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We continue the study of gauge field configurations in curved spaces, using the formalism and results of
the preceding paper. A class of static, finite-action, self-dual solutions of SU(2) gauge fields on a Euclidean
section of de Sitter space is presented. The action depends on a continuous parameter. The spin-connection
solution is obtained as a particular case and a certain passage to the limiting case of a flat space is shown to
reproduce the Euclidean Prasad-Sommerfield solution. The significance and possible interest of such
solutions are discussed. The results are then generalized to a non-Einstein but conformally flat space,
including de Sitter space as an Einstein limit. Next, Backlund-type transformations are constructed starting
from self-duality constraints for such curved spaces. These transformations are applied to the above-

mentioned solutions. The last two sections contain remarks on solutions with a background Robinson-
Bertotti metric and on static, axially symmetric solutions, respectively.

I. INTRODUCTION

S =8m'(n —1) (n)1).

The starting point, before continuation, is the
metric

S2 Ndt2 + N-1d~2 + ~2'
where

(1.2)

N= 1 ——r2 (1.2')

In the preceding paper' we studied classical
gauge field configurations in curved spacetimes.
There, among other things, we formulated the
self-duality constraints for SU(2) gauge fields for
static, spherically symmetric metrics (Sec. U of
Ref. 1). The self-dual fields are always con-
sidered on the Euclidean section obtained via
Kruskal-type coordinates (Appendix 8 of Ref. 1).
This leads to a periodic time for such metrics
and hence to the possibility of the existence of
static, finite-action solutions. Moreover, for
Euclidean signature the self-dual gauge fields
have vanishing energy-momentum tensor and
hence do not perturb the metric.

For Einstein spaces (B„„=Kg„,with a constant
X) the spin connections, decomposed into 2&& 2

block-diagonal form, furnish an explicit example
of one self-dual (and one anti-self-dual) SU(2)
field. ' The natural question arises: Can one con-
struct other solutions of the self-duality equations?

In Sec. II we present, for positive-curvature
de Sitter metric, a very simple class of finite-
action, static solutions depending on a continuous
parameter n such that the action is

one obtains, as a limiting case, the flat-space
Euclidean Prasad Sommerfi-eld soluti on (with A,
replacing the scalar field of Ref. 2).

From this point of view the familiar hyperbolic
functions of the Prasad-Sommerfield (PS) solution
are seen as a "memory" of the curved space,
where they emerge naturally (see Sec. II) via the
well-known variable

It will be noticed immediately that for (1.1) the
Pontryagin integral is

, =(o. —1) (o.»).8 (1.4)

Thus, instead of the discrete, integer spectrum
for flat Euclidean space, one has a continuous
one. This aspect is discussed at the end of Sec.
II. There it is shown that, apart from factors due
to integrations over angles and a time period, the
entire contribution to (1.1) arises from the surface
r =(3/A)'~' (which is desingularized in the Kruskal
coordinates). But uh ereas in the asymptotic sur
face integration (over an S~) for flat-space instan-
tons one has a pure gauge form of the A 's [leading
to a Haar integral on SU(Z) j, here one has rather
a point-dyon form as r- (3/A)' '. This is abasic
difference. (Other comments can be found at the
end of Sec. II.)

Evidently, (1.4) does not correspond to distinct

For 0. =2 one recovers immediately the standard
spin-connection solution a's a particular case.
When h 0 and e such'that

n( A/3)'~'- a constant C, say,
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stable vacuums. Also, it is known that for periodic
time the tunneling interpretation (in analogy with
flat-space instantons) is not applicable. We intend
to study in a following paper the possible roles of
our solutions. As an interesting possibility one
should examine whether such a background poten-
tial can furnish a confining force between heavy
quarks. Ad1er' has found that a Euclidean Prasad-
Sommerfield background potential brings about a
partial convergence of color Qux lines. Our solu-
tions must include this result as a limiting case
due to (1.3). So, generalizing to nonzero curvature,
one can study quarks in a background de Sitter
metric (whose "strong microcosmological con-
stant" may induce some baglike features) along
with such a gauge potential which does not perturb
the metric. Such a study, of course, need not be
confined specifically to Adler's type of algebraic
quark statics.

