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We study classical solutions of SU(2) Yang-Mills field equations, with or without coupled scalar fields, in
curved spacetimes. %'e consider, essentially, only static, spherically symmetric background metrics, for both
Lorentz and Euclidean signatures. Section I presents the motivation for searching such solutions. In Sec. II,
the equations of motion for a class of Ansatze and several static solutions are given, namely a class of scalar
fields compatible with a point monopole and particular solutions, for gauge fields alone, in background
Schwarzschild and de Sitter metrics, respectively. Some interesting properties are discussed. In Sec. III a
finite-action, Prasad-Sommerfield-type solution is constructed for the O(4, 1) de Sitter metric. In Sec. IV it is
shown how one single, simple de Sitter solution can lead to various well-known flat-space solutions, and to
new ones, through a systematic exploitation of conformal equivalence. Self-duality constraints are
formulated explicitly in Sec. V for a static spherically symmetric metric. Certain results for the Robinson-
Bertotti metric are given in Sec. VI.

I. INTRODUCTION

We study, in the following sections, classical
solutions of Yang-Mills (YM) field equations, with
and without coupled scalars, in curved spacetimes.
The motivations for searching such solutions are
as follows.

'The b'asic importance of the topological proper-
ties of the classical solutions of gauge field equa-
tions is now generally recognized. ' The gravita-
tional field, irrespective of the strength of its
coupling constant, can qualitatively modify the
spacetime topology in quite nontrivial fashions.
This has, naturally, important consequences, con-
cerning both the possible forms and the physical
interpretation of the gauge field solutions in such
spacetimes. These should be explored system-
atically. Not only should one consider solutions of
the closed system (including both the gravitational
and YM fields), but also the wider class of solu-
tions for gauge fields for given backgroundmetrics.
These can as a first approximation incorpor-
ate important nonperturbative features.

In the path-integral formalism, so mell suited to
gauge fields, when gravitational effects and per-
turbations of the metric are to be included, one can
look for classical solutions in certain previleged
classes of background metrics in searching for
possible extrema, about which fluctuations are then
to be studied.

'There is another fascinating aspect. Certain
models of hadronic structures postulate strong
gravitational forces inside extended hadrons. ' '
'These are treated, in certain respects, as "mi-
crouniverses" with, usually, a "strong microcos-
mological constant. " Though no detailed, realistic

model is available, this is again an intriguing possi-
bility worth exploring. One may, as a first step,
assume that certain nonperturbative, nonlinear
features can be simulated, to a reasonable extent,
by a background metric, inducing, for example, a
baglike structure. Then if the model involves
gauge fields, such as gluonic ones, as a next step
one can look for classical solutions in such a me-
tric.

Thus, from different points of view, we are led
to the study of classical solutions of YM field equa-
tions for given metrics.

Though in certain cases (self-dual solutions for
Euclidean signature and one particular point-mono-
pole solution being examples) we obtain solutions
of the combined system of the YM and the gravita-
tional fields, we will not impose this as a neces-
sary condition. We will solve only the matter field
equations for given background metrics.

In this paper we wil(I consider only static spher-
ically symmetric metrics and only SU(2) gauge
fields and scalar isotriplets.

Certain considerations can be generalized to
other metrics and gauge groups. We intend to pur-
sue these topics elsewhere. But, within these re-
strictions, we obtain here, for these relatively
simple but important cases, a variety of solutions
with interesting properties.

Let us now summarize our notations and conven-
tions. The Hermitian SU(2) gauge field components
are

0 =0, 1, 2, 3

@=1 2 3

and the fiel'd tensor is, with a normalized coupling
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constant,

E„„(x)= 6 „A„(x)- s„A„(x)+i [A„(x),A„(x)].(1.2)

(Changing the coupling constant from 1 to g„, the
solutions change simply by a factor g„' and the
action by one of g, '.) As scalar field we consider
always an isotriplet

4 (x) =e'(x) 2, (1.3)

the covariant derivatives being defined by

D„e(x)=s„e( )x +i[A„(x),e(x)] . (1.4)

The Lagrangian density is, with a scalar potential
V(4) and a metric g„„ofdeterminant g,

g = Ig( /'(2Tr[=,'E„„Ev" 2 (D~C, )(Du@)] V(4, )

(1.5)

II. EQUATIONS OF MOTION AND STATIC SOLUTIONS

Let the background metrics be given by.

ds'=(v)Ndt'+N 'dr'+ r dA (cm =d8 +sin'gdp'),

where

2m (+q') + P'"1
~ ': 3" ~ (2.2)

w, =o,
A= [K(r, t) —1]i[C,R],

(2.3)

the upper and lower signs corresponding to Lorentz
and Euclidean signatures, respectively.

