First we
expand the Higgs field in the form

(4.8)

C'(x) = cy'((u)+ P(x)a(x), (4.9)

where Ph is the remainder which vanishes as r»
~, h(x) being its magnitude and g'(x) being nor-
malized to unity. Then, inserting (4.9) in the fi.rst

where t (&u) is finite, and the integrability condition
for (4.2) implies that

f (m)t P(+) = 0. (4.4)

Since the little group of P(&u) is assumed to be U(l),
Eq. (4.4) implies that t (cu) factorizes into

f (u)) =n™((u)t(a&),

-Z = (t 4, D C ) = (t C, D gh) = O(e-""), (4.13)

where X is a typical falloff parameter determined
by p. and o. It follows that, up to exponentially
decreasing terms, the gauge-field F satisfies the
matterless field equations (and the Bianchi identi-
ties)

D & F=0 and D 'F =0. (4.14)

The solution of (4.14) compatible with the boundary
condition (4.3) is easily verified to be

F =n((o)mr/r', (4.15)

where m is a constant. Combining (4.15) with (4.9)
we have the following result: In case (i) the asym-
ptotic forms of the Higgs and gauge fields are

4 (x) = cP(&o)+O(e-"') and F= n(~) + +O(e-""),

(4.16)

and o = (rDg)' = -(g, (rD)'().

(4.12)

Since 4=cg is a potential minimum both p, and o
are positive. It follows that either

(i) h falls off exponentially, or
(ii) both o and p, -zero as r-~.

The physical meaning of the condition p, -0 as
r ~ can be seen by recalling that 82V/8$2 is the
Higgs-Kibble mass matrix and hence p, -0 means
that the field ( becomes massless or long range.
Note that g may be any of the physical Higgs fields,
not necessarily the field P in the spontaneous-
symmetry-breaking direction, although, of course
g=P is an important special case. Note also that
p, is identically zero in the PS limit V=0. Since
the cases (i) and (ii) give qualitatively different
results for the long-range forces, it will be con-
venient to discuss them separately.

Case (t). In this case the exponential falloff of h
implies an exponential fal. loff of the static matter
current since from (4.2)
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respectively. That the correction terms are ex-
ponential can be verified by direct calculations. It
is clear that the constant m will be identified with
the strength of the monopole.

Case (ii). In this case we have p, , o-0 as r-
~ and thus, since (g, g) = 1, we have

&'h =0, (4.18)

for large r. Since the leading solution of (4.18)
subject to the boundary condition h. -0 as r-~ is
h/r where h is a constant, we see that the leading
terms in the Higgs field (4.9) in this case are

d tP(&u) = lim (rD)g = 0 where g(&o) = lim g(~) .
f'w 00 f'w OO

(4.17)

Furthermore, Eq. (4.11) reduces to

z(e)=-; 1~.(o+, De).
'Then by partial integration, and using the first
field equation (2.6) we have

(4.27)

not be neglected. (We have not investigated wheth-
er the next terms in 4 and E are really of order
1/r' and I/r' respectively, but the known results
for the spherically symmetric case and the exact
exterior solutions of the next section suggest that
the next terms may actually fall off exponentially. )

As in case (i) it is clear that the constant m in
F will be identified with the monopole strength.
However, there is a new constant b in the expres-
sion for 4, and it will be useful to have a form for
b which gives some insight into its physical mean-
ing. Let E(4) denote the Higgs kinetic energy,
defined as

4'{~)= cQ'(~) + h('(&u)r '

where

(4.19)
g@

lim r'dv 4,—= d'xD C, DC
f'w cO

dg=dt) =0. (4.20)

Inserting this result into the static matter current
(2.8) we obtain

= 2$(e)+f d'x(e, ), (4.28)

-i.=(f.C, DC) = h(f. y(~), q(~))~-, (4.21)
where n is the normal to the surface 8 of the unit
sphere. Hence, from (4.19)

and hence, in particular from {4.6) and the unit-
arity of g,

(I-J n = b(no, g)&~ = +I l(ng, g) =0. (4.22)(r) —'