In Sec. IH we generalize our results to a metric
of the form (1.2), where now

dQ =(d8'+sin'8dg') .
(2.1')

where

A x 7'

r 2 2'

Passing to the Euclidean section via the Kruskal-
type coordinates, ' one gets a Euclidean time with
a period

(2.2)

and the domain 0 ~ r &(3/A)'~'.
Our ansatz for the SU(2) gauge field is

A=(ex 1)i[4,VC],
(2.3)

NXl @,

N = (1 —2ar —g'r') . (1.5)

This is no longer an Einstein space and certain
singular features arise at r =0 for at 0 (see Sec.
III). But we show explicitly that it is (for at 0)
still confonnally flat. We are able to generalize

. our solution to include this case, and the result
(1.1) is again obtained. 4

Though we make a departure from Einstein
spaces we retain spherical symmetry and con-
formal flatness. [In fact, given (1.2), (1.5) is
even a necessary condition for the vanishing of
the Weyl tensor. ] Moreover, the fact that one
obtains again (1.1) may indicate that non-Einstein
spaces should not always be neglected in consider-
ing the consequences of metric fluctuations, ' at
least so far as effects on gauge field actions are
concerned.

In Sec. IV we formulate BKcklund-type trans-
formations for self-duality equations in curved
spacetimes given by (1.2') or (1.5). These are
applied to the static solutions mentioned above.
We discuss also the special features that arise
due to our choice of coordinates in formulating the
self -duality equations. '
. Remarks on solutions for the Robinson-Bertotti
metric and a certain approach to static, axially
symmetric solutions are given in Secs. V and VI,
respectively.

II. SELF-DUAL, STATIC de SITTER SOLUTIONS

Let us consider the metric

and X is a function of r only [X(r)]. Let

dX

On the Euclidean section, the self-duality con-
dition can be shown to reduce to'

(2.6)

x=p+f ~

where

1f= = —ln-
Nr 2 N

(2. I)

= l.n — slnh — r ~ ~ (2.8)

Then from (2.6) and (2.8)

p = —e~.A (2.9)

This is satisfied if

r =, i.e., (--f r=tanh
f

r*
N ' '' g3), 3

(2.4)

when

ds'= -Ndt'+N 'dr'+ r'dO,

where

(2.1) sinhn [(A/3)"'r, +P] ) '

where n, P are continuous parameters.

(2.10)
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We will put P =0 (which will be seen to be nec-
essary for a finite action) and hence obtain

1/2
'$ —8g2 e 2X

n sinh [(A/3)"'r„]
sinh [(x(A/3)"'r ]

(2.11)
= 8)/2((x 1) .

Hence the Pontryagin integral

(2.18)

This gives the explicit self-dual form of (2.3).
For

~
(x

~

&1 the action will turn out to be divergent
and the solution is invariant under n -e. So
henceforth we will only consider

(2.12)

(For (x =1 one gets the trivial solution A„=O.) For

(2.13)

one gets the solution corresponding to the spin
connection. '

Again if

(2.19)

For a =2 we thus indeed get back the spin-connec-
tion results. ' But we see that it is possible in this
space to obtain a continuous spectrum.

Let us note the following points. As

for a&1,

1/2 A 1/2
A — (1 —a) 4 = —— ((x —1)r0 3 3 2 r

A-0 and a. — C, a constant,

CreX~
sinhcr )

(2.14)

—-C cothCr

[(e x 1)lt ]
d (2.15)

This is the f rasad Sommerf-ield solution' (»th
the Euclidean A, replacing the scalar field).

The action density can be shown' to be A

p "i(&/3)J2 (n- &)t4iT =e
(2.21)

(2.20)

[The factors (A/3)'/' can be absorbed by a change of
scale. ] It is thus seen that the limit r-(3/A)~'
(r„-~) does not correspond to a pure gauge poten-
tial as does the asymptotic limit for Qat-space
instantons. Here one has rather an "Euclidean
point-dyon" form.