Consider now the Lagrangian (1.5) and the ansatz

(g(
' 'D ((g(' 'D"4)- i =0.6V

64

(1.6)

We have written the contribution of the potential
symbolically as 5V/64 and here

with signature (-+++ ). The equations of motion,
for the matter fields only, which we will try to
solve are thus

Igi "'D (Igl'"E"")- [C, D"C]=o,

and

H(r, t)-
.r

T X4 -=—
2 r 2

(2.4)

( (g (
I/3El v ) S ( ( g (

1/2E) v )

+ (g('/'i [A„,E""]. (1.7)

[C' should not be identified with the scalar field
though the ansatz (2.3) gives a simple proportion-
ality. ] The equations of motion (1.6) now reduce to

(K)N IC+NK +N'll'= [IC(K —I)+ICN ) (
—= !C, —:IC, =—K, =K'),

, II' 2 2 5V
(+)I(/ 'H+ t(H" +r¹—= —HK + r.'r =r '

54

(2 5)

(2.6)

r~= dr S

leads to the equations

r'
(K,„,+ K„)=K(K' I)+KH',-

(2 7)

(2.8)

Though we will study classical solutions to start
with, we have included a simple time dependence
in the ansatz for eventual study of more general
cases.

The variable transformation

is well known that for

=0, K=0, H/r =c,5V (2.10)

=0, Z=O,5V

one obtains the point-monopole solution compatible
with the Reissner-Nordstrom metric.

For (2.10) one has a solution for the total (grav-
ity, YM) system. But for a given background me-
tric (2.1) we note briefly the following more gener
al possibility, namely

(H„~„v,+ H„)=2K'H+ rl)/'H + r' (2.9)

Let us now present certain static solutions. In this
section we will continue to use Eqs. (2.5) and (2.6)
directly. Equations (2.8) and (2.9) will be useful
later on.

(i) Point monopole and a class of scalar field. It

H= dr=c +c (2.11)

where c, and c, are constants. As an example we
note that for
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2M Q +P
r' E = (0.24) . (2.19)

o. =Mz —P —Q, (2:.12)

Note that though K —1 and A& -0 as M -0, the in-
tegral behaves as M '. For a coupling constant
g, the energy is of course

1 r-M
tanh ' for n&0

, Mg„
(2.20)

dr 1 ~ r-M
Nr 2 ~ 1/2 ~ 1/2

for n=0. (2.13)
1

r-M
For completeness we add that for flat space one

has, in addition, the well-known finite-energy
Prasad-Sommerfield solution. ' We will come back
to it from a different point of view in Sec. III.

(ii) Schwarz sebi id solutions. Now

N= 1—

and for

&0 =0, &=0

Considered as a monopole-type solution in the
exterior region it is seen that (for 2.16) K starts
from a negative value at r = 2M and vanishes for

r =2MP, (2.21)

where the field is exactly that of a point monopole.
Then K changes sign and (K —1) (and hence A)-0 as r -~. As the Schwarzchild parameter M in-
creases the energy E decreases and the range
(2.21) becomes greater.

It is, however, quite interesting to consider the
solution on the Euclidean section (Appendix B).

One then has a periodic time with a period

(2.22)

A = [K(r)- I]i [C, ve]

we have found the solutions

where

(2.14)

(2.15)

S = 8wME = 32w' c(P) . (2.23)

Let us now compare this with the self-dual and
anti-self-dual solutions which are, respectively
[Appendix B]

and the full domain of the Kruskal coordinates cor-
respond to 2M& r & ~. Thus, one has a static sol-
ution with a finite action (Euclidean):

(2.16)

(A change of sign for K corresponds to a simple
global gauge transformation by U=e "~.) For

P = —,'(3+ W3)

A = (N'~' —1)i [C, V4],

with

(2.24)

one obtains a finite energy static solution in the
external region (2M & r & ~), the static energy
(mass) being given by, z integrating (-To),

1E =4w dr NK" + (K' —1)'
2hf

2r' (2.17)

(2.18)

where for (2.16) c(p) is a finite but lengthy expres-
sion in P.

Approximately, ont: has

the integrand being now nonsingular at r =2M. For
both solutions K is regular in the interior region
r & 2M. But K2 does not-1 as r-0 and (2.17) thus
also has a divergence at the essential Schwarzchild
singularity. 'The integral can be evaluated exactly
and one gets

2MN=1- r
These have, respectively, the Pontryagin number

I'„=+1

and action

S=8g2 (2.25)

The (non-self-dual) solution (2.15) [with (2.16)]
has

Fo, =0 (i=1,2, 3)-
and evidently I'„=0. Its action is a little less than
8m2.

'Thus, it has certain features one would expect of
an instanton- anti-instanton bound state, the "bind-
ing" being strong enough to lower the action even
below 8w'. It is as if the Ao's of (2.24) [and the
P,'s of (2.25)] are simp'iy added so as to cancel,
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and

Nl/2
r

MK- I ——(8P —6). (2.26)

whereas H't2 in (2.24) is altered due to a binding
interaction. As a comparison one may note that as

various solutions. Here also similar techniques
can naturally be employed. But since that leads to
flat-space solutions with actions not only complex
but a1so divergent, we merely mention one partic-
ularly simple result.

Starting from (2.30) and (2.31) and using suitable
variable transformations one can show' that for the
Minkowski and the flat Euclidean cases, respec-
tively, where

ds' = (+dt' +dr'+ r md'), (2.32)

ey" + IK = „(a,P constants)r"+1

works for the Schwarzchild case, i.e.. for

2MN= I — with n =-Ir

(2.27)

(2.28)

in (2.27) and al'so for the de Sitter case, i.e., for

The situation can be compared to that found by
Kerner' for excited levels of flat-space Prasad-
Sommerfield solutions. These higher-energy solu-
tions behave as if a monopole-antimonopole pair is
being added at each step to a monopole. But the
energy (at least in the numerical method used
there) is a little more than the sum of those of the
components.