BV
b dc@, =2& 4 + d'x 4,—

In particular, in the limit V=O, we-have

(4.29)

In other words, n J vanishes up to and including
order I/O. Hence, if we now consider the field
equations (and Bianchi identities) for F we obtain
the matterless equations

D& F=O and D'F=O. (4.23)

If we now insert the asymptotic form (4.3), (4.5)
of E in (4.23), and use (4.8) we obtain

V' x t = 0 and & I'= 0 to order I/r', (4.24)

and the only solution of (4.24) subject to the bound-

ary condition (4.3) is

r' r'] (4.25)

Combining the result with that obtained above for
C we see that in case (ii) the asymptotic form of
the fields is given by (4.19), (4.20), and

mrF, =n ((u), +o —,r' (4.26)

Thus, in case (ii) the leading term in F remains
the same as in case (i) but the Higgs field picks
up a long-range term bg/r in addition to its leading
term cP. It will be seen later that this term can-

(4.30)

which shows that be 0 and (P, |))40. Furthermore,
if )=P we have

b=—E(C) &0,
1
2r (4.31)

which shows that o is just the Higgs kinetic energy.
The result (4.31) will be useful for the discussion
of duality in Sec. IX.

V. EXACT EXTERIOR SOLUTIONS OF THE YANG-MILLS

HIGGS SYSTEM

A second requirement which will be necessary
to describe the long-range interaction of mono-
poles will be to have exact solutions of the field
equations which are valid in the region between
monopoles characterized by the vanishing of the
matter current J„. In this section we exhibit such
"exterior" solutions, and although we are interest-
ed primarily in the static case, for simplicity and
generality we begin by first considering four-
dimensional exterior solutions.

The basic ansatz for finding the exterior solu-
tions is to assume that the Higgs field is of the
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form

@ (x) = cy'(x)+ p(x)h(x), (5 1)
where Q(x) and g(x) are normalized fields satisfy-
ing n(x)P = n(x)(=0, (5.7)

where f~„(x) is an ordinary Maxwell field and n (x)
is a, unit vector in the U(1) direction of the I.ie
algebra

(4, t 4~)=0,

and whose covariant derivatives vanish,

(5.2) where n(x) =n (x)t . Note that (5.3) and (5.4) im-
ply that

D.A(x) =D.P(x) = o.
The little group of Q(x) is assumed to be U(1), c
is a constant such that 4 (x)- c&f&(~) as r -~, and

h(x) is a function to be determined subject to the
boundary condition h(x) -0 as r-~. Note that
(5.2) does not exclude g= P. The motivation for
the ansatz (5.1) is that it approaches the asymp-
totic field (4.9) outside the monopole cores and

that it guarantees the vanishing of the matter cur-
rent, thus justifying the name exterior. In fact,
we have

-&„=(t C, D„C ) = (t™C',g)s„0=0 (5.4)

ah=, —, =Ups, a x, gx =
9&

(5 5)

where U is a function that is easily calculated for
a polynomial potential V. Any solution of (5.5)
gives a solution of the first field equation. In

particular, in the limit V=0 any harmonic function
h yields a solution.

Of course, in principle, to obtain a complete
solution for 4(x) one has also to solve Eq. (5.3)
which couple 4 and tfr to the gauge field, but, as we

shall see, all that will be required for discussing
the long-range forces will be the existence of solu-
tions and the topological properties of C (x). The
existence will be guaranteed by the equations for
the Yang-Mills field F„„which we shall now dis-
cuss.

First, the integrability conditions for (5.3) are

F„„Q=F™„t/=0, F„„)=F„„tg= 0. (5.6)

using (5.2) and (5.3). In general, however, the
ansatz (5.1) is not necessary for the vanishing of
the matter current since the latter condition re-
quires only that D„4 be orthogonal to the vectors
t 4, which, together with 4, do not span the whole
representation space [though for the adjoint re-
presentation of SU(2) the ansatz (5.1) is both nec-
essary and sufficient].

