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' Using Monte Carlo techniques, we study the thermodynamics of four-dimensional Euclidean lattice gauge
theories, with gauge groups Zy and U(1). For N < 4 the models exhibit a single first-order phase transition,
while for N > 5 we observe two transitions of higher order. As N increases, one of these transitions moves
toward zero temperature, whereas the other remains at finite temperature and survives in the U(1) limit. The
behavior of the Wilson loop factor is also analyzed for the Z, and Z, models.

I. INTRODUCTION

Lattice gauge theories currently provide one of
the most promising approaches toward a demon-
stration of quark confinement through an inter-
action with non-Abelian gauge fields.! The lattice
formulation introduces a nonperturbative ultra-
violet cutoff rendering the theory well defined.
Wilson’s expansion in terms of strings shows con-
finement for strong coupling'; however, ordinary
perturbation theory via a spin-wave expansion
suggests a possible unconfined phase for weak
coupling. According to conventional lore,2 four
space-time dimensions represent a critical case
where the spin-wave phase never appears for non-
Abelian continuous gauge groups, but does appear
for the Abelian group U(1) describing conventional
electrodynamics. This parallels the critical nature
of two dimensions for systems of spins interacting
through nearest-neighbor couplings; the Heisen-
berg model based on the non-Abelian symmetry O(3)
has only a disordered phase in two dimensions
whereas with the Abelian group U(1) there is also
a low-temperature phase with correlation func-
tions behaving as a power of separation at large
distances.*

Balian, Drouffe, and Itzykson suggested the
study of discrete gauge groups as a practice ground
for understanding the phase structure of lattice
gauge theories.” Particularly interesting is the
group Zy, the set of complex Nth roots of unity
with ordinary multiplication as the group operation.
For N=2 we have a gauge-invariant generalization
of the Ising model,® while when N goes to infinity
we obtain U(1), the group of relevance to electro-
dynamics. In an earlier paper we used Monte
Carlo techniques to argue that the Z, model has a
first-order phase transition at the temperature
where the system is self-dual.” In this article we
extend our investigation to the groups Z, and U(1).

Our results give evidence for a single, first-
order phase transition in the Z3 and Z, theories,
at the self-dual temperatures.® For larger values
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of N, the Zy model appears instead to undergo
two phase transitions of higher order, at two tem-
peratures, the higher of which shows little N de-
pendence, whereas the other decreases for in--
creasing Nas [1 - cos(27/N)]= O(1/N?). Theformer
transition survives the U(1) limit. This pattern

of phase transitions agrees nicely with recent the-
oretical arguments that for N large enough the Z,,
theory should possess three phases, a disordered
one at high temperature, an ordered one similar
to that seen in the Z, model at low temperature,
and a third intermediate phase mimicking the un-
confined phase of the U(1) theory.’ For the Zg
model, where the two transitions are separated
enough to delineate a clear intermediate phase

and yet the ordered phase extends to a tempera-
ture sufficiently high to allow for an efficient Monte
Carlo procedure, we have also studied the be-
havior of Wilson loops.! They appear to decrease
exponentially with the area of the enclosed region
in the disordered phase and with the perimeter in
the intermediate- and low-temperature phases.

In Sec. II we define the models under consid-
eration, Section III reviews the Monte Carlo tech-
nique used to evaluate the statistical sums. Section
IV presents our results and Sec. V contains a few
closing remarks.

II. THE MODELS

We formulate the theory on a four-dimensional
hypercubical lattice. Associated with each link
joining a pair of nearest-neighbor sites ¢ and j is
an element U;; of the group Z defined by

Zy=1e*""""|n=0,1,...,N -1}. (2.1)

This set forms an Abelian group under ordinary
multiplication. As N goes to infinity we obtain the
group U(1). The U,; are oriented on the links of
the lattice in the sense that we require

Uy =Ul . (2.2)

The action describing the interaction of these
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spins is
S=% 3 Pum(l=UiUpUnUyy), (2.3)
ikl
where
1if ¢,7,%,1 label vertices circulating
around an elementary square or
Pym=< “plaquette” of the lattice,

. (2.4)
0 otherwise.