In flat Euclidean space one has only self-dual or
anti-self-dual finite-action solutions, and to prove
rigorously whether finite-action non-self-dual sol-
utions exist or not seems to be a difficult problem.
Here the continuation via the Kruskal coordinates
(Appen'dix 8) leads to a (finite-action, non-self-
dual) solution resembling a bound state.

(iii) Complex de Sitter solutions. In the preced-
ing case one found a simple interesting homograph-
ic solution. It is not difficult to verify (to adopt a
more unified viewpoint) that a simple ansatz

one has the solutions

ar2+t2
K (2.33)

Here a and b are given by (2.31).

r'(ff„„-X„)=If(Z'- I)+ZH',

r'(H„„-H„) =2HZ'.
(3.1)

They search for a variable u(r, t) such that, as-
suming

Z(r, t)=Z(u), H(r, t)=H(u),

r'(Z„- Z„)=u'Z„„,

r (H~ —H~~) =u Hgl.

Their solution is, in the final form,

(3.2)

III. A FINITE-ACTION PRASAD-SOMMERFIELD-
TYPE SOLUTION FOR THE DE SITTER METRIC

Mecklenburg and P'Brien" have given a diver-
gent time-dependent generalization of the Prasad-
Sommerfield (PS) solution' for the Minkowski me-
tric. The flat-space equations to be solved are,
for the ansatz (2.3),

N=1+ —r with n=2.A

3
(2.29) (3.3)

For the latter case, however, we get a complex
solution, namely

where

ar'+ (3/A)
br'+(3/A) ' (2.30)

a = m &3, b =- ~7 (2 +i~ (2.31)

for each sign in (2.29).
We give this complex solution for comparison

with the Schwarzchild case. A parallel calculation
of the energy and the Euclidean action for the in-
terior region [» & (3/A)' '] for the O(4, 1) case give
finite but, of course, complex values. In Secs.
III and IV w'e will exploit the conformal equivalence
of the de Sitter metric with the flat one to construct

and

H =Cucoth(Cu) —1
Cu

slnh Cu
(3.4)

where C is the scale parameter. Their u is singu-
lar on the light cone and the action is divergent
even on the Euclidean- section, though as

t--it, (r'- t')-(r'+t2).

We will show that a similar technique leads to a
finite-action solution for the O(4, 1) de Sitter case.
This can be done by systematically exploiting its
conformal equivalence with flat space.

In fact, from this point of view, the flat-space
transformation (3.3) can be completed as follows.
Let
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r
r2 t2 y r2 g2 (3.5)

when (for this transformation which sends the light
cone to infinity)

existence of a certain type of finite-action gauge
and scalar field configuration in such a simple,
closed (macro or micro) universe. Let

ds2 = ( dt-2+ dr'+ r'dQ)

=(u' —v') '(-dv'+du'+ u'did). (3.6)

r = tanhp and—

[in fact, p = (A/3)' 'r* = (A/3)' ' fdr/N] when

(3.9)

Thus

r (K„,—K„)=u'(K„„-K„„) (3.7}
ds' = —(coshp) '[-dr'+d p'+sinh'pdA]. (3.10)2 3

A

and so on. Supposing now that K and II do not de-
pend on v, one gets the previous result.

Let us now consider analogous transformations
for the de Sitter line element

We will now introduce a scalar potential

V(C ) = —(2TrC')
3

(3.11)

A
1 ——r2 dt2

3

which is exactly what is necessary to ensure con-
formal invariance. '2 The equations of motion (2.8)
and (2.9) now reduce to

+ 1-—r' 'dr'+ r'dQ.
3

(3.8)

We consider the region within the horizon [at r
= (3/A)'~'], i.e., we will study the possibility of the

(sinhp)'(K&& K„-)= K(K' —1)+ KH',

(sinhp) '(H'pp- H„)= 2HK' .
The action

(3.12)

~ ~- ~ rq2
S=-4m - drdt NK"-E 'K'+2'' r

&N 'H'+ -(K' —1)'+ K'H'+ —H' [0 &—r & (A/3)'~', -~ & t &+]
2 3

is now transformed to, with 0 ~ p & ~, -~ & ~ & ~

(3.13)

S=-4m dpdv K -K + ~ II ' —II + . 2 2 K —1 +K ——,
' II sinhpcoshp . 3.14

$, =tanh( ,'7~), — (3.15}

where $, =) + q, T, =7 ap. The metric is now

The last term, a derivative, does not contribute
to the equations of motion. It may be verified that
the rest yields directly (3.12).

We now introduce a second transformation. The
intermediate step (3.9), (3.12) will be useful later
on. That is why we are proceeding in two stages.

