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A relativistic theory of particle internal properties is developed. Suppressing space-time information,
internal wave functions and observables are constructed in a 3-dimensional complex space. The quantum
numbers of a spinning point particle in this unitary space correspond with those of a low-mass hadron.
Unitary-space physics is linked with space-time notions via the Penrose theory of twistors, where new flavors

may be represented by many-twistor systems. It is shown here that a four-twistor particle fits into the
unitary-space picture as a system of two points with equal masses and oppositely pointing unitary spins.
Quantum states fall into the ISU{3) irreducible representations discovered by Sparling and the author. Full
details of the computation involving SU(3) recoupling techniques are given.

I. INTRODUCTION

By the time physicists obtained a successful
description of hadron systematics in terms of the
SU(3) internal-symmetry group, the importance
of this group and of its 3-dimensional complex
linear space seemed to be obvious. Indeed, SU(3)
has been referred to as the unitary group. ' More
recently the discovery of new families of hadrons
and the concomitant efforts at widening the theo-
retical framework have appeared to undermine
the privileged position of the 3-dimensional
unitary scheme.

The purpose of the present work is, in a sense,
to reinstate unitary symmetry. Thus the theory
to be expounded here markedly deviates from the
mainstream of current investigations in hadron
physics. For one thing, our scenario does not
even take place in space-time. It is situated in
a 3-dimensional complex. space with rotations and
translations forming an inhomogeneous SU(3)
group. This now is the unitary space.

Available experimental material on intrinsic
particle properties points to the conclusion that
we need not know much about space-time when
trying to understand most of these properties.
Rest mass or charge is unaltered whether the
particle happens to be in a plane-wave state or

~in another space-time configuration. This is to
be contrasted with computation methods of quantum
field theory which use space-time state functions
(or their Fourier transforms) carrying the full
infinite burden of space-time information, and
hiding essentials in the disguise of internal quan-
tum numbers.

The unitary-space approach does the opposite.
The enlargement of the SU(3) rotation group with
translations means essentially that we elevate the
linear space of internal quantum numbers to the
rank of a manifold. A particle may have a tra-
jectory and even spatial extension in the unitary

space (Sec. II). Its quantum states are described
by unitary-space functions.

A number of similar though different approaches
to particle internal states have been proposed in
the past. An inhomogeneous SU(3) symmetry
scheme (with the inhomogenization differing from
ours) has been investigated by Goebel, ' Dulle-
mond, ' and Bose~ with limited successes in ap-
plications. Quark internal wave functions in a
3-dimensional complex space were computed by
Hoh. ' While he reported no striking resemblance
to the observed spectrum of hadrons, his "spher-
ical" basis for the internal wave function shares
many of the properties of the basis to be selected
here. An essential difference between his and our
approach is that we do not represent the state of
a quark separately in the unitary space. Rather,
we represent the state of the hadron as a whole.

The motivation for invoking unitary space lies
in the Penrose theory of twistors, "some rele-
vant details of which are discussed in Appendix A.
A particle here is completely characterized by
its twistor state function. There exists a pro-
cedure, well known among twistor theorists, for
projecting out the more conventional space-time
state function by integration over internal degrees
of freedom. In addition to this, in the present
paper we find a complementary procedure whereby
the internal structure is exhibited but the space-
time properties are suppressed. An explicit
method for obtaining the internal-state function,

'
based on the Hodges-Sparling contour integral, '
for a two-twistor particle, is introduced in
Sec. III. Such a particle has the merit that the
features essential to the projection are present
with it and a limited range of applications, being
pointlike. ' The method is extended to three-
twistor systems in Sec. IV, where also an internal
scalar product is defined.

Three-twistor particles, represented as spinning
points in unitary spa~e, possess s~~e~al featuresxo
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which make them good candidates for modeling
low-mass hadrons. Will the unitary-space picture
blow up as we go to higher energies'P

Suppose we find an object in the real 3-space
with an energy spectrum generated by the O(4)
group and not merely by O(3) which gives the ro-
tational isometrics. (In fact, such a system does
exist: a two-particle bound state being an ex-
ample. ") There is no reason to think that the ob-
ject with the O(4) symmetry gives us a hint that
space is 4 dimensional. This is because of the
semisimple nature of O(4) and of the local iso-
morphism O(4)=O(3)SO(3). The result does not
extend trivially to complex unitary space. The
group SU(4) is simple. Now a four-twistor system
has an ISU(4) state spectrum, and we show in
Sec. V that there is an important sense in which
the relation ISU(4) = ISU(3) 13 ISU(3) holds true. A
four-twistor particle is pictured as two points
with equal masses and oppositely equal spins in
the 3-dimensional unitary space. And this is the
sense in which we claim the unitary scheme re-
instated. The result may be understood as a
relativistic generalization of the spectrum gen-
eration for the Kepler problem. "'"'" It remains
to be seen if a useful relativization of the Bohr
formula can be derived in the present scheme.