On this limiting form, if we make a gauge trans-
formation given by

1/2 (3/A) ~ 2

S=4)/ 2)/ — —[(e2x 1))( ] dr
A

=Be']—) f,](e'e —C)y,]Idr„. (2.18)

We have

(xs inh [(A/3) "'r„]
sinh [o((A/3)'/2r, ]

and

After the angular and the time integrations [re-
membering (2.2)] the total action is then

we obtain a limiting form with A0 =0, which is
useful, in certain cases, for studying limiting con-
tributions. The resulting, time-dependent A& has
the periodicity of the Euclidean time [T =2)/(3/A)" 2]

only for integer a. Such a simple result holds only
for the limiting form (2.20). The formula (2.18)
fop the gauge-invariant action holds for all n&1.

Since the domains of integration are based on the
criterion of positive definiteness of the metric
expressed in Kruskal coordinates, let us examine

y directly in their terms.
One has, on the Euclidean section,

e "2(A/3)V2g~ ( (]2 + 2) g2 (2.22)

coth

—ecoth a— (2.17)

say,
~ l/2

((A/3) '2t

q +i) (2.23)

As r„-0 (i.e., r-0) the singular terms are seen
to cancel out (due to our choice P =0) and at r -~
there is not divergence due to the condition a&1.

Thus, finally

ds'= —
2 2 [d$'+dq'+(1 —g')'dQ] . (2.24)

A 1+/' '

One obtains
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(A)"' (1—t')

r-O, r, -O, g-1
and as

r-(3/A)"', r,-, 0-0.
Thus one has

(2.2s}

(2.2e)

ns +Py@ 0,
one obtains

y2
ds = —2( d-7 +dp +p dQ)

P

with

e~t(k sinhkrt, —a coshkrt, )
[y(k -a) e "+b(k+a)] (ye"' +6-) '

(3.s)

(3.6)

(2.2V)

Setting & =1 —e, ex and y are seen to be free
from divergence as c-0. If P is made complex,
ex has branch points for noninteger a.

We have pointed out two rather different con-
texts [periodicity of the transformed A~ on
r =(3/A)+' and complexification], where integral
values of e lead to distinguishing features. We
are unable at present to make more precise the
possible significances, if any, of these facts.

Finally, one may compare the result (2.19) to
the result obtained, in a previous work, by singu-
lar transformations of meron solutions. " The sit-
uation here is, however, quite different, since we
are dealing with finite-action solutions. The re-
sult (2.29) depends crucially on the fact that the
integration not only on 8 and Q but also on the time
period factors out trivially reducing the rest to an
integration on a single variable r or r .

III. A GENERALIZATION

This generalizes the formula (4.1) of Ref. 1. Let
us note that for (3.1) [¹—= (d/dr) N],

G', =G" = -+ —,(N —1) = — +3b'
N' 1 4a

e
Ge =G~y= —¹+

I
= — +3b'

4¹ 2(N —1)8= —N + + 2 =12 —+b
~r

(3.8)

Thus, the scalar curvature now diverges at the
origin (for at 0, at r =0). Also, the derivatives of
N with respect to the cartesian components are
not well defined at x =0, though N itself is not
singular at the origin.

However, a solution of the type (2.11) can be
still obtained formally. Generalizing the tech-
niques of Sec. II for ag 0, it can be shown that
corresponding to (2.11}one now should take (in-
stead of P =0) P =to,
where

Let us consider the metric
2 Ndt2 + N 1dy2+ ~2dg

where

N= (1 —2ar —b'r') . . (3.1)

a a
tanh&=

(
2 b2)v2

=
k

and finally obtain

~

~

~

n sinh(krt, —(o)
Ig =ln

sinhn(kr~ —&0) &

'

It is useful to note that (3.1) leads to

(3.9)

(3.10)

For a=0, we get back the de Sitter case (Sec. II),
setting b = (A/3}'~'. For a4 0, we no longer have
an Einstein space and some new, singular, fea-
tures arise. But the property of being conformally

fl.at persists. In fact, defining

dr
t~—= t+ —= t+ x, v'~=—v kp

(3.2)
k —(a2 + b2)1/2

'=1 d&
, sinh'(kr„—e) rk' (3.11)

andasx 0, Q~

The action density is calculated as before. To
obtain the time periodicity let us note that, con-
sidering the case a&0 and b&0,

N= (1 —2ar —b'r') =(r, —br)(r, +br),

and setting

n (k —a}e"+—P(k +a)
y(k —a) e t++5(k+a)

net!t p
erat

where n, P, y, 5 are constants such that

(3.3)