Let

0&@&1, -1&)&1, (3.19)

S=-4n' d K -K( + 2 II —EI~

+ —[(K' —1)'+K'K']I . (3.20)

I
it as a time-dependent solution in (r, t). But the
action is evaluated easily in terms of ()7, $). The
action now is transformed to, with

ds' =—(,), (-dg +drt'+ q'dQ).
A I+q' —g' '

Equations (3.12) now become

q (Kqq —Kt() =K(K —1)+KH

g (Hqq Hqq) 2HK'
Hence we have a PS-type solution

(3.16)

(3.17)

[The action has no singularity for our solution,
even at the limit corresponding to r = (3/A)'~'. ] In
transforming we have dropped in (3.14) the term

8—(H/sinhp coshp)
ep

Not only does it not contribute to the equations of
motion, but it can also easily be seen to vanish
both for

K = —. , H = (Art cothAq —1),A.g
sinhAq ' (3.18)

where A. is a scale parameter. We can consider

)7-0 (p-0) and q -1 (p-~).
One can now integrate (3.20) and one gets, the g

integration giving simply a factor of 2,
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2A.' cosh'. 3A.

(sinhX)' (sinhX)' (3.21)

'The integrand is formally the same as for the flat-
space PS solution. The domains of the variables,
being different, lead to (3.21).

We have presented the result for I orentz signa-
ture. But as a particular prescription for going
over to Euclidean signature, one may note, from
(3.15), that ]--i $ corresponds simply to t--it.
The Euclidean action is positive.

IV. MERONS AND RELATED FLAT-SPACE
SOLUTIONS VIA THE DE SITTER METRIC

We continue the theme of Sec. QI by exploiting,
now in the opposite sense, the conformel equival-
ence properties.

The role of the conformal transformations in the
construction of meron solutions has, of course,
been duly recognized and utilized from the very be-
ginriing by its authors. " Our aim is to show how,
starting fromm one very simple de Sitter solution
(which is immediately evident from the equations
of motion for certain coordinates), a number of
important flat-space solutions can be derived
formally. This is done quite systematically by in-
troducing a general form of transformation, lead-
ing to a line element explicitly conformally equiva-
lent to a flat one. One obtains a corresponding
transformed solution which, due to the invariance
properties of gauge fields, is formally also a Qat-
space solution.

'

Varying the parameters of the
transformation now yields different well-known
cases and also leads to a new solubon.

%'e proceed as follows. %Ye start again from
(3.8), maintain (3.9), (3.10), but generalize (3.15)
to

(4.1)

For a =b = c =d= 1 we get back (3.15). Indeed, par-
ticular cases of transformations we mill use are
familiar in the study of conformal infinity. But the
generalized form is useful for our purpose.

Now,

ds =—
i (-d] + dg + r) cu),3 &tanhp

where (considering, for example the case bg0,
and normalizing to b =1)

(4.2)

= (ad+ c)[cd(rP —g')tanhp

+(ad- c)(+a] '. (4.3)

We consider now gauge fields only (C =0) and start
again with the ansatz

AD=0, A=(IC- 1)i[4,V4] ~ (4.4)

Equation (3.12)

(sinhp)'(fc» -Z„)= fc(Z' —1)

is transformed as before [under (4.1)] to

q'(K„„-Z«) = X(Z' —1) .
Now (4.5) has evidently the solution

X =+eoshp.

The transformed solution (for b =1) is

(4.5)

(4.6)

(4.V)

-1 rX=+
2 2 g)(2 =ICOS tan+t J t (4.9)

These are, respectively, the meron and antimeron
solutions in the gauge A, =0 or the "neutral
gauge. '""" 'The action is well known to be 1'og-
arithmically divergent.

Case (ii)—finite-action hfinkou!ski solution. For
imaginary c and d and real a such that

a ~ g
C

we have a real K given by

(4.10)

(4.11)

These can be shown to be gauge equivalent to fin-
ite-action Minkowski solution found in Ref. 13.

Case (iii)—meron and antimeron The rel.ated
well-known meron-antimeron solution is, of
course, obtained from (4.11) on

t--it (Euclidean case).
Now

(4.12)

=icos tan ' —tan ' (4.13)

We are again in the neutral (A =0) gauge. The
action is again logarithmically divergent. [Start-

a+(ad- c)g+ cd(vj —]')
{[( g)2 c2 2] [(I + d() 2 d2q2]}l/2

We are thus led (ignoring the conformal factor)
formally to the flat-space solution which is, with
a change of notation, for

ds' =(-dt'+dr'+ r dQ),

a+(ad- c)t+ cd(r' —t')
{[(a-ct)' c'r-'][1+dt)' —d'r'7}'~' '

hey. can of course be verified directly. The pa-
rameters a, c, d can now be varied to extract vari-
ous interesting cases.

Case (i)—meron or antimeron. For a=d=0, c
=+I, and t- it (Euc-lidean case),
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ing with b =0 in (4.1) one can again arrive at this
solution in a similar fashion. We will not enumer-
ate explicitly all the alternative possibilities. ]

Case (iv) —solution singular on a spherical sur
face. For

a 1—= —= A. , all real
C

the transformations involved can change the struc-
ture and locations of singularities. Similarly, in
the context of invariance under general variable
transformations' the multimeron solutions should
be considered to be effectively the same as a single
meron one.

Finally, we note that had we started, instead of
(3.8), from the O(3, 2) line element

and

t- -it (Euclidean case)

one finally obtains for (xt0),

ds = — 1+ —r dt2= A

3

1
+ 3. + —y 2 dy 2 + y 2d Q

3
(4.16)

(4.14)

This is singular for

t=o, r= (&(&0,

which represents a two-sphere in the space coor-
dinates.

