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Using Monte Carlo techniques, we study the thermodynamics of four-dimensional Euclidean lattice gauge
theories, with gauge groups Z~ and U(1). For N & 4 the models exhibit a single first-order phase transition,
while for N ) 5 we observe two transitions of higher order. As N increases, one of these transitions moves
toward zero temperature, whereas the other remains at finite temperature and survives in the U(1) limit. The
behavior of the %'ilson loop factor is also analyzed for the Z, and Z, models.

I. INTRODUCTION

Lattice gauge theories currently provide one of
the most promising approaches toward a demon-
stration of quark confinement through an inter-
action with non-Abelian gauge fields. The lattice
formulation introduces a nonperturbative ultra-
violet cutoff rendering the theory well defined.
Wilson's expansion in terms of strings shows con-
finement for strong coupling~; however, ordinary
perturbation theory via a spin-wave expansion
suggests a possible unconfined phase for weak
coupling. According to conventional lore, four
space-time dimensions represent a critical case
where the spin-wave phase never appears for non-
Abelian continuous gauge groups, but does appear
for the Abelian group U(1) describing conventional
electrodynamics. This parallels the critical nature
of two dimensions for systems of spins interacting
through nearest-neighbor couplings; the Heisen-
berg model based on the non-Abelian symmetryo(3}
has only a disordered phase in two dimensions, s

whereas with the Abelian group U(l) there, is also
a low-temperature phase with correlation func-
tions behaving as a power of separation at large
distances.

Balian, Drouffe, and Itzykson suggested the
study of discrete gauge groups as a practice ground
for understanding the phase structure of lattice
gauge theories. ' Particularly interesting is the
group Z„, . the set of complex Nth roots of unity
with ordinary multiplication as the group operation.
For N =2 we have a gauge-invariant generalization
of the Ising model, e while when K goes to infinity
we obtain U(1), the group of relevance to electro-
dynamics. In an earlier paper we used Monte
Carlo techniques to argue that the Z2 model has a
first-order phase transition at the temperature
where the system is self-dual. In this article we
extend our investigation to the groups Z„and U(1).

Our results give evidence for a single, first-
order phase transition in the Z3 and Z4 theories,
at the self-dual temperatures. For larger values

II. THE MODELS

We formulate the theory on a four-dimensional
hypercubical lattice, Associated with each link
joining a pair of nearest-neighbor sites i and j is
an element U,.&

of the group Z„defined by

~n=0, 1, . . . ,N —lj. (2.1)

This set forms an Abelian group under ordinary
multiplication. As N goes to infinity we obtain the
group U(1). The U„. are oriented on the links of
the lattice in the sense that we require

(2.2}

The action describing the interaction of these

of X, the Z„model appears instead to undergo
two phase transitions of higher order, at two tem-
peratures, the higher of which shows little N de-
pendence, whereas the other decreases for in-
creasing N as [1 —cos (2v/N)] = O(1/N'). The former
transition survives the U(1) limit. This pattern
of phase transitions agrees nicely with recent the-
oretical arguments that for N large enough the Z„
theory should possess three phases, a disordered
one at high temperature, an ordered one similar
to that seen in the Z2 model at low temperature,
and a third intermediate phase mimicking the un-
confined phase of the U(1) theory. For the Z,
model, where the two transitions are separated
enough to delineate a clear intermediate phase
and yet the ordered phase extends to a tempera-
ture sufficiently high to allow for an efficient Monte
Carlo procedure, we have also studied the be-
havior of Wilson loops. ' They appear to decrease
exponentially with the area of the enclosed region
in the disordered phase and with the perimeter in
the intermediate- and low-temperature phases.

In Sec. II we define the models under consid-
eration. Section III reviews the Monte Carlo tech-
nique used to evaluate the statistical sums. Section
IV presents our results and Sec. V contains a few
closing remarks.
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spins is

S=8 P yai & —UgyUgaUuiUt& (2.3)

where

1 if i,j,k, l label vertices circulating
around an elementary square or

Prrr r
= "plaquette" of the lattice,

l 0 otherwise.