The factor of § in Eq. (2.3) is inserted because
each plaquette is counted eight times in the sum,
four times in each of the two orientations. The
action is real because the contribution from a
definite orientation of a plaquette is the complex
conjugate of that for the opposite one. The total
contribution from any plaquette to S lies in the
interval [0, 2].

We insert this action into a path integral to de-
fine a partition function at temperature 7 =1/8,

zZ=3Y e, (2.5)
1wy
where the sum runs over all possible values of
the link variables U;;. The “free energy” of the
system is an intensive quantity defined by

1
- 2.6
F._Ns InZ , ’ (2.6)

where N is the number of sites on the lattice. A
phase transition is defined as a singularity in the
infinite-volume limit of F considered as a function
of B. Differentiating the free energy gives the

average action per plaquette
i}

B
where the sites ¢, j, 2, and [ circulate around an
elementary square. The factor L is the ratio of
the number of sites to the number of plaguettes

in a four-dimensional lattice. This quantity E is
the order parameter we concentrate upon in our
numerical work. At a first-order phase transition
E is discontinuous in 3, while for higher-order
transitions it is continuous.

1
E =(1 - ReU;;UpUnUs) =~ 57557 » (2.7

III. THE MONTE CARLO TECHNIQUE

The partition function represents a sum over all
configurations of the system, i.e., over all pos-
sible values for the statistical variables U,;;. Al-
though for a bounded system this is a finite sum,
the number of terms involved is so large even for
systems of rather small size that it cannot be
evaluated directly by numerical methods. In a
Monte Carlo computation one generates a sequence
of configurations which simulates an ensemble of
states in thermal equilibrium at inverse temper-

ature 8. A sum over the states in this sequence
approximates the full statistical sum,!?

More specifically, the Monte Carlo technique
consists of setting up a Markovian process. At
each step a state of the system Z; is transformed
into a new state Z,, (which may coincide with Z,)
according to a probability matrix P (£,,2;,). This
matrix must have the Boltzmann distribution as an
eigenvector, i.e., the Markovian process must
transform an ensemble in equilibrium into itself,
A sufficient condition for this is an equation of
detailed balance

P(Z,3)

m=exp{—ﬁ[s(2’)—8(2)]}, (3.1)

where S(Z) represents the action of the state =.
This is quite general and does not determine the
probability matrix uniquely. Considerations of
efficiency and computational feasibility eventually
dictate its form. In our work we have followed
the rather common procedure of probing the spins
of the lattice one at a time, so that =, and Z,
differ at most in the value of a single statistical
variable U;;. Properly speaking, then, we are not
dealing with a single probability matrix, but rather
a collection of matrices P‘¥\Z,%’), one for each
statistical variable. The entries of P"/(2,Z’) are
zero unless T and Z’ differ at most in the value of

~ U;. A single Monte Carlo step consists in acting

with one of the P*¥ on the state vector. All the
statistical variables are probed in succession, and
therefore the matrix defining the Markovian pro-
cess is

P=PHNJ'N ). ‘P“ij)P“ljl) , (3.2 )

where the product runs over all links in the lat-
tice. We shall refer to the application of P to the
state vector as one Monte Carlo iteration, or a
sweep of the lattice. In other words, the spins are
probed in orderly succession and stochastically
set to new values. When all the spins have been
analyzed, one proceeds to a new iteration.

This still leaves open the detailed form of
PYZ,3")., We have performed computations with
two distinct probability matrices, corresponding
to different algorithms for the stochastic changing
of spins. One method, introduced by Metropolis
et al. Mt begins by choosing randomly a pew value
Ui;#U;; from the group elements with uniform
probability. If the action is lowered by the re-
placement of U,; with Uj;, the spin is set to this
new value; if AS=> 0, a random number » with uni-
form distribution between 0 and 1 is generated and
the spin is changed to Uj; only if » < exp(~-BAS).
This simple algorithm ensures that Eq. (3.1) is
satisfied.