We have attempted elsewhere" to initiate the ex-
plicit construction of a hierarchy of divergent solu-
tions. Here we have obtained another remarkable
example via the de Sitter solutions (4.7). The
Euclidean baglike aspect is attractive, but the ac-
tion is strongly divergent.

For completeness we note the following points.
Suitably combining the two transformations that
lead from (4.7) to (4.9) and (4.13) one obtains the
transformation that converts a meron solution to a
meron-antimeron pair (by bringing in the anii-
meron from infinity). The result can be summar-
ized as follows.

Starting with

and proceeded analogously, it would not have been
necessary to pass via imaginary parameters to
obtain [as in (4.9)-(4.13)] the meron-antimeron
solutions. Instead of repeating the analogous steps,
we give in the next subsection a more general class
of de Sitter solutions which will be related to the
finite-action Minkowski solutions constructed by
using the "O(4) x O(2)" formalism. ""

A class of nonstatic de Sitter solutions Star. ting
from (4.18) and setting

~ = tanp, (4.19)

we get

(sinp)'(Z„IC„) = Z(Z' -1) . -
Consider the solution

(4.21)

ds' = —,[-d r+d p+(si pn)'dG], (4.20)
A cosp

and for the ansatz (4.4)

ds'=(dt'+ dr'+ r'dn). K =cosp (4.22)
and setting

»x x' —(x' + K')
x' + (r - x)' ' x' + (& - x)' '

one gets

4x'ds' =. . . , ,], (df'+ dX + X'dQ)
)x +«-~~

(4.15)

(4.16)

and

$ =e' cosp, q =e'sinp (4.23)

i) . -
The gauge field

which leads, for example, to the meron solution
(4.9) through

K=cos Can '—
= cos tan ' —tan ' (4.17)

A = (cosp —1)i [4, VC]

after a gauge transformation by

U=e'~~

(4.24)

(4.25)
A second application of such a transformation
(X, t -X, g, say) gives an antimeron only by sending
the meron off to infinity. Thus, the cycle closes.

We see that in the context of conformal equival-
ence classes of metrics the meron and meron-anti-
meron. solutions become effectively the same, since

takes the form

A =0,
A = sinp cospVC —sin pi [4, V4] + p4 .

(4.26)

his form of the solution can be simply generalized
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to give a 7-dependent ansatz, namely

Ao=Q,

(4.27)

A =f(r)(cospsinpVC —sin'pi[C, VC]+p4] .
'The equations of motion reduce to

(4.28)

'This equation can be completely solved in terms of
elliptic functions. ~6'7 I

As compared to the O(4)XO(2) formalism, "'"
though the ansatz (4.27) is, in a certain sense,
slightly less simple, as a compensating feature,
here we do not need the introduction. of extra coor-
dinates and subsequent projections.

Solutions similarly related to more general Min-
kowski solutions" "can also be obtained in this
fashion. But the formalism becomes less simple
and we will not discuss them here. Our purpose
was to show how simply and systematically many
well-known results can be obtained via the de
Sitter space, while new results, such as (3.21) and
(4.14), also emerge. We remind the reader that
the famous BPST xnstanton solution &s aga&n ob-
tained directly from the spin connections of (3.16)
after $- t$ and us-ing the formulas given in Ap-
pendix 8 (see, for example, Wilczek").

Instead of the de Sitter metric one can also start
from the more general Robertson-Walker line ele-
ment

ds'= d7'+ q'-(r) o, + p'dn
I (x=0, +1).1 —Xp' j

(4.29)

ds =Ndh + N 'dr + & d ~ (5.1)

The relevant domains of r and t are to be deter-
mined for each case separately. We will formulate
the equations directly in terms of ~.

We start with the restricted ansatz

(5.2)

(Setting further c = 0 one gets the ansatz of Charap
and Duff. ") For diagona/ metrics, the self-duality
constraints can be shown to reduce to

(i, ,j,k: 1,2, 3 cyclic) .
~&ooS g g~ (gggguu)

(5.3)

From (5.1), (5.2), and (5.3) one gets finally

solutions, using methods of algebraic geometry, "
leads, in flat space, to formulas such that the ex-
traction of explicit expressions for A„ is a difficult
task and one has quite complicated results except
for the previously known (5P, +4) parameter solu-
tions. For curved backgrounds, the adequate gen-
eralization of such methods, even for SU(2) gauge
fields, will presumably present further complica-
tions. Hence it is worthwhile to approach the prob-
lem from different points of view.

Here, as a first step, we formulate successively
Wittenl' and then more general Yang ' type self-
duality constraint equations for curved spaces.
(The anti-self-dual case can, of course, be treated
analogously. )

Again we restrict ourselves to the metrics (2.1)
with Euclidean signature, namely

As far as the object of this section is concerned,
the same solutions are obtained after suitable co-
ordinate transformations.

The YM fields obtained in this metric, starting
from known Minkowski-space solutions ' or using
the spin connections, ' have been discussed by
certain authors.