The factor of —,
' in Eq. (2.3) is inserted because

each plaquette is counted eight times in the sum,
four times in each of the two orientations. The
action is real because the contribution from a
definite orientation of a plaquette is the complex
conjugate of that for the opposite one. The total
contribution from any plaquette to S lies in the
interval [0, 2].

We insert this action into a path integral to de-
fine a partition function at temperature T =1/P,

(2.4)

-BS
7 (2.5)

where the sum runs over all possible values of
the link variables U, ~. The "free energy" of the
system is an intensive quantity defined by

1F =—lnZ,
N,

(2.6}

where N, is the number of sites on the lattice. A

phase transition is defined as a singularity in the
infinite-volume limit of F considered a,s a function
of p. Differentiating the free energy gives the
average action per plaquette

1 ~
E =(1 —ReU, rUrr, UrrUr, }= ———F,68p (2 7)

where the sites i, j, 0, and l circulate around an
elementary square. The factor —is the ratio of
the number of sites to the number of plaquettes
in a four-dimensional lattice. This quantity F. is
the order parameter we concentrate upon in our
numerical work. At a first-order phase transition
E is discontinuous in P, while for higher-order
transitions it is continuous.

III. THE MONTE CARLO TECHNIQUE

The partition function represents a sum over all
configurations of the system, i.e., over all pos-
sible values for the statistical variables U,z. Al-
though for a bounded system this is a finite sum,
the number of terms involved is so large even for
systems of rather small size that it cannot be
evaluated directly by numerical methods. - In a
Monte Carlo computation one generates a sequence
of configurations which simulates an ensemble of
states in thermal equilibrium at inverse temper-

ature p. A sum over the states in this sequence
approximates the full statistical sum. j

More specifically, the Monte Carlo technique
consists of setting up a Markovian process. At
each step a state of the system Z; is tr ansformed
into a new state Z„& (which may coincide with Z, )
according to a probability matrix P (Z„Z,,&}. This
matrix must have the Boltzmann distribution as an
eigenvector, i.e. , the Markovian process must
transform an ensemble in equilibrium into itself.
A sufficient condition for this is an equation of
detailed balance

PZ Z'
p Z,

'
Z- ——exp( P[S(Z')-S(Z))), (3 1)

P(INig ). . .P($2)2)P(f jg j)
7 (3.2 }

where the product runs over all links in the lat-
tice. We shall refer to the application of P to the
state vector as one Monte Carlo iteration, or a
sweep of the lattice. In other words, the spins are
probed in orderly succession and stochastically
set to new values. When all the spins have been
analyzed, one proceeds to a new iteration.

This still leaves open the detailed form of
P"r'(Z, Z'). We have performed computations with
two distinct probability matrices, corresponding
to different algorithms for the stochastic changing
of spins. One method, introduced by Metropolis
et al. ,

"begins by choosing randomly a pew value
U&& WU&& from the group elements with uniform
probability. If the action is lowered by the re-
placement of U„. with U,'&, the spin is set to this
new value; if 48 ~ 0, a random number ~ with uni-
form distribution between 0 and 1 is generated and
the spin is changed to Ur'r only if r & exp(- pnS}.
This simple algorithm ensures that Eq. (3.1) is
satisfied.

We have used this method in conjunction with a

where S(Z) represents the action of the state Z.
This is quite general and does not determine the