We have used this method in conjunction with a
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computational technique allowing the storage of
many spin variables in a single memory word of
a computer and involving many spins in parallel
computations with logic operations., This proce-
dure makes the actual computations very fast, ef-
fectively reducing the dimensionality of the lattice
from four to three. We have briefly described
this technique in a previous communication’ and
shall not elaborate on it further here. With this
method we work on a periodic lattice of 8 sites in
the x, y, and z directions, and 20 sites in the ¢
direction, The total number of spin variables is

thus 40960,

As an alternative procedure, we have used an
algorithm which selects a new value U}, for the
spin variable in a stochastic manner with prob-
ability distribution proportional to the Boltzmann
factor exp( —BS). The previous value of U;; plays
no direct role in the selection procedure. This
method corresponds to placing successively each
spin of the lattice in contact with a heat bath and
will be referred to by this name. The corre-
sponding probability matrix also obeys Eq. (3.1).
The heat-bath method lends itself less well to the
multiple storage of spins and the computations in-
volved are slower; however, this is often offset
by a faster convergence to equilibrium, In what
follows, we shall explicitly indicate those results
obtained with the heat-bath technique, leaving it
understood that the others were derived by the
procedure of Metropolis et al.!! Frequently we
‘have used the two methods independently to eval-
uate similar quantities as a check on the consis-

tency of the results.
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IV. RESULTS

A thermal cycle of a statistical system can pro-
vide a general overview of its phase structure.
The temperature T is gradually varied while the
internal energy is measured. By making the vari-
ation of the temperature sufficiently slow, the sys-
tem can be kept generally close to thermal equi-
librium, even though this is in principle never
quite reached. In the neighborhood of a phase tran-
sition, however, the relaxation time increases and
so does the departure from equilibrium. A hys-
teresis effect will then signal the presence of the
transition.

These features, which would be observed in a
true experiment, are also apparent in a Monte
Carlo simulation. We have therefore evaluated
the behavior of E in such a thermal cycle with
gauge groups Z,, Z3, Z,, Zs, Zz, and Zg. The
results are displayed in Figs. 1(a)-1(f). Starting
with a definite value B, for the inverse temper-
ature and with a completely ordered configuration
where all Uy; are set to the group identity, we have
performed Monte Carlo computations while chang-
ing B slightly after each iteration. Thus g is re-
duced to zero (infinite temperature) and then re-
turned to B,. We have chosen B, of 1.2 for Z,,

2.0 for z3, Z,, and Z;, 2.5 for Zg, and 3.5 for Zg.
The total number of iterations in the thermal
cycles is 4000 for the models Z,~Z;, 5000 for Zy,
and 7000 for Z,. The points are plotted every 16
iterations for Z, and every 10 for the other sys-
tems.

Hysteresis effects are apparent in all the dia-

1.2
YN Zg
1.0 1.0
o.sﬁ\ 0.8
0.6 \ E 0.6
\ hY
A N
0.4 : 0.4
2 - \
(c) ) (e)
0.0 T T T 0.0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1.2 1.2
Zs Zg
1.0 4 1.0 4
0.8 0.8
0.6 £ 0.6
0.4 0.4
0.2 1 0.2 £)
A (d) N
O'D T T T T T T U‘O T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

FIG. 1. Thermal cycles on the models Z,, Z;, Z;, Z5, Zg, and Zs.
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FIG. 2. Long runs at a critical temperature for the models Z,, Z,, Z,, and Z;.

grams; however, their qualitative features change
drastically in the passage from Z, to higher groups.
For Z,, Z3, and Z, one observes a single, rather
steep hysteresis cycle. With Z; the cycle begins

to separate into two less steep loops. This doub-
ling becomes manifest with Z¢ and Zg. Thus, the
thermal cycles suggest a single transition with

Z,, Z3, and Z,, and two separate ones with Zg, Zg,
and, most likely, Z;.