(a- db) = N(b'+ ca-),

(b+da) =N(a' —cb),

(c —d') = — (a'+ b' —1) .r2

From the first two equations one obtains

(5.4)

V. SELF-DUALITY CONSTRAINTS FOR
CURVED SPACETIMES

Elsewhere ' we have studied the construction of
self-dual (and anti-self-dual) SU(2) YM fields
through spin connections for a class of metrics.
For such Euclidean fields the energy-momentum
tensor vanishes and hence the metric is not per-
turbed. On the other hand, the use of spin connec-
tions leads to only one type of solution for a given
metric. Can one construct other self-dual solu-
tions?

The general method for construction of self-dual

c=-8„ tan ~ ——pf ~8, ln ~2+@ ~j2

d=-8, tan ' —+ 1'„ln a +5

(5.5)

(assuming for the moment that these expressions
are well defined). Substituting inthe third equa-
tion of (5.4) we get

s, (N 's, [in(a +b )'j ](+8„(Xs„[ln(a +b')'j']]

1
2 (a +b'-1). (5.6)r'
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Using a, N=0 and with r* = jdr/N, defining

g~+b~ =eX

finally we have

(a, '+ a„„')q=, (e" —1).

(5.7)

(5.8)

which is satisfied by

21'1- r 3

(5.20)

Fox &=1 w'e get back Witten's case.'
Defining

For completeness we note that a very particular
solution of (5.4) [for which (5.5) is-not well defined)
is

X=0+2 (5.9) a=b=c=O, d=l/r. (5.21)

(5.8} gives
One thus gets the point-dyon solutions, which, for
example, for the Schwarzschild case" have

(a, '+ a„~')p =2K(r)e~, (5.10) P =2. (5.22}

K(r)=, exp 2 (5.11)r' Nr

exp 2 =-K r* . 5.12

(For the corresponding anti-self-dual solution with
d = -1/r, P = -2.)

We now pass on to a more general case. To ex-
ploit the symmetry of (5.1) we choose the coordin-
ates

'The condition
y =tan

2
e'", g =

& (r*+it),
(5.23)

K(r) = constant

leads to

N=1+ A.r

(5.13)

(5.14)

Thus the flat and the conformally equivalent con-
stant curvature de Sitter spaces are selected out.
For the Schwarzchild case,

1
A„= (sin8Ae —iA~),

2p (5.24)

y=tan —e ", e = ,'(r* ——it),
I

which should be compared to the choice of Yang. ~'

We will restrict ourselves to real (t, r, 8, cp). Cor-
respondingly, we have

2MN= 1—,Kr =N'.

More generally, setting

(5.15)
A =(NA„-iAO),

and similar expressions for A.-„and A;. From
(5.1) and (5.3) one now obtains

one has

(5.16) = y'-- =O3' QZ

(1+yy}'F;, + —F„=O. -r'
(5.25)

(a, '+ a,+')(in')
g2

(5.17)

The problem has thus been reduced (in terms of
r*, t) to one of finding a, surface whose Gaussian
curvature is given by -K.~'

he self-dual solution from spin connection
A

(5.18)
A=(N'~ -1)i[4, VC)

'The last equation can also be written as

g Fpp =0

since

4rds' =4NdedZ+ (-' „dydy.
1+yy)

Since in our conventions

Fq„= a„A„—„aqAi+[A„,A„],

(5.26)

(5.27)

(with N&0 for the domain of interest) corresponds
to

from the first two equations of (5.25) we obtain,
corresponding to Yang's K gauge,

b= ~N, c=O, d= ,'N'— A„=-iK-'(a„K), A, = iK '(a,K), - (5.28)
and hence to

X

Equation (5.8) now reduces to

(5.19)

A —„=i(a-K)K ', A,=i(a ,K)K ',—-
K=(1 —v') 'i'(1+v ~ v) (5.29)



20 GAUGE FIELD CONFIGURATIONS IN CURVED SPACETIMES. I

hese give

A„=-i(I —v') '[v„—i(v &&v„)] ~ r ~ "
~

(5.30)
I =y~ i

and A& is obtained on conjugation. Substituting in
the la,st equation of (5.25) we get

g [ p (1 —V ) Vpp + (V ' V~).V~ + (V ' V~) V~

—(v& ~ v&) v+f(v& &&v~)] ~ T =0 (p =y, g) . (5.31)

It may be verified that (5.18) corresponds to

S = 4 — (ink)„-„+ (lnA. );,+

I

+ (InX) -+ " ' (Ina)- +3' y2
I L

S =2Tr[E„E;-,+ E ,E—„]—. (5.36)

For these coordinates, the factor )g~'~' cancels the
factor (g""g")obtained after using (5.26). In the
R gauge this gives (compare Ref. 28)

(
dN 1)—

when (5.31) reduces to (5.20).
More generally, setting

v = (tanh —,
'

x) f'

(5.32)

(5.32')

+ 2'

(5.3&)

'The negative signs can all be absorbed by using
(5.34), i.e., such relations as

(Xp —=Spit) . (5.33)

Equation (5.26) now leads to

g""(u„„X„X.„-+-p„p„——) =0,

g""(xp„„—2p„zp-) =0, (p =y, z).
g~ (zp-„„—2p„-z„)= 0.