(3.4)

where

with k = (a'+ b') +' and tanhru =a/k Also, .
e2n "+ = &2 +b& ('d

(3.12)

(3.13)
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Hence

Ne 2c-rc —(r br)1+cia(r +br)& -cia

Choosing

(3.14)
XAq =-i

p~
(4.2)

the singularity at r = r,/b is eliminated and the
Kruskal coordinates are then (after passage to
the Euclidean section)

A, Ap =i

e2lhr c (~2+ (2) eclat
1 fn-i~

+i)

Hence the Euclidean t now has a period

2' 2r
(a2+b2)~&2 '

(3.1s}

(3.16)

where

p=y, z, p, =y, z (X„—= B„X),

y =tan20e'~, y =tan&Oe '@,

z = , (r, +i-t), z = , (r„—-it)
~

r„=I' dr

(4.3)

Integrating over the relevant domains of r and t,
one again obtains

S =8m'(n —1) (n & 1}. (3.1V)

[Since the metric is not well behaved at r =0 one
may define the action as the limit 5 0 after inte-
grating down to a lower bound 5. The result (3.1'I)
is obtained. ] Setting a=0 all the results of Sec. II
are obtained immediately.

The case b =0 is best studied directly by starting
with

Here f is the Euclidean time and 8, Q are the
spherical angles. We will restrict ourselves to
real (f, r, 8, Q). Then A. is real and p is the com-
plex conjugate of p for Hermitic A„'s.

(i) P transformations. We now adapt the P trans-
formations of Ref. 11 to spherical coordinates and
generalize them to

y'—
p, /X

' = —q-, , p,/x' = -(1+yy)'q-, ,

(4 4)

N=(1 —2ar) =e 2™c r„= dy'
(3.18}

p-, /X' = —q„p-,/x' = -(1+yy)'ri„,

n sinh(ar*)
sinh(nar*)X =ln (3.19)

With a time period T =2 /az, one again obtains

The calculations are quite simple. One obtains
the solution

y2
x'(1+yy)'—

N

We maintain the convention that g is the complex
conjugate of q.

It can be shown that if (X, p, p) of (4.2) satisfies
the self-duality constraints"

S =8~'(n 1). (3.20)

IV. BACKLUND TRANSFORMATIONS

In this section we wi11 generalize the BKcklund-
type transformations found by Corrigan et al."
to self-dual solutions in curved spacetimes of Sec.
III, namely to a metric (on the Euclidean section):

gVV II —0

gPP II —0

(4.s)

d g2 =+d t2 + + ~d~2 + ~2QQ

then (g, q, -7i) satisfies [for N given by (4.1)] the
same equations. Namely,

where

N=(l —2ar —b'r ) . (4.1) gA~ =-i
I

0
2

(If one chooses to restrict oneself to the de Sitter
case with a =0, the discussion remains formally
unaltered. )

The notation of Ref. 1 will be utilized. In Yang's
A' gauge" we write

(
lA-, =i

l

0
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satisfy the self-duality conditions.
The violation of the reality constraints is ex-

hibited explicitly by the negative sign before g. It
is easily verified that, as for the flat case, (4.6)
represents an SU(1, 1) gauge field with real com-
ponents.

(ii) y transformations. The algebraic y trans-
formation" remains unmodified. In our notations
we define the matrix

establish y. In fact, even the restriction (4.1) on
the explicit form of N need not be invoked for y.

(iii) o. transformations. Combining the P and y
transformations one can now obtain the z trans-
formations" as

(4.V)

(4.16)

q=(aI +l)(cI +d) ',
where a, 5, c,d are diagonal matrices, namely

(4 8)

(a, 0 }

(0 a, i

and so on, satisfying

(4.8)

(iv) Transformations of the static self-dual
solutions. Let us illustrate the effects of these
transformations by starting with the solutions of
Sec. II and III. These solutions are already in the
g gauge ~& ~2

In the A gauge one obtains

It can be shown that (q, q, g) where

(4.10)

e "(1+yy)
(e'"+yy) '

y(e'" —1) y(e'" —1)p= (e'"+yy) ' (e'"+yy) '