The argument in Sec. V relies on the use of a
naturally defined operator basis in the unitary
space. This SU(3) operator basis is called the
color triplet because it features certain previously
postulated attributes of color. '4 It should be
added, however, that in twistor theory new ways"
open up in which phenomena (such as those in-
volving particle statistics}, related by some
authors to color, can be explained.

The spectrum of free pointlike particle states
in unitary space is provided by unitary irre-
ducible representations (irreps) of the group
ISU(3). These irreps have been manufactured
using different techniques by Perjds and Sparling. "
In Sec. VI we briefly survey one of these tech-
niques which is Hecht's SU(3) coupling and re-
coupling formalism. " Section VII gives the full
details of the derivation of ISU(3) generator
matrix elements. Section VIII discusses the
structure of the irreps and the discrete group of
substitutions that connect them. The resulting
systematics is compared with the observed spec-
trum of l.ow-mass hadrons in Sec. IX.

Although our approach to unitary-space physics
has a strong background and motivation arising
from twistor theory, it is also self-contained
without making a reference to twistors. Parts of
this paper (Secs. III, IV, and Appendix A) which
use twistors explicitly may be skipped when
reading.

II. THE UNITARY SPACE

Unitary space is a 3-dimensional complex
Kahlerian manifoM with metric'

(2.1)

The unitary rotations

z =Uz, U U=1

and the complex translations

z'=z+t

constitute the isometrics of this space. We
require

detU =1

in order that the vector product

(uxv}; -=e;,„u'v"

(2.2)

(2.3)

(2.4)

(2.5)

be invariantly defined. The combined effect of
isometrics (2.2} and (2.3) can always be put in
the form

(2.6)z'=U(z+t),
where U e SU(3) and t is a complex 3-vector.
This defines the 14-parameter inhomogeneous
group ISU(3) with elements

g=(U, t). (2.7)

~t 4 —(Ak)t (2.10) .

The translation operator d' belongs to a complex
representatiofi of SU(3), hence it is not Hermitian.
The parameters of a Lie group can be chosen
real." Hence the Hermitian conjugates dt must
also be generators, and they indeed are.

We have the Lie algebra commutators for the
ISU(3) group

[In the standard theory of SU(3) representations, ""
the vector t belongs to the complex representation
(A. , p. ) =(1,0). The inhomogenizations of a. semi-
simple group G may be classified according to the
representation(s) of G to which the inhomogeneous
generators belong. Thus I recommend the nota-
tion I 6 for inhomogeneous groups where A

labels the representation(s) of the inhomogeneous
part. One may conveniently drop the label A when
it signifies a unique fundamental representation. j

One has the group composition law

(Uait2)(U1 ti}=(I12Uiiti+IIitn) ~

The infinitesimal operators of the SU(3) sub-
group form a Hermitian and traceless matrix in
unitary representations,

(2.9)

The adjoint of a tensor operator is defined
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(2.11a)

[d', A~~] = 5,d~- 35('d', [dt, A";] = 35)dt(- 5~~d~t, (2.1lb)

The spin tensor has many esthetic properties.
It is Hermitian and traceless:

[d', d" ] = 0, [d(t, d(~] = 0,
[d', d(t] =0.

(2.11c)

(2.11d)
The commutators with the momentum

[d', S~~]= 0, [d(t, S~(,] =0

(2.18)

(2.19)
Given these geometric relations in the unitary
space, we now consider physical objects here.
We introduce a parametrization of physical sys-
tems by a time variable the nature of which will
be discussed later in this section. All we require
at the moment is Noether's theorem: The gen-
erators of the ISU(3) isometrics provide conserved
quantities for an isolated system. Translations
are generated by the momentum d' and its adjoint
d~. The total angular momentum A.„' generates
unitary rotations. In fact we thus generalize the
corresponding terminology for observables in the
real 3-space which generate the subgroup E(3).