Using the ansatz (5.1), the first field equation
(2.6) reduces to

(D~)P =0-D„n~n-D„n=0, (5.8)

the second and third equalities following from the
uniqueness of the U(1) direction and the unitarity
of n.

We now have to consider the field equation for
E„„and the Bianchi identity which guarantees that
I"„„is related to the gauge potential A„of the co-
variant derivative in the usual way [and therefore
guarantees the existence of A„(x) given F„„(x)J
The Bianchi condition is

D~ F„„=n(x) Q &„f„„=0,
cyclic crclic

and since J„= 0 the field equation is

D„F.„=n(x) V,f,„=0,

(5.9)

(5.10)

cyclic
V„„=O, V' „),=0, with ~„=~q„q, „.5.11

Then the first equation in (5.11) is equivalent to the
statement that

(5.12)

where b„ is an arbitrary pseudovector, and the
second is equival. ent to

bj, —s„(s„b„)=0, (5.13)

which reduces to the O'Alembertian equation for
b„ in the Landau gauge.

Combining all these results together we see that
an exact exterior solution with J„=0 is given by

where in each case the second equality follows
from (5.8). Thus, the Maxwell field f„„will satisfy
the free Maxwell equations and any solution of
these equations and (5.8) will yield a solution of
the field equation for E„„and A„. Note that a solu-
tion of (5.8) always exists since the integrability
condition is the identity [n, n]=0. As in the case of

&„(x), Q(x), and ((x) we shall not need to know the
explicit form of n(x).

The solutions of the free Maxwell equations most
convenient for describing monopoles are obtained
by writing the equations in the dual form

Since the little group of Q is assumed to be U(1),
Eq. (5.6) implies that all the spatial components of
E„„must lie in the little algebra. Hence, we must
have the factorization

C'(x) = cy'(x)+ q'(x)h(x),

F„„(x)=n (x)~„„„,~,b, (x),

where

(5.14)

F„"„(x)=n (x)f„„(x), &h(x) = U(h(x), q(x)), L]b,(x) = s,(s„b„(x)), (5.15)
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and the unit vectors P(x), g(x), and n(x) are co-
variantly constant,

The functions P(x), n(x) are such that

Dy(x)=0, n(x)y(x)=0 (6.4)
DP=DJ=Dn=0.

They satisfy the algebraic relations

(f Q, g) = 0 and n &f&
= n g = 0,

(5.16)

(5.17)

and the little group of Q(x) is U(1). It will be con-
venient to let P(x) in these equations be an arbi-
trary field mhose topological properties mill deter-
mine the monopole charge configurations. Then
(5.13) will be equations for A„(x), g(x), and n(x)
for which solutions are guaranteed to exist be-
cause the integrability conditions are satisfied.

In the static limit, with which we shall be con-
cerned from now on, the system of Eqs. (5.14)-
(5.17) reduces to the same equations with D»- D,

and

and reduce to P(&u), n(~&) as r ~ and P(e,), n(e, )
as r - r, + a,. Such functions exist, because as
discussed in Sec. V, P(x) can be chosen freely and
then (6,4) are simply equations for A(x) and n(x)
which ean be solved for A(x) because of the Bian-
chi identity. The function P(x) can be chosen to
satisfy the correct topological conditions on the
surfaces of the spheres r= a, + r, and infinity. Ex-
plicit expressions for A(x) and Q(x) =n(x) for two
SU(2) monopoles with the Higgs field in the adjoint
representation have been given in Ref. 11. How-
ever, the explicit expressions for A(x), P(x), and
n(x) wiB not be needed for the stress-tensor den-
sity, which from (2.12) takes the form

'(6 sf,' --f;fg)
fflf jkt~l ~0 = 8 (5.18)

where
where U 250 and U satisfies Laplace's equation

(5.19)

The pseudoscalar function U is the same function
U that was used in Ref. 1 in the treatment of two
spherical symmetric SU(2) monopoles.