(4.16)

again satisfies the self-duality constraints cor-
responding to (4.5). This is perhaps easiest to
see as follows. Let us first consider a simple
inversion,

As a check one may note at this point that the ac-
tion density for (4.16) turns out to be, "including
the factor )g)'~',

p-1 (4.11) 2 [(e"—1) X.].
(1+yy)' (4.17)

In the HermitianK gauge of Yang, "considering the
gauge transformation properties of K'K (which
coincides with K') and its connection with the A-
gauge parameters, one finds that a simple gauge
rotation (w) about the iso 1-axis corresponds to
the inversion (4.11). This is easily seen [in terms
of the r«& parameters of Yang] from such rela-
tions as

Now

8 = S„dy,dy, dr*d t,

where

y, =tan-,'&cosQ, y, =tan —,e sing.
Using the proper limits and the periodicity of t
gives again

(3) —+g2
1+& 3 (qq+g') '

Thus (4.11) is evidently a symmetry.
Now, suhen (4.9) is satisfied, one has

(4.12) S =8m'(n —1) (c.&1)

as it should.
Let us now perform a transformation P on (4.16).

One obtains
q=(aI +t)(cI. +d) '

=ac ' —c '(P + c 'd) 'c '. (4.13)

(p, (T, ~)- ( po, ct. (T, (o'.o'.)"'&) (4.14)

Now along with (4.11), evident symmetries [of
(4.2)] in the 8 gauge such as constant transla-
tions of p, P and dilations such as"

Xg
1 7 (1 +yy)2

(e'"+yy)e " N
(1 + yy)2 r2

(4.18)

where (r'/N) is given by (3.11) [or (2.8) for a=0] .
Let us now perform a particular y transforma-



1904 H. BOUTALEB- JOUTEI, A. CHAKRABARTI, AND A. COMTET 20

tion y, , defined as (with a constant e)

q g )y(q+ie f ) 1

-(rg —ie) j
(o )

4 cd

such that

(4.19)

In fact, one may set, instead of zero,

r7=f(y, z) (f, =-f, =-0)

(4.25)

But this leaves the transformed A„'s unaffected.
They are now

q+ie
07 =q'+f' e+' ' vP+g'+e'

(For e =0 we get a simple inversion. )
Let us now perform another P transformation:

A-„= -i (1ng)-„
r3

(4.26)

tg ~)8 fZ
-&J

such that

+Z 2 2 ~ Q~= —1+y

(4.20)

(4.21)

and the nonzero components of I'» are

j'~-„=i (2 in/) ~

Thus [for N =(1 —2ar —b'r'}]

2 7, . /2N
Py (1 ~ )2 2 1 gs I 2 2

(4.27)

with complex-conjugate relations for K, and K,
and

(4.22)

The transformation (Py, P) restores the reality
conditions.

The action still seems to be divergent, though
we have not fully analyzed the complicated expres-
sions involved. . Instead of attempting it we now

propose to illustrate certain striking features of
our transformations through a very simple but
somewhat artificial example.

Instead of Cartesian coordinates"'" we have
used (4.3) to formulate the self-duality constraints
and the transformations. [Equations (4.16) and

(4.17) show how one can treat well-behaved solu-
tions in these coordinates though y and y as
8 v. ] These coordinates were introduced to ex-
ploit the spherical symmetry of the metrics con-
sidered. Now we will show how this involves not-
able differences as compared to the Cartesian
choice.

Let us start with the trivial case

4N
S~ =2Trg~~ F8 g

=
Y (1 + yy)

(4.29)

Thus even for flat space (N= 1) we obtain a non-
zero F„„(with however, evidently, a divergent
action).

For the "Cartesian choice, " one has instead of
(4.24) (for fiat-space transformations of Ref. 11}
simply

(4.30)

and hence even after P, .

Ap +pv 0 (4.31)

The difference is now manifest. There is no equiv-
alence between (4.28) and (4.31).

For curved spaces with a time period T on the
Euclidean section, (4.29) leads to a total action

(4.32)

(4.28)

Since g = g =0, the reality conditions are not vio-
lated in this Abelian example.

The action density" is, including the factor ~g~'",

p =p=0, X =~, a constant. (4.23)

Evidently,

Ap= 0, &~„——{}.