The pronounced jumps in the cycles with Z,, Zg,
and Z, suggest first-order transitions. At the
temperature of a first-order phase change, a sys-
tem can exist in either or two distinct stable phas-
es, an ordered one with smaller internal energy
and a disordered one with greater internal energy.
Both phases become metastable on the “wrong”
side of the transition. At a temperature slightly
higher, for instance, than the critical value, the
ordered phase is metastable and can exhibit an
extremely long relaxation time to equilibrium.
This property of superheating or supercooling,
which represents a hindrance to reaching equili-
brium from an inappropriate starting phase, can
be exploited to verify the nature of the transition.
Figures 2(a)-2(d) illustrate the results of long
(2000 iterations) Monte Carlo simulations with 8
fixed near a critical point. The values selected
for g are 0.4407, 0.67, 0.88, and 1.0 for the
models Z,, Z3, Z4, and Z;, respectlvely. The
critical values 8, =3 In(1+VZ) for Z,, % In[2/(V3 - 1]
for Z,, and 1n(1+wf—) for Z, are known from the

self-duality of these models 5% The value 1.0 for
Z was selected on the basis of further analysis
presented below. The two series of points in each

of these figures correspond to the values of E ob-
served every 10 iterations. The starting configu-

~ ration was completely ordered for the lower set of

points and totally random for the upper set. For
the groups Z,, Z,, and Z, the systems appear to
converge in remarkably few iterations to one of
the two definite phases, both of which then remain
stable. The behavior of the Z; model is drastically
different; irrespective of the initial configuration
the internal energy converges rather slowly to a
unique value. This is indicative of a phase transi-
tion of higher than first order.

The fact that Monte Carlo simulations starting
from a totally ordered and a totally disordered
lattice produce internal energies converging to a
common value is a good sign that thermal equi-
librium is being reached. Unfortunately, in the
nelghborhood of a first-order phase transition,
the convergence of the metastable phase to thermal
equilibrium becomes too slow to make this check
feasible. To investigate the properties of the sys-
tem in these regions and to determine the critical
value of 8 more accurately than from a simple in-
spection of the hysteresis cycles, we have re-
sorted to the following stratagem. A mixed con-
figuration, in which all the U;; with time coordin-
ate between 1 and 10 are set equal to the identity
and the remaining half are chosen randomly, has
been used as initial configuration. 400 Monte
Carlo iterations have then been performed for a
few values of B selected in the regions of the
hysteresis cycles. The results are displayed in
Figs. 3(a)-3(d) for the groups Z,, Z;, Z, and Z;.
All diagrams show the results obtained with 7
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FIG. 3. Mixed phase running with groups Z,, Z3, Z,,
and Z(; .

values of B, in steps of 0.01, starting from 0.41,
0.64, 0.85, and 0.97 for the groups Z,, Z;, Z;, and
Zg, respectively, the lower series of points cor-
responding to larger values of 8. For Z,, Z3, and
Z, one notices a quick initial relaxation of the
value of E, corresponding to a rapid approach of
the two halves of the system to the two phases
which can coexist at the critical point, followed
by a rather linear drift as the boundary between
the two phases shifts until the stable phase over-
takes the whole lattice. At the critical temper-
ature both phases are stable and the drift is ab-
sent. From Figs. 3(a)-3(c) one can read off the
self-dual points g =0.44, 0.67, and 0.88 for the
models Z,, Z;, and Z,, respectively. The behavior
of the mixed phase for Z; is strikingly different.
One notices a convergence to an equilibrium value
of E varying smoothly with 8, suggesting a con-
tinous transition.

The model Z; represents the first case where
the three-phase structure is well separated. We
have tried to determine E as a function of 8 in
more detail by a series of Monte Carlo simul-
ations where the initial configuration consisted of
layers of ordered and disordered spins. Then
500 iterations were performed for values of B set
equal to 0.5, 0.9, 0.95, 0.98, 1, 1.02, 1.05, 1.1,
1.3, 1.5, 1.55, 1.58, 1.6, 1.62, 1.65, 1.7, and 2.