VI. DILUTE MONOPOLE PLASMA FOR MASSIVE HIGGS

FIELDS

%e define a dilute monopole plasma as a set of
monopoles (centered at points r„q = 1, . . . , n, say)
such that d» 1/A where d is the minimum distance
between monopoles and X is a typical mass which
determines the size of the monopole core, i.e. , the
exponential falloff e ~" of the fields. Then we can
surround each monopole with a sphere of radius a
where d» a» I/A and on the surface of each such
sphere the fields are approximately the asymp-
totic fields discussed in Sec. Dt.

In the present section we shall consider only the
case when the Higgs fields are massive. Hence,
from (4.26), the fields at the surfaces of the
spheres are

P(x) =cP((u, ), F (x) =n ((u, )m, ', , (6.1)

where a, = r —r, for
~

r —r,
~

= a, , and what we need
is an exact exterior solution of the field equations
which matches the boundary conditions (6.1) at
each sphere surface (and has the correct topolo-
gical character as r-~). It is easy to see that
such a solution is given by

4(x) = cP(x), I =n (x)f (x), (6.2)

(6.5)

VII. DILUTE MONOPOLE PLASMA FOR MASSLESS HIGGS

FIELDS

In Sec. IV we saw that when the physical Higgs
fields are not all massive, me may have p, =

((, (S'V/&C')P) and then the asymptotic part of the
Higgs field picks up an extra, term b(r ' Then at.
the surface 8, of each sphere in the dilute plasma
the boundary condition becomes

(7 1)

mhere

dt's =O, ng=0, and (g, g) =1 on S (7.2)

and the exact exterior solution must be generalized
to fit this boundary condition. It is easy to see that
a suitable generalization is given by the solution

Thus, for massive Higgs fields, only the magnetic
field t' contributes to the stress tensor at long

range, and one sees by inspection that the contri-
bution is identical to that of a set of static electric
charges of strength m, . Thus, one has the result
that one might expect intuitively, if the Higgs fields
are massive a dilute monopole plasma behaves in
exactly the same way as a dilute plasma of elec-
trically charged particles. In particular, there is
a Coulomb repulsion (or attraction) according to
whether the monopole charges are like (or unlike).

where

(6.3)
4 (x) = cy(x)+ g (x)n(x),

where Q(x) is as before, h(x) is the solution
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bq (7 3)

of the Laplace equation, and tt(x) a function which
satisfies the equations

the forces balance at all distances in that case. It
is interesting to verify the cancellation directly
from the Bogomol'nyi bound (3.1). Using (6.2),
(7.3), and (3.1) one obtains

D)=0, ng=0 (7 4) (7.9)

D,@ = g(x)V;h, (7.5)

and hence, the contributions of the Higgs field. to
the stress-tensor density is simply

&;~ = —,
' [(V,h) (V,h) —6,, (Vh)'], (7.6)

where h is given by (7.3). From (7.6) and (7.3) we
see that the contribution to the stress-tensor den-
sity of the long-range Higgs fields is analogous to
that of Newtonian gravitating particles located at
r, and with gravitational masses b,. When the b,
are all positive [as in the case in the PS limit with
|j = Q, for example, see (4.31)] the analogy is com-
plete and all the long-range Higgs forces are at-
tractive.

Combining the above result with the result ob-
tained in Sec. VI for the magnetostatic forces, we
see that when long-range Higgs fields contribute
the total stress-tensor density can be written as

T, = —.'[(v,.h)(v, h) —6„(vh)']

,'[(v,.f)(v,f) —6—O(vf)'1, (7 7).
where

(7.8)

with the boundary conditions (-((~,) on the sur-
faces of the spheres and g-0 as r-a. Such a
function g exists because the algebraic condition
n g= 0 is just the integrability condition for the
differential equation D /= 0 both on the surfaces
and in the exterior region. However, just as in the
case of A(x), n(x), and Q(x), the explicit form of

g(x) will not be needed for the stress tensor, since,
from (7.4),

which establishes that m, .
'= b,', and also that

n(x) =g(x) in this case.

