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Appearance of the second dip in elastic pp scattering
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One form of a Chou-Yang model is used successfully to fit all pp data for P„,b = 50 to 1500 GeV/c, and
—t = 0.0 to 12 GeV' with a differential cross section that runs twelve orders of magnitude from 10'

mb/GeV' to 10 ' mb/GeV'. The t dependence is fixed by the proton form factors alone, and there is only
one free energy-dependent parameter p, ,(s) in the model. Specific predictions concerning the appearance of a
second minimum in the pp differential cross section are made.

I. INTRODUCTION and the scattering amplitude is given by

Since the initial experimental verification of the
existence of a minimum in the Pp differential cross
section, ' further experiments have confirmed the
predictions made at that time, ' using the current-
current interaction reformulation of the Chou-
Yang model. 3 In addition to providing excellent
fits to the then available experimental data, the
model anticipated the observed4 change in position
of the diffraction minimum with energy and the in-
crease with energy of the second peak. Since that
time data5 have become available covering a
broad range of energies and, more recently, ex-
tending to large

~
I

~
. Discussion has arisen con-

cerning the non-appearance of the predicted sec-
ond minimum. ~ This paper has a twofold purpose:
firstly, to demonstrate the ability of the current-
current interaction form of the Chou- Yang model
to accommodate all new data and, secondly, to
make some specific predictions concerning the
development of the second dip.

The agreement with data is excellent for a range
of values that runs through twelve orders of mag-
nitude in de/dt from 10' mb/GeV at I =0 to 10 '0

mb/GeV at I-12 GeV . The magnitude of the
coupling for the vacuum exchange part is deter-
mined by a,„(PP) from the optical theorem, and
the'only free parameter is the energy-dependent
parameter p, (s). The t dependence of the model
is completely determined by the proton form fac-
tors. From such a good fit we argue that the non-
appearance of the second dip at P,~=1500 GeV/c
is not at all surprising, and that it probably will re-
veal itself in the next generation of accelerator ener-
gy.

II. DISCUSSION OF THE CURRENTXURRENT FORM

OF THE CHOU-YANG MODEL

2 ~ iK'ba.(K') = ' [1—S(b)]e'"',
2g

(2.2)

where K and b are two-dimensional vectors, b is
the impact parameter, and K is the momentum
transfer squared. The Chou- Yang model makes
a very specific assumption as to the form of S(b)
for nucleon-nucleon (NN) scattering,

S(E)=exp -g J pg(x)pg(x )

x I~(b —x'+ x)d x'dsx, (2.3)

where the summation is over the nucleon density
functions with various SU3 quantum numbers in-
dicated by j. The j= 0 term is the vacuum-ex-
change term and the interaction I is taken to be
the contact interaction

I = pt6'(b —x'+x). (2.4)

However, the interaction where the quantum
number is exchanged must be energy dependent:

I~=p~(s)6'(b —x'+x), j=3 or 8. (2.5)
I

The density functions p„are the hadron matter
distribution functions of the nucleon. They are
related to the nucleon form factor I'~(K ) by the
Fourier transform

+J(q2) — d3x PJ (x) efZ x
N (2.6)

where q=(K„K„,O).

Quantization is possible through substitution of
p(x) by quantized field operators

In the eikonal approximation, the cross section
p(x) - g (x)g(x) . (2.'l)

It is our interpretation of the Chou-Yang model
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that the field operators gt(x)(1)(x) are the fourth component of the current

p'(x) -P(x).
Equation (2.3) has now become

(2.8)

S(s, b) =exP —2sks(s) f f dsx dss'J((x, p)ds(x', 0)es(b —x'+x)

2'-p, (s) (f xd3x'743(z, 0)J43(x', 0)5'(b —x'+z) (2.9)

where J4 and J43 are the fourth components of the isoscalar and isovector currents of the proton and p, &

= py/27f ~

The scattering amplitude o.(s, E ) for the elastic proton-proton scattering is defined by the relation

2

(2s'll'(2' —k+ K)i!'(0'-'0 —K)il(k,
' —k)ll(ks —P )e(s, K') =(P', 2' exb(iK' b)[S(s, b) —lj P, k),2w

(2.10)

where p, 0 and p', k' are the incoming and outgoing four-momenta of the protons, and K = —t is the trans-
verse momentum squared.