For B =1.55 the system appeared to converge to
thermal equilibrium; for 8>1.55 the energy was
still moving downward at the end of the 500 sweeps
of the lattice; so, in this region we have proceeded
for 500 more iterations. The results are repre-
sented by open circles in Fig. 4. The other points
in this figure are taken from the thermal cycle.
Note two regions where the curve E(B) becomes
steeper. One is clearly outlined at 8=1. In the
second region, at B=1.6, the actual behavior of
the curve is confused by rather large fluctuations.
As can be derived by differentiating Eq. (2.7),
the mean square fluctuation of £ measured in an
equilibrium ensemble is equal to — (1/N,)(3E/8B)
where N, is the number of plaquettes in the lat-
tice. The fluctuations are thus related to the
specific heat and should increase at a critical
point. An analysis of the mean square deviation
of E in the region around 8=1 has produced the
results summarized in the following table:

B &) N X (&%) - (E)?)
0.9 0.529 0.810

0.95 0.487 0.778

0.98 0.447 0.997

1 0.411 1.28

1.02 0.337 0.586

1.05 0.310 0.441

1.1 0.285 0.560

The increase in (E2) - (E)? at B~1 is apparent, but
the limited statistics does not allow quantitative
comparisons.

Diagrams of E versus B have been obtained with
the heat-bath method for the Z,, and U(1) models
[with lattice size of 8* for Z,, and 5* for U(1)] and
are reproduced in Figs. 5 and 6. The first phase
transition occurs always at =1, the second moves
to B=16 in Z,, and is not present in the explored
range of 8 in U(1).

For the marginal Z; theory, we used the heat-
bath method on an 8* lattice at 8=1.0, 1.1, and
1.2, At B=1.1 with either a random or an or-

(X3 8 . 4
04+

0.2 ° o B

FIG. 4. The internal energy as a function of g for Z;.
The open circles represent the results of the long runs
described in the text. The other points are from the
thermal cycles.
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FIG. 5. The internal energy as a function of g for Z,,.
The straight line represents the asymptotic spin-wave
result 1/48.

dered start the system reached equilibrium within
100 iterations. However, at either 8=1.0, or
B=1.2 the convergence rate was substantially re-
duced and similar to that seen with Z; at 8=1.0.
Thus the Z, model possesses the three-phase
structure of the higher-order groups.

The values obtained for the critical 8’ s are plot-
ted versus the order of the group in Fig. 7. These
points are obtained using the heat-bath method and
repeatedly adjusting B so that E is maintained in
the middle of the hysteresis cycles. The solid line
represents the curves B,=0.78/[1 ~ cos(21/N)].
The fit suggests that the relevant quantity in de-
termining the position of the low-temperature
phase transition is the magnitude of the gap be-
tween the action of an unexcited plaquette and the
action of a plaquette in its lowest state of ex-
citation.

Finally, we have studied the behavior of the
Wilson loop factor, defined as

W=(ReW, ;. Uy **"Up, ), (4.1)

- where the group elements are associated with links
forming a closed loop in the lattice. For an ele-

mentary square W equals 1 - E and ranges in value
between 1, for a totally ordered lattice, and 0, for
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FIG. 7. Critical points as a function of symmetry
group.

a totally disordered lattice. If one increases the
size of the loop, W always approaches zero ( in the
limit of « lattice size), but the modality of the
approach depends on the phase of the system. It
has been argued® that in a confining, disordered
phase, W decays following an area law

W= exp(-cA), (4.2)

A being the area enclosed by the loop, whereas in
an ordered, nonconfining phase, W should decay
following a perimeter law

W=exp(~c'L), (4.3)