probability matrix uniquely. Considerations of
efficiency and computational feasibility eventually
dictate its form. In our work we have followed
the rather common procedure of probing the spins
of the lattice one at a time, so that Z& and Z„j
differ at most in the value of a single statistical
variable U, &. Properly speaking, then, we are not
dealing with a single probability matrix, but rather
a collection of matrices P" '(Zr, Z'), one for each
statistical variable. The entries of P"r'(Z, Z') are
zero unless Z and Z' differ at most in the value of
U;&. A single Monte Carlo step consists in acting
with one of the P"~' on the state vector. All the
statistical variables are probed in succession, and
therefore the matrix defining the Markovian pro-
cess is
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computational technique allowing the storage of
many spin variables in a single memory word of
a computer and involving many spins in parallel
computations with logic operations. This proce-
dure makes the actual computations very fast, ef-
fectively reducing the dimensionality of the lattice
from four to three. We have briefly described
this technique in a previous communication' and
shall not elaborate on it further here. With this
method we work on a periodic lattice of 8 sites in
the x, y, and z directions, and 20 sites in the t
direction. The total number of spin variables is
thus 40 960.~

As an alternative procedure, we have used an
algorithm which selects a new value U,', for the
spin variable in a stochastic manner with prob-
ability distribution proportional to the Boltzmann
factor exp(-PS). The previous value of U, &

plays
no direct role in the selection procedure. This
method corresponds to placing successively each
spin of the lattice in contact with a heat bath and
will be referred to by this name. The corre-
sponding probability matrix also obeys EIl. (3.1).
The heat-bath method lends itself less well to the

multiple storage of spins and the computations in-
volved are slower; however, this is often offset
by a faster convergence to equilibrium. In what

follows, we shall explicitly indicate those results
obtained with the heat-bath technique, leaving it
understood that the others were derived by the

procedure of Metropolis et al.~' Frequently we
have used the two methods independently to eval-
uate similar quantities as a check on the consis-
tency of the results.

IV. RESULTS

A thermal cycle of a statistical system can pro-
vide a general overview of its phase structure.
The temperature T is gradually varied while the
interna, l energy is measured. By making the vari-
ation of the temperature sufficiently slow, the sys-
tera can be kept generally close to thermal equi-
librium, even though this is in principle never
quite reached. In the neighborhood of a phase tran-
sition, however, the relaxation time increases and

so does the departure from equilibrium. A hys-
teresis effect, will then signal the presence of the
transition.

These features, which would be observed in a
true experiment, are also apparent in a Monte
Carlo simulation. We have therefore evaluated
the behavior of F. in such a thermal cycle with

gauge groups Z2, Z3, Z4, Z„Z„and Z8. The
results are displayed in Figs. 1(a)-1(f). Starting
with a definite value Po for the inverse temper-
ature and with a completely ordered configuration
where all U&& are set to the group identity, we have
performed Monte Carlo computations while chang-
ing P slightly after each iteration. Thus P is re-
duced to zero (infinite temperature) and then re-
turned to Po. We have chosen P, of 1.2 for Z&,

2.0 for Z3, Z4, and Z5, 2.5 for Z6, and 3.5, for Zs.
The total number of iterations in the thermal
cycles is 4000 for the models Z2-Z~, 5000 for Z6,
and 7000 for Z,. The points are plotted every. 16
iterations for Z, and every 10 for the other sys-
tems.

Hysteresis effects are apparent in all the dia-
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FIG. 1. Thermal cycles on the models Z2, Z3, Z4, Z&, Z6, and Z8.
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PIG. 2. Long runs at a critical temperature for the models Z2, Z2, Z4, and 2,.

grams; however, their qualitative features change
drastically in the passage from Z4 to higher groups.
For Z2, Z3, and Z4 one observes a single, rather
steep hysteresis cycle. With Z5 the cycle begins
to separate into bvo less steep loops. This doub-
ling becomes manifest with Ze and Z8. Thus, the
therma1. cycles suggest a single transition with
Z2 Z3 and Z4, and two separate ones with Z„Z8,
and, most likely, Z, .

