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Nonlocal charges in two dimensions
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We exhibit some correspondences between known properties of local charges and the properties of nonlocal

charges in the O(n) cr model in two dimensions. By determining the magnitudes of the matrix elements of
the nonlocal charges between one-particle states and using their multiplicative action on asymptotic
multiparticle states, one sees that production is forbidden for essentially the same reason that an infinite

number of local conservation laws forbid production. The way that continuation to n = 2 may correspond to
the massive Thirring model at g = —m/2 is briefly discussed.

Nonlocal symmetries are of interest for several
reasons. One is that local symmetries that leave
the vacuum invariant must be exact, ' whereas non-
local symmetries need not be. ' Another reason
has to do with the existence in various (1+1)-
dimensional models of infinitely many conser-
vation laws, which one- hopes may have analogs
in (3+1) dimensions, without being so restrictive
as to prevent particle production. But the naive
extension of the infinite number of local conser-
vation laws to (3+1) dimensions would imply a
trivial S matrix, ' hence one wonders whether the
nonlocal conservation laws may be less restrictive.

At the level of charges, it is well known that
local conserved cha'rges must commute with the
S matrix S. This is essentially because a local
conserved charge acts additively" on asymptotic
multiparticle states, and hence its behavior is
determined by how it affects one-particle states,
on which S acts as the identity. Since a nonlocal
conserved charge Q need not commute' with S,
one can always write Q =M+N, where M and N
are Hermitian if Q is, such that

S(M+N)S i =M —N.
A particularly simple special case is M =0, so
that one has a conserved. charge that anticommutes
with the S matrix. Whereas a charge that com-
mutes with S gives information about S-matrix
elements only when one knows how the charge
acts on the states, the mere existence of a charge
that anticommutes with S implies that there must
exist at least one pair of antipodal eigenstates
of S, i.e., Ia) and Ib) such that

s I.& =exp(f V I.& I» =exp(fb ) I»,
and

6, —6b=m.

For example, the simplest nonlocal charges in
the O(n) o model in two dimensions have M's
that are integrals of the spatial components j,
of conserved currents, and hence the I's vanish
on those states of which all particle momenta are
zero. Since kinematic factors require some eigen-
values of S to become unity at such a threshold,
one suspects that there would be other eigen-
values of S with a threshold phase of z. From the
known S matrix for this model' one readily verifies
that such is indeed the case.

Recently Zamolodchhv has emphasized that
the nonlocal charges of Ref. 7 satisfy a multi-
plicative law on asymptotic multiparticle states. '
The one-parameter family of charges has the
form

(t, ~)
R(w) =P exp w(1 —w') ' (&„„J'—wJ )dx'

(t) -~ )

(3)

where g are matrices with J"=p's„p~—p's„p',
P denotes path ordering in matrix multiplication, and
under suitable boundary conditions R(w ) is indepen-
dent of t. lf the upper limit of integration in (3) is left
at x, the R(w, x) thus defined is an x-dependent
rotation that generates one solution from another
solution to the classical field equations. One can
also use a spinor representation for J„andgen-
erate one solution from another by conjugation.
For the classical theory this makes no difference.
But as one takes x, to infinity in R(w, x) to ob-
tain the conserved charges R(w), the represen-
tation used does make a difference, and we will
return to this question later. Coming back to the
action of R(w) on asymptotic states, we write down the
multiplicative action postulated by Z amolodchikov:

ai=l
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where B,=sinh '(p',./m), c,. is the internal-sym-
metry index, and 8, & 8,&' ' ' & e~. It is shown in
Ref. 9 that Eq. (4) leads to the factorization rel-
ations for 8-matrix elements that were previously
derived by other methods. Although the multi-
plicative action was postulated for plane-wave
states, presumably one has in mind wave packets
with nonoverlapping rapidities centered at 8„such
that for large time the spatial overlaps in wave
functions decrease faster than any inverse power
of t. Then the integral in (3) can be split into k
intervals each covering only the essential support
of one wave packet, and the path-ordered matrix
multiplication leads to the structure (4). Because
of the short-distance singularities of products of
fields, the above argument has only a heuristic
value; however, for the lowest-order nonlocal
charge in a power-series expansion in se, Luscher

has analyzed the short-distance singularities and
established its multiplicative (or non-Abelian
additive, in the terminology of Ref. 7 for the .,
charges in question) action on multiparticle states.
In view of this, and of the compatibility of Zamo-
lodchikov's assumption with factorization, we will
accept the multiplicative action, and use it in the
form of Eq. (4) for simplicity.