(5.34)

A more suggestive alternative form is

one finds that (5.31) reduces to (5.8).
In the R gauge of Yang, "one has (replacing

Yang's y by ~ since we reserve y for the azimuthal
angle)

g" (Iny)„-, + ', " =-g" (Ink),—,+

The g&" which canceled out in (5.36) now reappear
We have formulated the constraint equations and

have verified how known solutions appear in this
context. We hope to study further elesewhere the
contents of these equations. One may consider,
for example, the possibility of adapting Backlund-
type transformations' to curved spaces. Though
these transformations do not seem to lead, in flat
space, to new solutions with desirable properties,
the situation needs not obligatorily be the same for
curved spaces. There, apparent extra difficulties
are sometimes compensated by agreeable new pos-
sibilities. The finite-action non-self-dual solution
(2.15) is such an example in a different direction.

For spaces conformally equivalent to flat ones,
one may, of course, formally introduce all the
known flat-space solutions and examine their prop-
erties in the relevant spacetime regions.

UI. ROBINSON-BERTOTTI METRIC

gpss

~~ -p

gpÃ ~ =p

(5.34')

ds =Q'(-A.'dv + —& +dA~
]

(6.1)

We present here a few remarks concerning gauge
fields in a background Robinson-Bertotti metric. "'"
Starting'with the form

v N (1+yy)
(N+ yy)

y(-I + N)
(N+ yy)

(5.35)

The solution (5.18) can now be shown to correspond
to

q/r, ~--f/q
gives

(6.3)

with the Maxwell field (for zero magnetic charge)

Qo QA, 8=0 (6.2)

the transformation

Comparing with (5.32) we see that this solution is
simpler in the K gauge. Let us finally note that
using (5,26) the action can be written as and

ds' =, (-dt'+ dr'+ ~'dQ) (6.4)
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one can again introduce parameters as in Sec. IV.
Defining

dxp=-, or x=tanhp
x —1

(6.6}

In Ref. 31 some analogy of this metric to the
field of a heavy charged nucleus has been noted.
Here, starting from different forms of the RB me-
tric, we will compare certain results with those
obtained in the preceding sections. There will be
both correspondences and typical differences.

Thus, for example, starting with the form

ds'=Q'[ —(x' —l)dt'+(x' —1) 'dx'+d&] (6.5)

Thus one has point dyons with

1E =+ —4r" B = r" 4 (6.13)

(where E,=F«, 8, = ,'c&»—F», i, j k=1 2 3). The
properties will, however, be different from those
of (5.21) though the solutions are formally the
same. "

One gets

Tr(F„„F"")=2@ ' (6.14)

for this case.
Let us now introduce the Kruskal-type coordin-

ates (Appendix B) as follows. Starting from (6.5),
we use the transformation

and

ef e~ +b
ce "—d

(t, =- t+ p, g, =- f + x), (6.7)
when

(6.15)

one can again construct a class of metric explicitly
conformal to the Minkowski one. [Note the differ-
ence between (6.7) and (4.1).] Instead of writing
the general formulas, let us briefly note the follow-
ing results. For a=b=c=d=1

g, =tanh-t, r

(6.8)

+dQ (6.16)

Let us now consider the region seisin the horizons
x =+1, such that

1ds' = Q' —4, (1 —x)' '(I +x)"'(-d]'+ dr/)

=coth =
i
.t )

2 +dQ (6.17)

The equations of motion for the simple ansatz

(6.9)
For c=1, this is regular at the horizon x=1. We
choose this case and introduce the continuation.

now reduce to, in the coordinates p, t and for K
=K( p),

ig-
when

(coshp)'K~~ =-K(K' —1) .
Now one has the imaginary solutions

K = ai sinhp.

(6.10)

(6.11)

t -it
with a period (for c =1},

T =2'. (6.18)

It can be shown that, in spite of such differences,
one can again deduce (through 6.7), in a fashion
similar to that of Sec. IV, such flat-space solutions
as meron and meron-antimeron.

Let us note another interesting property of the
HB metric. From the spin connections of the Eu-
clidean version of (6.4) (using the results indicated
in Appendix B) one gets the SU(2) fields"

(6.12)

we need also, for example,

Q--i@.
Thus finally

(6.19)

(ds )„gg ——Q'[4 (1+x)'(d$ +dq ) —dQ] . (6.20)

Similarly, in the continued version of (6.5), the
change of sign of Q' compensates the one due to

We note that for the corresponding Mmvvell field
to be real, along with
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the fact that (x~ —1) becomes negative for (x( & 1.
A negative sign, however, now appears before
PQ. For the RB metric, with its high symmetry
and particular topology (R, &&8,), one cannot, in

any case, associate a direct, familiar physical in-
terpretation with these coordinates.