The pronounced jumps in the cycles with Z2, Z3,
and Z4 suggest first-order transitions. At the
tempe. rature of a first-order phase change, a sys-
tem can exist in either or two distinct stable phas-

es, an ordered one with smaller internal energy
and a disordered one with greater internal energy.
Both phases become metastable on the "wrong"
side of the transition. At a temperature slightly
higher, for instance, than the critical value, the
ordered phase is metastable and can exhibit an
extremely long relaxation time to equilibrium.
This property of superheating or supercooling,
which represents a hindrance to reaching equili-
brium from an inappropriate starting phase, can
be exploited to verify the nature of the transition.
Figures 2(a)-2(d) illustrate the results of long
(2000 iterations) Monte Carlo simulations with P

fixed near a critical point. The values selected
for P are 0.440'7, 0.67, 0.88, and 1.0 for the
models Z2, Z3, Z4, and Ze, respectively. The
critical values P, =~ ln(1+ v 2 ) for Z„—', in[2/(&3-1)j
for Z„and ln(1+ W2) for Z4 are known from the
self-duality of these models. ' ' The value 1.0 for
Z, was selected on the basis of further analysis
presented below. The two series of points in each

of these figures correspond to the values of E ob-
served every 10 iterations. The starting configu-
ration was completely ordered for the lower set of
points and totally random for the upper set. For
the groups Z2, Z„and Z, the systems appear to
converge in remarkably few iterations to one of
the two definite phases, both of which then remain
stable. The behavior of the Z, model is drastically
different; irrespective of the initial configuration
the internal energy converges rather slowly to a
unique value. This is indicative of a phase transi-
tion of higher than first order.

The fact that Monte Carlo simulatipns starting
from a totally ordered and a totally disordered
lattice produce internal energies converging to a
commop value is a good sign that thermal equi-
librium is being reached. Unfortunately, in the

neighborhood of a first-order phase transition,
the convergence of the metastable phase to thermal
equilibrium becomes too slow to make this check
feasible. To investigate the properties of the sys-
tern in these regions and to determine the critical
value of P more accurately than from a simple in-
spection of the hysteresis cycles, we have re-
sorted to the following stratagem. A mixed con-
figuration, in which aQ the U, &

with time coordin-
ate between 1 and 10 are set equal to the identity
and the remaining half are chosen randomly, has
been used as initial configuration. 400 Monte
Carlo iterations have then been performed for a
few values of p selected in the regions of the
hysteresis cycles. The results are displayed in

Figs. 8(a)-8(d) for the groups Z2, Z3, Z4, and Z, .
All diagrams show the results obtained with 7
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For p &1.55 the system appeared to converge to
thermal equilibrium; for P &1.55 the energy was
still moving downward at the end of the 500 sweeps
of the lattice; so, in this region we have proceeded
for 500 more iterations. The results are repre-
sented by open ci.rcles in Fig. 4. The other points
in this figure are taken from the thermal cycle.
Note two regions where the curve E(P) becomes
steeper. One is clearly outlined at P =1. In the
second region, at P =1.6, the actual behavior of
the curve is confused by rather large fluctuations.

As can be derived by differentiating Eq. (2.7),
the mean square fluctuation of 8 measured in an
equil, ibrium ensemble is equal to —(1/N )(BE/BP)
where N is the number of plaquettes in the lat-
tice. The fluctuations are thus related to the
specific heat and should increase at a critical
point. An analysis of the mean square deviation
of E in the region around P =1 has produced the
results summarized in the following table:
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FIG. 3. Mixed phase running with groups Z2, Zs, Z4,
and Z6 ~

values of P, in steps of 0.01, starting from 0.41,
0.64, 0.85, and 0.97 for the groups Z2, Z3, Z4, and

Ze, respectively, the lower series of points cor-
responding to larger values of P. For Z2, Z3, and

Z4 one notices a quick initial relaxation of the
value of E, corresponding to a rapid approach of
the two halves of the system to the two phases
which can coexist at the critical point, followed
by a rather linear drift as the boundary between
the two phases shifts until the stable phase over-
takes the whole lattice. At the critical teimper-
ature both phases are stable and the drift is ab-
sent. From Figs. 3(a)-3(c) one can read off the
self-dual points P =0.44, 0.67, and 0.88 for the
models S2, 23, and Z4, respectively. The behavior
of the mixed phase for Z6 is strikingly different.
One notices a convergence to an equilibrium value
of E varying smoothly with P, suggesting a con-
tinous transition.