Let us now apply the transformation P (4.4). We
obtain as a solution

(for r, &1, say). (4.34)

Thus, it still diverges linearly at r = 0. If

N = (r, r)(r, ' r) -(r, a p-ositive constant) (4.33)

(for which the results still hold formally) the point
x =0, is avoided by considering the region

@=@=0,
2

g
' =Xo'(1+ yy)'

(4.24}
But in this region N is negative, so that to start

with t is no longer a timelike Killing vector. We
will not further consider such a possibility here,
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though in case 2 of Sec. V a similar change of sign
is present.

To compare with (4.22}, we note that the se-
quence of transformations (Py, P), where y, is a
pure inversion, leads to

Z =K=0,
(4.35)

e =Xof

doubling the, action density. Such a sequence can
be repeated and in fact a more general multipli-
cative factor is possible trivially due to the Abel-
ian nature of the solution. Replacing y, by y, [see
(4.19)] does not change the action density.

As in (2.14) it would probably be interesting to
consider the PS limit after the transformation
(Py, P), i.e., after arriving at (4.21) and (4.22).
But a comparison with such a work as that of
Lohe" (where the scalar field replaces the Eucli-
dean A, ) is not easy. We have already emphasized
nontrivial differences between "Cartesian" and
"spherical" formulations.

of Ref. 1].
In terms of the variable x, directly defining

one has

x = cothx

X=(x' 1) =(slnhx, )-'.

Defining

(x+1

(5.6)

(5.7)

(5.6)

(n+d )"'

and setting

(5.10)

removes the singularity at x= l.
Continuing to t it, $-—i), Q-- iQ [-see (6.19)

of Ref. 1], one has

V. REMARKS ON THE ROBINSON-BERTOTTI METRIC ds'= —q' (d('+dt's)+dQ)
1 +x

(5.11)

/x/&1 and ix[&1,

where

(5.1)

ds'=Q'[-(x'-1)dt'+(x' —1) 'dx'+dQ]. (5.2)

For these reasons we briefly state certain re-
sults.

Case I (]x~ &1). Setting

(5.3)

we have from (5.1)

Certain special features of the BB metric were
already noted in Sec. VI of Ref. 1 (where other
references are quoted). Since again we have con-
formal flatness, solutions similar to those of the
preceding sections can be formally written down.
But firstly, conformal equivalence is not the whole

story (the domains of the coordinates in each
case finally determining the values of the invari-
ants, such as the action). Besides we would like
to compare the somewhat different situations in
the two regions

with a period 2m for t. With an ansatz of the form
(2.3) (Ref. 17) one is led again to [with g =e'd,

d =(d/dx*)X=g~ in Ref. 17]

y„~=(sinhx ) '(e'x -1)
and hence to

(5.12)

e sinhx~
8

sinhex~

For 1&x&~ one again obtains

S =Bm'(a —1) (a&1) .

(5.13)

(5.14)

(5.16)

Including the domain -1—5&x&-~ (6&0) and taking
the limit 5 0 for the action integral, the expres-
sion (5.14} is simply doubled.

Case 2 (~x~ &1). Here one can write

ds'=Q [(1—x')dt' —(1-x') 'dx +dfl] . (5.15)

Defining

ds'=, [-(1 r')dt'+(1-r-') 'dr'+ r dQ]y'

(5.4)

x=tailhx, N=(1-x') =(coshx ) '. (5.17)

As was already noted in Ref. 1, for t--it, Q- iQ-
ds'=Q' [(1-x')dt'+(1-x') 'dr' —dQ)] (5.18)

with a corresponding expression for the Maxwell
field. [Compare this to (6.1)-(6.4) of Ref. 1.]