VIII. EXPLICIT EXAMPLE OF MONOPOLE VGTH HIGGS

FIELD NOT IN THE ADJOINT REPRESENTATION

where Y~(B) are real linear combinations of the
spherical harmonics of order I, the functions K(r)
and H (r) satisfy the field equations

92+ 8 V
y~ = ~2Hz+

~H'

2Kr 2
= oH'K+K(K —1),8+

(8.2)

As monopo1es for which the Higgs fields are not
necessarily in the adj oint representation have been
considered in the previous sections, it may be
useful to present an example of such a monopole
here. This will he1.p to illustrate the role of the
Higgs constant b and will also be useful for the
discussion of a conjectured symmetry between
monopeles and gauge particles in the next section.
The example is the simplest one possible (and so
far as we know the only one which has been ex-
plicitly worked out) and consists of a spherically
symmetric SU(2) monopole of strength unity, with
the Higgs field in any integer spin I representation
of the group. "" 'The fields are

A;. (x) =e„,, x,
K(r) -1

(8.1)

)
4,

(
)H()

2I+ 1

'The m, are the magnetic charges, and b, are the
Higgs constants defined in Sec. IV. In particular,
if the monopoles are all of the same kind (m, &0,
say) and the h, are all positive, the magnetostatic
Coulomb repulsion is countered by a gravitational
attraction. Which force dominates depends on the
relative magnitudes of the m, and b„and the forces
will exactly balance if, and only if, we have m, ' =

b,' for each monopole. In general, there is no
particular reason why the equality m, '= b,' should
hold, and in the next section we shall give an ex-
ample of an SU(2) monopole with V= 0 for which it
does not hold. However, from the results of Sec.
III we know that the equality must hold for 4 in the
adjoint representation of any group and V= 0 since

K(r)-0, H(r)-cr- h for r (8.4)

Here the constants c and b are as in the previous
sections, and since the solutions to the field equa-
tions are determined by the boundary conditions
at the origin and by K -0, H —cx at infinity, the
constant b cannot be chosen freely, but is deter-
mined by the field equations. Furthermore, since
b is then determined by the boundary conditions at

where V is a potential which vanishes in the PS
limit, and o is the Casimir variable 2o=I(I+1).
The boundary conditions for K and H are

K(r) —1=0(r'), H(r) =O(r~") for r-0 (8.3)

and
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the origin as well as infinity, it is a global func-
tional of K and I and cannot be determined from
the asymptotic equations as ~-~. Thus, to act-
ually determine b one needs to solve Eqs. (8.2) and
to estimate it one needs a global estimate. 'There
are only two cases in which Eqs. (8.2) have been
solved, namely for the adjoint representation'
o =1 and the limiting case" o-~, and the results
for b in these two cases are

(8.5)

However, (8.5) is already sufficient to show that b

varies with o as one might expect from the o de-
pendence of the coupling in Eqs. (8.2). The varia-
tion of b with o in turn is sufficient to show that
the equality b = m of the previous section cannot
be maintained for o1, because m, the magnetic
charge, is fixed to be unity for all o in this model
on account of the spherical symmetry. [m must
in any case be quantized whereas from (8.5) b is
evidently not quantized. ]

Using the expression (4.29) for b, which in this
case reduces to (4.31), we can obtain the global
bounds

monopoles the long-range electromagnetic repul-
sion is canceled by the Higgs attraction.

By considering the example of the previous sec-
tion we wish to show that the analogies (i) and (ii)
no longer hold when the Higgs fields are not in the
adjoint representation, and hence the Montonen-
Olive conjecture holds, if at all, only if the Higgs
field is in that representation.