The amplitude may be decomposed into a sum of two terms, o.o(s, E~), the vacuum-exchange term, and
o. ,(s, X~), the I= 1 exchange term:

fo'0(s & ) =tuo(s)(K
)
J 4~(0)

(
0)(-K

(
J'~(0)

[ 0)

Z (Kids(0)IK'&(K'Ids(0)IS&(-KIS', (0)I-K&( K Id,o(0)(0&
syin

+ I ~ ~
7 (2.11)

-f~i(«') =&i(')«1~4(0)10)(-K[',(0) ]0) (2.12)

The matrix element of a unitary current between proton states can be written

m'
9'~ J4(0) ~P)=, &(P') &&(V')y4+I"&(q')2 &~4e; &(P)

POPO 2m
(2.13)

Omission of the spin-flip term E&, in the infinite
momenta frame leads to

(K ~Z,'(0)
~
0) = Z,'(K'), (2.14)

and the alternating signs in Eq. (2.11) produce the
zeros which characterize the Chou- Yang model.
However, since we have the additional term E~

contributing to the spin-flip amplitudes, we do not

have any zeros in (2.11), even in the asymptotic
limit.

The isovector form factors which enter into the
calculation of o. ,(s, K') are well known and we
again3 take the singlet form factors of o.o(s, K~) to
be the familiar isoscalar form factors, and use
the convenient dipole formulas.

For numerical calculation we use a sum of four
Gaussians to simulate the dipole formula. The val-
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FIG. 1. Gaussian fits to the dipole formula for the
various form-factor combinations, The solid curves
represent &&g and &&y respectively, calculated us ing
the dipole formula. The broken curves represent the
sum of four Gauss ians used in numerical calculations to
simulate the form-factor combinations.

ues we use are listed in Table I, and the Gaussian
fits to the dipole formula are shown in Fig. 1.
We calculate to the ninth order in the vacuum-ex-
change spin-nonf lip term, second order in spin-
flip vacuum exchange term, and only first order
in the energy-dependent I= 1 exchange term.
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IO Since the total cross section for pp scattering is

'w
2

IO

o'coc =4~(no+ Ima, ) (2.15)

IO

cr„, serves as input for numerical calculations to
fix uo(s) which has the parametric form

IO

0 Genic

I2

p, o(s) = p, + p' ln-
so I

(2.16)

Oo
I 0

Io'

IO

IO

IO

70 Genic

0 Gev/c

40 Gev/c

75Gev c

with JLI,
= 9.76 GeV, ILI,

' = 0.23 Qe V ', and so = 200
GeV'.

No simple energy dependence has yet been found
for g, (s) which at present must be determined em-
pirically (for each cross section) at each energy
Further data covering a broad energy range and
extending to large If I

are needed if the structure
of p, , (s) is to reveal itself. Excellent fits were
produced to data' at small t (I t

I

~ 0 8 GeV') for
equivalent laboratory momenta of 50, 70, 100,
140, and 175 GeV/c, using

I

0 O.I Oe3 0.5 O. 7-t tGeV j

0.9
20

&t(s) = 2/oes

FIG. 2. Theoretical fits to pp elastic scattering differ-
ential-cross-section data (Ref. 8) over the total-cross-
section range 38.2 to 39e0 mb (P&~=50, 70, 100, 140,
175 GeV/c), for —t ~0.8 GeV . A specific energy depen-
dence p~(s)=(20/g ~3)e'+ provides a good fit to these
data.