The model Z, represents the first case where
the three-phase structure is well separated. %e
have tried to determine E as a function of P in
more detail by a series of Monte Carlo simul-
ations where the initial configuration consisted of
layers of ordered and disordered spins. Then
500 iterations were performed for values of P set
equal to 0.5, 0.9, 0.95, 0.98, 1, 1.02, 1.05, 1.1,
1.3, 1.5, 1.55, 1.58, 1.6, 1.62, 1.65, 1.7, and 2.
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FIG. 4, The internal energy as a function of p for Se.
The open circles represent the results of the long runs
described in the text. The other points are from the
thermal cycles.

The increase in (E') —(E&' at P =1 is apparent, but
the limited statistics does not allow quantitative
comparisons.

Diagrams of E versus P have been obtained with
the heat-bath method for the Z„and U(1) models
[with lattice size of 8' for Z„and 5' for U(1)j and
are reproduced in Figs. 5 and 6. The first phase
transition occurs always at P =1, the second moves
to P =16 in Z„and is not present in the explored
rang'e of P in U(1).

For the marginal Z, theory, we used the heat-
bath method on an 8' lattice at P = 1.0, 1.1, and
1.2. At p=1.1 with either a random or an or-
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dered start the system reached equilibrium within
100 iterations. However, at either P =1.0, or
P =1.2 the convergence rate was substantially re-
duced and similar to that seen with Z, at P = 1.0.
Thus the Z, model possesses the three-phase
structure of the higher-order groups.

The values obtained for the critical P' s are plot-
ted versus the order of the group in Fig. V. These
points are obtained using the heat-bath method and
repeatedly adjusting P so that E is maintained in
the middle of the hysteresis cycles. The solid line
represents the curves P, = 0.78/[1 —cos(2v/&)].
The fit suggests that the relevant quantity in de-
termining the position of the low-temperature
phase transition is the magnitude of the gap be-
tween the action of an unexcited plaquette and the
action of a plaquette in its lowest state of ex-
citation.

Finally, we have studied the behavior of the
Wilson loop factor, defined as

FIG. 7. Critical points as a function of symmetry
group,

W= exp(- cA), (4.2)

A being the area enclosed by the loop, whereas in

an ordered, nonconfining phase, 8' should decay
following a perimeter law

W = exp( —c'L), (4.2)

L being the length of the perimeter of the loop. In

Fig. 8 we compare the values of 1 —W for a single
plaquette and a square loop of side 2 in the Z,
model (results obtained with the heat-bath method,

a totally disordered lattice. If one increases the
size of the loop, W always approaches zero ( in the
limit of ~ lattice size), but the modality of the

approach depends on the phase of the system. It
has been argued' that in a confining, disordered
phase, TV decays following an area law

W=(Re(U, „L„," V, „)), (4.1)

where the group elements are associated with links
forming a closed loop in the lattice. For an ele-
mentary square 8" equals 1 —E and ranges in value
between 1, for a totally ordered lattice, and 0, for
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FIG. 8. Square Wilson loops of sides one and two for
the group Z&.
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turn electrodynamics. Indeed, if the approach
could not avoid the confinement of electrons, its
use for any gauge theory would be suspect. We
still have not shown that the low-temperature phase
of this system contains a massless excitation, the
photon. As some evidence for this, we note that a
spin-wave expansion at large P would begin by
approximating

Re, U, &
= cos 8,.&

= 1-& 6,.&- ', 5.2

where the group elements are represented as

The above replacement makes the path integral
Gaussian and solvable, and one finds

1
s- w4p

'

This function is plotted with the results for Z20 in
Fig. 5. Our results for the U(1) model and the Z„
models in the intermediate phase approach this
behavior at large P and thus support the existence
of spin-wave excitations.
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