Formally, using (6.14) which remains invariant,
such a continuation leads to a finite action (8s'(PJ),
where the indices [compare (B22)] are given
(since the integrand has no singularity even at x
=-1):

4v 2« t 1

+y + 2 2 gf' lim egg
o & n o -~+a

(6.21)
for the two cases (6.13), respectively. This should
be compared to the values (+2) for the Schwarzs-
child case,"as indicated in (5.21).
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APPENDIX A

We give here, for completeness, the equatios of motion for a general static, spherically symmetric me-
tric with Ao nonzero. Let

ds =A(r)dt + B(r)dr + y dQ. (Al)

A, = d(r, t)e (e =-

A = a(r, t) V 4 + ( b(r, t) —1)i [C, V C] + c(r, t) r 4,
and the scalar field

4 =f(r, t)4.
'The equations of motion reduce to

A ~y+ B ~y«+ —+ — — y'B ' — (a~+b~) — =02 1 A' B' ' 2f by
2 A B M

2 & A' 8' 2B(c' d")+(c-—d') ——— + + ~ [(ab —ab)+d(a +b )] =0,
A B

(A2)

(A3)

(A4}

A '(c —d') —,[(ab' —ba')+ c(a' b~+)] =0, (A5)

~1 BI
BA '(a 2bd- bd-- ad )+— — (a'- cb)+(a" —2cb' —c'b- ac ) —

~ (a +b + r j —1)=0, (A6)

A' 8'
BA '(b+2ad+ ad- bd~)+ — ——(b'+ac)+(b" +2ca'+ac' —bc ) —

~ (a +b +r f —1}=0.
2 A B r'

APPENDIX B

We collect here, for ready reference, some
known, useful results concerning static, spheric-
ally symmetric metrics, their maximal extensions
and Euclidean continuations, spin connections and
associated SU(2) gauge fields.

Let us consider the line element

dr
+II$

N

defining the Kruskal-type coordinates as

(B3)

I

sociated with the essential singularity at r =0), Q
the electric and P the magnetic charge, and A the
cosmological constant. Let

ds'=-Ndt +N 'dr'+ r'dQ (dQ = dtP+sin'Hdcp'),

(B1)

where and

exp(2cr*) = —,'(q'- ]'),

eep(et)=(~ )
(B4)

2M Q +I A.¹A— + ~
——rr r2 3

(B2) ds' =,Nexp(-2cr*)(-dg +dq')+ rmdQ. (B5)
4

M being the mass of the central body (or that as- The roots of ~ determine the spacetime regions
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and c may be chosen to remove an apparent singu-
larity. See Ref. 30 for detailed discussions of var-
ious important cases.

Now it is

seeri

tha if the passage to the Euclidean
section' "is defined through

{r„r.] =4,.
The formula for the spin connection is"

gab Isu(Lb Ib ) Ibu(f a Ia ).

(B14)

the corresponding continuation t- -it makes the
Euclidean t periodic with a period:

These have the transformation properties of local
SO(4) gauge fields. For diagonal metrics one
may choose (no sum over p, }

T= 2w

c

'The domain of r is chosen to be that for which
(B5) remains positive definite. Thus for

(B6)

when

y (g )1/2 y y P (g ) 1/2

(B15)

(B16)

N = 1 — Schwarzschild
2M
r

one gets
Jt„"=((g„„)'/')„(g„„)'/'(6, „6b„—6~5,„).(B17)

Defining

For

7=8gM, 2M &y'&. (B'f) 1
Bp g Za~Bp

where

(B18)

N= 1-—r de Sitter 0 4, 1

one gets

1
&.b= 2,. [r., r, ]

are the SO(4) generators,

T=2w —,0 ~y &— (B8) & =
4

(r""r" . y, ..y—") (B19)

'The more general case

(B9)

A block diagonal form of B„permits an immediate
separation into two SU(2) gauge fields.

Thus finally one obtains for (Bl) the SU(2) fields"

gpss ~p~v~ab (B11)

is discussed in detail in Ref. 22, where other ref-
erences are quoted. For the charged case (Q, P
cO), for the associated electric field to be real
one should also introduce (since the Maxwellian

8,- -i8$
(Blo)

and hence Q'--Q' in (Bl). For more general
considerations involving Kerr-type metrics see
Ref. 36.

The periodicity in time permits the existence of
finite-action, static Euclidean gauge fields. To
compare with the examples furnished in this paper,
let us briefly recapitulate the results concerning
SU(2) gauge fields associated with the spin connec-
tions.""

Considering directly Euclidean signature, let

N',
BD=~

2
'C

B=(vN —1)i[C,vs].
(B2o)

These are respectively self-dual and anti-self-dual
for

N"=, (N-1)Il (B21)

which holds for

1P, = &2, dt r'dr Tr(F&„H")= +1 (B22)
3 2' 0

and action

21IIN=1- ——y2
3

[i.e., for P' —Q' = 0 in the continued version of
(2.1)]. For (BV) and also for (B8) these fields cor-
respond respectively to the Pontryagin indices"

rp =L pX. (B12)
S=8m (B28)

in terms of the tetrads L'„and flat-space Euclidean
Dirac matrices y„so that

Several other interesting cases can be found in
Refs. 22, 36, and 38.

As a final comment we note that the periodicity
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of time, permitting the existence of the above-
mentioned solutions, also affects their signific-
ance. The well-known tunnel-effect interpretation
of flat-space instantons" is not valid here. For the
Schwarzschild case, for example, they have rather
a ther modynamic interpretation.

Though we do not study gravitational instantons
in this paper, we would like to refer the reader to
certain sources where different possible inter-
pretations associated to different types of asymp-
totic behaviors are discussed in that context.
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