where Q is the phase angle.
This is shown in Fig. 2. However, data at higher
energies and large

I
f

I
indicate an energy depen-

dence becoming increasingly gradual, ' although
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FIG. 3. Theoretical fits to pp elastic scattering data (Ref. 5) corresponding to total cross sections of 38e97 +0.04 mb
. (P&~=200 GeV/c), 38.46+0.04 mb (P&~= 100 GeV/c), and 38.20 +0.05 mb (P&~=50 GeV/c) for 0 ~ —t &3.4 GeV . [Total
cross sections used are from A. S. Carroll etc'. , Phys. Lett. 618, 303 (1976).] The broken line is the curve for Py~ —100
GeV/c, and the values of p~ used are 0.80, 0.22, and 0.11 for P&~= 50, 100, and 200 GeV/c respectively.
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Total cross sections corresponding to ISR data are 42.5 +0.27 mb (Rubbia and De Kerret, P~~= 1480 GeV/c and 1500
GeV/c respectively) and 43.04 +0.31 mb (Kwak, P&~b = 2052 GeV/c). The theoretical curve used to fit the ISR data has
an input total cross section of 42.8 mb and p&

——0.100. The broken line is the curve for P&~=200 GeV/c with @1=0.110.

still at least s ' at present CERN ISR energies. '
The phase Q is found to vary with the square of the
four- momentum transfer —t =K'.

All theoretical curves for the differential cross
section are therefore given with both their cor-
responding total cross section and the numerical
value of p, These two parameters determine the
energy dependence of the model.

In Fig. 3 theoretical curves are drawn for the
differential cross section at laboratory momenta

of 50, 100, and 200 GeV/c. These fits are quite
good. The greatest error for P„b=50 GeV/c is
14/~ at t=0.30 Ge-V, and the greatest error at
100 GeV/c is 35/c at t=0.45 Ge-V . For P,~
= 200 GeV/c the area of greatest discrepancy is in
the dip region, with the theoretical cross section
agreeing well with experiment for all the remain-
ing It I

range.
It is in the proximity of the dips that the I= 1

exchange term and the spin-flip. amplitudes as-
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FIG. 6. The relative magnitudes of the c!0 and ni contributions to do/d't at P&~= 1500 GeV/c (ISR energies). Data are
taken from Refs. 1, 4, and 7.

sume the greatest relative importance. Qreater
accuracy will be possible once the spin-flip amp-
litudes are included to sufficiently high order in
the numerical calculations. At present, Eq.
(2.11) is being computed to ninth order in spin-
nonf lip terms involving only E„but only to sec-
ond order in spin-flip terms with I'2. The smaller
energy-dependent amplitude n&(s, K ) is included
to first order.

Figure 4 provides excellent fits to available
high- ~t~ data. The theoretical curve for P,z,
= 1500 GeV/c uses an input total cross section of
42.8 mb and p, , = 0.100 QeV ' to obtain a very good
fit over the range 0 +-t &10 GeV . The fit to P,~
= 200 GeV/c is similarly good.

Figures 5 and 6 show the relative magnitudes of
the e, and n, contributions to the cross section at
100 GeV/c and 1500 GeV/c respectively. This
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FIG. 7. Theoretical curve for 0& t=49.1 mb (Pj~= 6000 GeV/c) using p, ~= 0.050. The "error" bars superimposed on
the curve indicate the range of der/dt values accessible at given it( through variation of the phase. The spin-flip con-
tribution has been suppressed. (Data are at ISR energies from Refs. 1, 4, and 7).
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mb (Py~= 104 167 GeV/c) pf = 0.0577, 0.025, and 0.012 respectively. The spin-flip contribution has been suppressed.
Theoretical "error" bars apply to the P&~=4500-GeV/c curve and indicate the range accessible through phase varia-
tion.

does not include the cross-product term which in-
corporates the phase. For the significance of this
term refer to the "error bars" of Figs. 7 and 8.