Let us consider first the mass formulas. For
general integer isospin I the mass matrix for
SU(2) Yang-Mills fields is given by the Higgs-
Kibble formula, -

(9.1)

M'(f) = (P((o) {t'((u) t-(&u))P((o))

M ~((o) = e'c'((f)(u)), t t~P((o)),

where cP(~) is the usual limit of the Higgs field
as r-~ [and the apparent u& dependence of M z(&o)

does not appear in the physical spectrum]. As-
suming that P(ur) has a little group U(1), with
generator t, (co) =n (&o)t, say, and letting t'(co) be
the usual step operators for t, (v) one sees that the
charged Yang-Mills field masses are

0 & b = 2E (II) & 2M, (8.6)
22

(p((o), [[t'((o), t-((u)]'+ t, '((o)]y((u))

where M is the mass of the monopole. The upper
bound (8.6) is useful because it has been shown'0

that M(o) is an increasing function of o which is
bounded above by 3M(1) as I-~. Since M(1) =2b(1)
from the Bogomol'nyi bound for I=1, Eq. (8.6)
therefore gives the uniform bounds

0&b(a') &6b(l) (8.'I)

on b(o) for all o. Together with (8.5) this bound
suggests that b(o) is a slowly varying function of
o. This fixed upper bound for all o in (8.V) will
play a crucial role in our discussion in the next
section.

IX. SYMMETRY BETWEEN MONOPOLES AND GAUGE

PARTICLES

As an a,pplication of the foregoing results on the
long-range interactions of monopoles we consider
the concept of a, symmetry between the charged
vector meson forming a monopole and the mono-
poles themselves (in the PS limit V= 0) proposed
by Montonen and Olive. ' This proposal is based on
a number of analogies between the charged vector
mesons and the monopoles, in particular the fol-
lowing two:

(i} The masses of the charged vector mesons and
monopoles are given by dual formulas, obtainable
from one another by inverting the coupling con-
stant.

(ii) For both the charged vector mesons and the

'c' (~{~),~(a&}}=e, 2I I+1
(9.2)

thus the mass of the charged vector mesons is a
/inear function of the Casimir variable o. But, in
contrast, in Ref. 10 it was shown that the mass of
the monopoles is a slowly incr easing function of
o which is bounded above by 3M(1). Hence, the
dependence of the mass spectrum on o' is quite
different for the charged vector mesons and the
monopoles, and so the duality between the two
fails for o 41.

Next let us consider the long-range forces. For
two like charged vector mesons, they are given by
the exchange of the photon and the Higgs field,
with vertices given by the terms

12F2 eA~gxgx ~+' -eMNAOW'%-

—.'(Dc)'= —,'e(D4, &co)+ - e2(c, ft., t jc')w'w-

+ =e't@o~ow'w-(c, co}

in the standard Yang-Mills-Higgs Lagrangian,
where 4' is the vacuum value of 4 and o is the
Casimir. Since MN, = e ~C' by the spontaneous
breakdown, we see that there is then a net attrac-
tive force of the form e'Mi, (a —1}lr' for like W's
and that it vanishes if, and only if, o'=1. Further-
more, the reason for the imbalance for o'1 is
clear: The photon remains in the adjoint repre-



1950 O'RAIF K ART AIGH, PARK, AND WALI 20

sentation no matter which representation the Higgs
field is in. Hence, while the coupling of the Higgs
field increases with a, the coupling of the photon
remains fixed. The result is that the long-range
attraction of like charged vector meson forces
increases quadratically with 0' as a -~.

For the monopoles, on the other hand, we have
seen in Sec. VII that the long-range attractive
force is (b' —m')/r' where b is the Higgs constant
and m the monopole strength. Since, as shown in
the previous section, b(o) varies withe andm does
not„ there is again an imbalance for 0' 1. But
since it was also shown in Sec. VIII that b(o) is

bounded above by 6b(1) the attraction of the mono-
poles cannot increase quadraticaI. ly with e and
hence the correspondence with the attraction for
the vector mesons is lost. We have thus shown
that for the model of Sec. VIII the symmetry con-
jecture fails for both the mass spectra and the
long-range forces once the Higgs field is no longer
in the adjoint representation.
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