Comparing (5.4) and (2.1), the relation to the
de Sitter metric is displayed in the most explicit
fashion and the necessary results can be deduced
in this way [including a formula of the type of (4.1)

1 +x=Q'
4

(dq'+dg') —dt's (5.19)

in terms of Kruskal-type coordinates. "
It can be shown that due to the signs (++ —-) in

(5.19) and the absence of a factor x' before dQ,
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the self-duality constraints (5.4) of Ref. 1 now be-
come (with an evident generalization of the ansatz
of Ref. 17)

(a —db) =N(b'+ca),

(5 + da) = —N(a'- cb),

(c -d') = -(a'+ b' —1) .
(5.20)

(5.20')

We set

5=8~ and d =-Ãy'=-g (5.21)

where N and x„are given by (5.17). One is led to
the equation

=-(coshx ) '(e'~ —1)

with the solution

(5.22)

(Note the change of sign in the first two equations
arid the absence of a factor 1jr' in the third. )

We will thus have for our pa, rticular case (a=c =0
and vanishing time derivatives}

particular interest in curved spacetimes. So,
maintaining a close analogy with Witten's work,
we will briefly note certain features which arise
for our generalization (4.5) of Yang's equations,
when one looks for axially symmetric solutions.

We will a.gain assume [as in (2.1)]
ds' = -Kdt'+ N 'dz'+ x'dQ (6.1)

but we will not restrict ourselves to the de Sitter
case [(2.1') or its generalization (4.1)]. In fact,
eventually, as an illustrat;ion, we will consider the
Schwarzschild case. We will assume in what fol-
lows the continuation of (2.1) to the Euclidean sec-
tion, as discussed before.

Let us note to start with that in (4.5) if we set

(6.2)

with a constant n and assume that X and g depend
on z~and 8 only, the equations reduce to

9 g X 9 . Bo'
,+, . sin8

N Br r sin8 98 98

2 Bo' B A. 2 B(r BX

N Br„sr„r' Be B8
o. cosh x„)eX—
cosllQx~

(5.2s)

As a check we have verified directly the second-
order equations of motion.

It can be shown that for (0& x&1) the action is
again

9 X A. 8 . 8A. 1 M.
2+ 2 sin0

Q y'g2 y'~ sin8 c}8 88 y ~
9tg

S = 8m2(o, —1) (o, & 1),
provided it is defined as

(5.24)

(5.25)

Corresponding to Witten's Eq. (8), setting

1
cosh2tIt+cosP sinh2$

and

(6.5)

(Note the sign. ) This is again an effect of the sig-
nature (++ —-) of (5.18) and (5.19). Including the
domain (0&x&-I}again doubles the action. It may
be verified directly that T„„is again zero for self-
dual solutions for this signature.

It should also be remarked that the spin-connec-
tion solution [(6.12) of Ref. 1 and the ensuing dis-
cussion] is not included in the class of solutions
obtained here. This is a notable difference as
compared to the de Sitter case. Even for ~x~ &1
the effect of the extra conformal factor in (5.4) thus
manifests itself.

VI. REMARKS ON STATIC, AXIALLY SYMMETRY
SOLUTIONS

-sinP sinh2$
0' =

cosh2$+cosP sinh2( '

Eqs. (6.S) and (6.4) reduce to a single equation,
namely

'~, +, . sine =0.
N 8 x~' r' sin8 88 86)

(In fact, one may set P =0. A nonzero P presum-
ably represents the effect of a gauge transforma-
tion. Thus, this discussion will be restricted to
effectively Abelian solutions. )

Setting

(6.7)

Witten has drawn attention" to the relation be-
tween static, axially symmetric solutions for SU(2)
gauge fields in flat Euclidean space and static,
axially symmetric Einstein metrics.

In our opinion, static, self-dual solutions are of

we obtain

N ' —l l+1,= 0.

As an illustration, the choice

(6.8)
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N= 1- =- 1-— Schwarzschild 6.9
2M )
r

& p

leads to

pie explicit- solution is a divergent one, but only
logarithmically so.

We intend to explore elsewhere more adequately
the possibilities of axial symmetry.

d'f dfp(1-p), ——I(I+1)f=0.
dp dp

(6.10)
VII. DISCUSSION

For l &1 the two independent solutions are, in
terms of hypergeometric functions,

Setting ri = 2 in (2.20), i.e. , for the spin-connec-
tion solution, we obtain that as r-(3/A)

f, = p
' F [l + 2, I, 2I + 2, 1/p] (6.11)

271
Ao — 40

(e.12)f, = p'F [-I+1,1 +2, 3, p] .
The polynomial-type solution f is evidently not
suitable for the exterior region.