L being the length of the perimeter of the loop. In
Fig. 8 we compare the values of 1 — W for a single
plaguette and a square loop of side 2 in the Z,

model (results obtained with the heat-bath method,

AREA LAW -

— PERIMETER LAW
0.8
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FIG. 8. Square Wilson loops of sides one and two for
the group Z,.
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lattice size 8!). The solid curves represent the
predictions of the low- and high-temperature ex-
pansions for E and for perimeter- and area-law
behaviors of W. The agreement with an area law
in the high-temperature phase and with a peri-
meter law in the low-temperature phase is im-
pressive. In Fig. 9 we plot the quantity —1nW
versus the side of a square loop for a set of values
of B in the Z; model. In the computations, the
loops have been taken spacelike; the periodicity of
the lattice then forces InW to vanish for a loop of
side 8. For the lowest values of B3, W rapidly be-
" comes statistically indistinguishable from 0 as
one increases the size of the loop and only a few
points for InW can be plotted. We recall that the
phase transition between the high temperature and
intermediate phase occurs at 8~ 1. Correspond-
ingly one notices in Fig. 9 a change from a con-
cave to a rather linear behavior in the curves,
suggesting indeed the transition from an area to a
perimeter law for W.

V. DISCUSSION

Our work has many features of an experiment.
One has a small piece of a four-dimensional crys-
tal, heats it up, cools it, and measures its in-
ternal energy. It is, admittedly, a very small
crystal, but still one hopes the statistics will be
sufficiently good to provide relevant information
on the properties of the medium. We have studied
the effect of lattice size by performing simulations
with the Z, gauge theory on hypercubical lattices
ranging from 2* to 8* lattice sites. In Fig. 10 we
show the average plaquette and root-mean-square
fluctuation at the critical temperature with both
ordered and disordered initial conditions. The

T T T T T T T T
Zg

83x20 Iattice
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»

=In (W)

LOOP SIDE

FIG. 9. Square Wilson loops for Z; as a function of
loop side.
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FIG. 10. Size dependence of the two-phase structure
with Z,.

plotted points and error bars are the average over
the last 100 of 110 heat-bath iterations. Note that
the two-phase structure is already clear on a 4*
lattice; increasing the size only decreases the
fluctuations.

From our work emerges a rather clear phase
structure for the abelian lattice gauge theories.
The appearance of three phases when the order of
the group exceeds 4 is particularly noticeable. It
is remarkable that such a structure has been pre-
dicted using entirely theoretical arguments based
on the approach to the U(1) limit.° Our results
confirm nicely their analysis.

To a qualitative overview of the thermal pro-
perties of the Z, and U(1) models, we add ele-
ments of quantitative information. The curves
giving E as a function of 8 are tantamount to an
experimental determination of the partition func-
tion. The critical values of B, at which the phase
transitions occur, when not known from self-
duality, are determined to a reasonable degree of
accuracy.

As already noted, the low-temperature tran-
sition for the high-order groups scales well with
the action of the first excited state above the
ground state. For B in the vicinity of this second
transition the energy scales approximately as

'Ew)%f(,f—z) , 6.1)

where B, is the second critical point and f is in-
dependent of the group order. At these low temp-
eratures the large-order models become essen-
tially a gauge-invariant formulation of the surface-
roughening model.*? ; ‘
Our work supports the existence of a phase tran-
sition for U(1) lattice gauge theory. Such a tran-
sition is essential if Wilson’ s formulation is to
describe the prototype of all gauge theories, quan-
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tum electrodynamics. Indeed, if the approach
could not avoid the confinement of electrons, its
use for any gauge theory would be suspect. We

still have not shown that the low-temperature phase

of this system contains a massless excitation, the
photon. As some evidence for this, we note that a
spin-wave expansion at large 8 would begin by
approximating

Re(IUI U,.,) =cos(z;e“>z1_§ (za:e,.,>2, (5.2)

where the group elements are represented as

U,;=explif,,) . (5.3)

The above replacement makes the path integral

Gaussian and solvable, and one finds
1

E B—::@ .

This function is plotted with the results for Z,, in

Fig. 5. Our results for the U(1) model and the Z

models in the intermediate phase approach this

behavior at large B8 and thus support the existence

of spin-wave excitations.

(5.4)
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