It follows immediately that, as in the case of
local charges, the action of these nonlocal charges
is again determined by their one-particle matrix
elements. They fail to commute with the S matrix,
but only in a very simple and readily understand-
able manner: Because, for a given rapidity
ordering the ordering in the spatial position of
wave packets is reversed from t=-~ to t=~, the
multiplicative action on the in-states reads

(w) lese„.. . , e~c~, in& =gR4~-"(su)(ere&, A'~». &(ao)(8 c &
It "~(ur) leuc&, .

ag

Now in the case of a local charge, because its
action is determined by its one-particle matrix
elements, which are limited in complexity, there
is a certain "uniqueness" property. By this we
mean that under fairly general conditions a vector
charge that transforms like the 4-momentum is in
fact proportional to the momentum operator, and
a triplet of charges that transform like isospin
operators are indeed proportional to the isospin
generators of the theory. " This is the basic
reason for the absence of production when higher
local tensor charges exist, because they cor-
respond to higher powers of momentum, thead-
ditive conservation of which leads to the per-
sistence of individual momenta, apart from per-
mutations. Since with Eq. (4) the nonlocal charges
are also determined by their one-particle matrix
elements, are their actions also essentially
unique? %e shall see that at least the magnitudes
of the one-particle matrix elements can be de-
termined for real zv.

One makes use of the O(n) transformation pro-
perty of the charges, but, instead of exploiting
their Poincare transformation properties, it seems
easier for the purpose at hand to exploit their
conservation in two-particle scattering as Zamo-
lodchikov did to first arrive at the relations

f,(e) = ~f;(e)(g~z+ ze)

f, (e) = ~f, (e)(~+f~z+fe)

where & =2m(n -2) ', and the f, are defined by

~" ec)=f, (e)~
I

8, &+f(e)~-Iet»

+f,(B)5"
I

Ha& . (7)

One now invokes the unitarity of B(ao) for real m

to conclude

. Re(+f,) =0,

2 Re (fff, ++@'2)+n
If3 I

' = 0

and

If. I'+ If.l'=l.

(8a)

(8b)

Because R~ acts in the reverse oider to Bon multi-
particle states, the one-particle unitarity Eq. (8)
also ensures multiparticle unitarity. One finds
that one of the conditions in (8a) is identically
satisfied, and that the solution is

Imz =0,

If, l
= (xr, +8 l[~'+(x~+8)'t-'".

(9)

& =(8,c„e,c„.. . , H„c„;out l(Q')"Q""
I
Hc, —ed; in),

Thus the three f s are determined up to a common
phase, with the real parameter z corresponding to
m, but expressing more simply the covariance
property under a boost, since 8 appears only in the
combination (Az+ 8).

It .is now easy to see how the existence of these
symmetries prevents particle production. One
may consider



1882 C. H. %00 20

which equals Z S (8,, 8) u (Xz, 8) when the charges
act to the right, and Q S8(8, , 8) v&(z, 8) when the
charges act to the left. The u are analytic func-
tions of y = &z, with poles at y = +(8+iv), y = +8,
and branch points at y =+(8+ iX.), whereas the v&

have poles at y =-(8,. +ir}, y =-8, , and branch
points at y =-(8;+iX). For n ~ 3 I8,
the two sides can be equal only if the sum & is in
fact free from singularities. The f,. approaches
either a constant or zero as ly l

approaches in-
finity; and, since an entire function bounded at
infinity is a constant, (d/dy)F =0. But the explicit
forms of the f, show that all states

l
8c', -8d; in)

can be reached by letting (d/dy)(Qt)'"Q' ' a,ct on

l8c, —8d; in), and va. rying a, b, a', b' and c, d;
hence, production from two-particle states is
fo rbidden.