On the other hand, we note that formally setting
I =1. The series f, can easily be summed and we
will now examine this relatively simple case as
an illustration. One obtains

A--f [4,V4],

(7.1)

where 7.' is the time period.
This feature is more general. We have studied

in detail in Ref. 8 (see also Appendix Bof Ref. 1) the
case

1 lf =-p'ln 1 ——-p ——,1
p

(e.i3) (V.2)

and this can be directly verified to be a solution.
The action density [Eq. (5.37) of Ref. 1] becomes

for (6.5), independently of P,

For M =0 we get (7.1). For A=O, the Schwarzs-
child case, . we again get, as r 2M, for A& ob-
tained through the spin connections,

9'g 8'( 8'( 8 (
B$ BZ Bg BZ Bg Bg BZBZ

(6.14) A, C, A -1[4,V4] (T=8vM). (V.3)

S=-' S. ~ 2
dod9' dt

sine d&
~ cos40 2

(6.15)

For /=1,

4 0 1$„=16cos'—

„~((d,)' (
1 )*

+ t:os'e (1 ——)p'I
"

(1 ——
)

'
I).
(6.16)

The integrations over the (periodic) time and 6

and g can be performed easily and involve no di-
vergence. The problem is thus reduced finally to
the two radial integrals

The total action is (transforming to the coordinates
t, r, e, y)

For the general case (7.2) there are two horizons'
and the Pontryagin index is noninteger. An asso-
ciated feature is that (V.3) (with the appropriate T)
holds at the horizon regularized by the choice of
Kruskal-type coordinates but not at the other.
Hence passing to the temporal gauge (A, =0) in a
way analogous to (2.21) one cannot have A„simul-
taneously periodic on both horizons. The other
ease with integral index (9M'A=i) is precisely the
one where the two horizons coincide. The absence
of an extra singular horizon was taken in Ref. 8 as
a "quantization condition" for the index. Here we
see that periodicity (for A, =0) at each surface
present might also have been taken as an equiv-
alent condition. In (2.21) we found an analogous
condition in a different situation with an extra pa-
rameter (generalizing the spin-connection solution)
instead of an extra singular horizon. But we repeat
that one obtains such a criterion only by restricting
ones attention to the surface r =(3/A)'I'. To obtain
A, =0 throughout one has to replace (2.21) by

1 1 dp (e.iv)
U =e&xg'@ (7.4)

I, = p' — 1 —— ' dp. (6.18)

It can be shown that I, converges while I, diverges
logarithmically at the bound p =1. Thus, our sim-

The transformed A„'s cannot in any case be simul-
taneously periodic throughout.

Finally, we would like to recapitulate and re-
emphasize briefly certain points concerning the
interest of solutions in de Sitter space. Certain
exchanges of views have persuaded us that, in do-
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ing so, we may not be uselessly belaboring the
obvious. (See also Ref. 4.) One may ask, since
the conformal invariance of the gauge fields as-
sure a corresponding solution in flat space, why
not work there directly'P Without going into detail
we note that a transformation such as (4.1) of Ref.
1 permits us to convert (2.11) to the corresponding
flat-space solution. (Only then the conformal prop-
erties of gauge fields will assure flat-space self-
duality. ) This involves the substitution (t, r) (7, p)
say, where in particular

J

Q+d T+p Q —c 7-p

where ad+bc40; a=b=c=d =1 for example.
Substituting (7.5) in (2.11)'one sees that due to

formal complications alone such a solution could
hardly have been directly discovered. in flat space.

The relevant domains and boundary conditions in
flat space (necessary to ensure finite action) would
also seem complicated and arbitrary unless one
refers back to de Sitter spice. Here the domains
of t and x are determined by one single, simple
criterion, namely the positive definiteness of the
metric in the continued Kruskal coordinates.

The point that, instead of complicating things,
de Sitter space can, in certain cases, lead to a
gain in formal simplicity was already, previously
made (Sec. IV of Ref. 1) with respect to meron-
type solutions. Here the reason for working in
de Sitter space is much deeper. As stated in the
introduction one may hope to give these finite-
action self-dual solutions a physical relevance in
the context of de Sitter bag models. To what ex-
tent such a program can finally be carried out, of
course, remains to be seen.
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