The range of values fit for the do/dt covers
twelve orders of magnitude from 102 mb/GeV in
the forward direction to 10 ' at -t = 12.0 Geg .
One should notice thai the first dip is filled in
below P„b= 200 GeV/c, and one would not notice
there is a diffractive zero if one's accelerator
energy has not exceeded 200 GeV/c. Similarly,
we argue that there is not yet a dip at

~

f
~

= SGeV'
because the present energy is still not high enough.
In the next section we shall discuss more fully
when the second dip is most likely to be seen.

III. THE APPEARANCE OF THE SECOND MINIMUM

The zeros of the original Chou- Yang model'0 are
well known. In our particular version of the Chou-

Yang model, where the current-current interac-
tion form is used, these zeros are filled in with
spin-flip amplitudes leading to the appearance of
minima but not zeros in the asymptotic energy.
The full details will be discussed separately in a
different paper. " In general, the qualitative fea-
tures of the Qhou-Yang model stay the same for
different versions of form factors used.

At finite energy there is, in addition, an ampli-
tude due to I=1 exchange, which will fill in the
dip. This effect overwhelms the spin-flip ampli-
tude of the vacuum exchange term. For the pres-

ent section, we shall suppress the spin-flip amp-
litude and discuss only the effect of the energy-
dependent I= 1 exchange term, which controls the
filling up of the first and second dip.

With regard to the I= 1 exchange term, it is un-

certain at present the form taken by the energy-
dependent interaction p, (s), and the values used
are chosen by applying an energy dependence of

' ' to the value of p, , used to fit ISR data. Al-
though it appears6 that the s dependence of de/dt
is at least s '~2, the energy dependence does ap-
pear to become increasingly gradual up to ISR
energies so any predictions arising from use of
s ' must be interpreted as a lower limit on the
energy at which the dip might appear. A further
uncertainty exists as to the choice of phase of
p, ~. Qur model cannot prescribe the phase.

The theoretical curves shown in Figs. 7 and 8
are examples of the many curves which could be
drawn within the range possible through phase
variation. It is clear, even allowing the range of
permitted values at given ~ft, that for an input
total cross section of 47.7 mb (P,~=4500 GeV/c),
and with .p, = 0.0577, some break in the slope may
be expected, and for o„,=49.1 mb (P„b=6000
GeV/c) and p, , =0.050 the development of a second
minimum should be quite clear.

A further quite sensitive indicator of dip devel-
opment is the slope parameter, b(s, I). In Figs.
9(a) and 9(b) the theoretical slope parameter is
plotted for fixed phase, first at present ISR ener-
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gies, and then at successively higher energies and
correspondingly lower values of p, The develop-
ment of a minimum is indicated by a change in the
sign of the slope parameter.

The energies we discuss here are all within the
reach of the next generation of proton accelerat-
ors. One interesting point is that the differential
cross section around the second dip will still be
of the same order as the present ISR values (see
Fig. 5). Therefore, the order of magnitude is
such that there will be no additional difficulty
for the experimentalist to measure.

IV. CONCLUSION

We have successfully demonstrated that the
Chou- Yang model with current- current interaction
is capable of explaining all the features in the
high-energy pp elastic scattering, both qualitativ-
ely and quantitatively.

The essential feature of the Chou-Yang model
which relates the t dependence of the do/dt with
the proton form factors remains valid. The spec-
ific form we use identifies the vacuum-exchange
term with the isoscalar nucleon form factors. The
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variation of the cross section with energy cannot
be predicted within the scheme of the Chou- Yang
model and has to be parametrized. This makes
the prediction of the exact energy for appearance
of the second dip difficult. Nevertheless, if we
assume the energy-dependent term to decrease as
1&s, the second dip should certainly be seen P,~

-1G' GeV/c, aquite accessible energy in the next
few years.
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