That the nonlocal charges forbid the 2-4 par-
ticle process was first shown by Weisz" from an
explicit examination of the many coupled equa-
tions, and the absence of 2-n particle processes
at threshold was shown by I uscher and extended
above the threshold by a continuity argument. ' The
above demonstration has the virtue of bringing out
the parallels with the case of local charges: In-
stead of all powers of momentum being conserved
one has functions of momentum being conserved;
instead of additive conservation one has multi-
plicative conservation, both sharing the essential
ingredient that the one-particle matrix elements
completely determine the charge. It would seem
that any set of nonlocal charges in four-dimensional
theories, to be useful in a context with nontrivial
scattering, must not share these features.

We next consider the massive Thirring model,
or the solitons in the sine-Gordon theory. The
sine-Gordon field is known to be related to the
angle between the tangent vectors in lightlike di-
rections (see Pohlmeyer, Ref. 7) of the O(3) o

model; noting, however, the existence of an O(2)
symmetry in the soliton sector, Zamolodchikov
postulated the existence of nonlocal O(2) charges,
with multiplicative action on asymptotic states
containing the Thirring particles. ' It was shown
that this assumption again leads to the known fac-
torization relations:

E, (8,w)/E, (8, zu) = s inh[G (8 + a)]/sinh(Gb),

E,(8, w)/F, (8, m) = cosh[G(8+a)]/cosh(Gb),

where FO=2f, +f,+f„F,=f,-f„F,=f,+f„
b =-iw/2, and G is related to the Thirring coupling
constant g by G =1+2gvt '. Applying again the
unitarity of. the charges for real u, one finds Ima

=-m/2. The magnitude off, being determined from
Eq. (8b), the f, are once more fixed, for a given
w [or given Re(a)], up to a common phase. These
f,'s are of course different from those of the 0(n)
0 model, the S matrix of which does not contain
a parameter corresponding to the coupling con-
stant g. Nevertheless, one may ask whether the
continuation of the O(n) o-model S matrix to n =2
corresponds to that of the massive Thirring model'
for a particular value of g. The answer is that it
does for g = -w/2, which is the critical value at
which the mass term acquires dimension two.
[The G-0 limit of Eq. (10) also agrees with the
X-~, z -0 limit of Eq. (6) with Xz fixed. ] If the
massive Thirring model exists at this critical value
of the coupling constant, it seems reasonable that
the S matrix is given by this confluence of the li:m-
its of two different models, with the fermion-
fermion (or antifermion-antifermion) scattering
amplitude u(8} being simply

2 (i8/2m)F(2 ' —(i8/2w)}
I (-i8/2w)I'(2 '+ (i8/2w))

and the fermion-antifermion transmission ampli-
tude t(8) and reflection amplitude r(8) being

f(8) = (i~ —8)-'8u(8), r(8) =8 'i~t(8-)

In (11) and (12) 8 refers to the rapidity difference.
Finally, we return to the question of the matrix

representation. While Ref. 9 adopts the vector
representation for the matrix Z in Eq. (3), Ref. 7
adopts a "spinor" representation, and in general
these may lead to different consequences. For
O(3) there are nine charges in the first procedure
and only four in the second, for a given se. It is not
immediately obvious that the two sets necessarily
have different implications, since both forbid
production. However, for the O(2) problem we
have just considered, the spinor representation
yields only two charges, Q, and Q„with Qolf, 8&

=h. (8) I.f, », Q. lf, 8&=h.«) lr, 8&, Q, lf, 8&

= -ih, (8) $, 8&, and Q, l f, 8) = ih, (8)
l f, 8&, (f and

f refer to fermion and antifermion, respectiveLy).
Assuming multiplicative action, one finds that if
h, (8)eh, (8) x constant, there can be no reflection,
contradicting (12), whereas if h, is proportional
to h, no constraint is imposed on the two-particle
S matrix. In contrast, the vector representation
yields four charges which impose the factorization
constraints. Thus, the two sets of charges do have
different consequences.
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