Under translations (2.3) the momenta are in-
variant and A„' pick up an "orbital part"

show that the spin tensor is translationall. y in-
variant,

Sa' =S (2.20)

The momentum is a (non-Hermitian) eigenvector
of S~ with vanishing eigenvalue

S~d" =0 =d]~S„',

and we have

(2.21)

det[S~] = 0. (2.22)

This holds nontriviaily, setting det[S„'] =- e;, ,S|S~P3,
in spite of the fact that the components of the spin
tensor are operators, satisfying

(2.12a)
[S~( S ] (~(] 5(]~}S (~ 5 g}S(] (2.23)

A„" =A„'+f'd(t+d'f„*- ', 5„'(t"dt+d "t,*)—. (2.12b)

The behavior of static systems with d' =0=d~ is
rather trivial, and we exclude such systems from
the present discussion. The ISU(3) invariant

(2.13)

is then strictly positive. We refer to it as the
mass square. The term mass square does not

suggest itself from kinematics in unitary space,
yet we are bound to adopt it in the twistor rep-
resentation (cf. Appendix A).

In the real Euclidean 3-space the angular mo-
mentum can be transformed away by a suitable
translation. This is not the case in unitary space.
An intrinsic spin does exist in the unitary space,
although a spin vector cannot be defined. Instead
we proceed as follows. We introduce the SU(3)
invariant 8 by

A theorem by Beltrametti and Blasi" implies
that the number of independent Casimir operators
of the group ISU(3) is two." Of these, we are
already in possession of the mass m. The spin
operator S,' commutes with the momentum [E(Ls.
(2.19)]; hence the spin j given by

j(j+1)=2~2S~S'( (2.24)

We obtain the expression for the spin tensor

(2.25)

must commute with all the generators. The spin is
a Casimir operator of the ISU(3} group. In order
to express the spin j in terms of the generators
explicitly, we first eliminate the alternating sym-
bols from definition (2.17) by using the identity

&B =&~A.;,
where

(2.14)

(2.15)

S'; =-bA', + A~A'+A)4„' —(~B+3)4,'.

+ (-2 B + I )5';b .
Plugging this form in E(L. (2.24) we get

(2.26)

[d', B]= -', d',

[dc'', B]= ~3 dr~ ~

(2.16)

Making use of the operator 8 we define the sPin
tensor S„'.

S', = e' &(~„(Ag"+ a5)B}&(",. (2.17)

and & = &„"= m'/2 .
The quantity 8 is not an inhomogeneous Casimir

operator as is seen from the commutation
proper ties

j (j + 1) = &B' —2B+ ~ C, —(A,'A~~4~)h ', (2.27)

where

C2 =A„'A; (2.28)

is an SU(3) [but not ISU(3)] scalar.
An elegant treatment of the center of mass in

space-time has been given by Penrose. ' We now

apply his method to a particle in the unitary space.
Upon displacing the coordinate origin in such a
way that the orbital momentum vanishes, the
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origin is shifted to the center of mass. Then the
angular momentum tensor A~" contains only a
spin part which is orthogonal to the momentum:

where"

4wz =wow a zz.dz (3.3)

A.„"d"= 0. (2.28)
The twistors in the argument of E in Eq. (3.2},

Use of the translation properties (2.12) gives

(A,'+d*t,*+t'd,')d'- -', (d't,*+t'd„')d' = 0. (2.30)

This relationship splits into the scalar equation"

(W~) =(w„, -tx "w„),
(Z ) =(ix""'z„., z„.),

are subject to the condition

(3.4)

B+ 3(d t~*+t dI, )+2=0 (2.31a)
W~Z =0. (3.5)

and into

A„'d" —Bd'+ t't —(t"dt }d' = 0, (2.31 )

which is analytic in t' and is orthogonal to dq~.

Let us denote the general solution of (2.31b) for
t' by Z'. This is

Z'(r) =- -(A,'d'-Bd')+i''. (2.32)

III. THE INTERNAL STATE: TWO-TWISTORS

We are now in possession of some basic physical
notions of unitary space. So far, all this may
seem very remote from ordinary physics. Space-
time is known to be a real manifold offering little
prospect for the unitary physicist. But I shall
show presently that a unitary space can be spotted
in the twistor structure of particles in the Min-
kowski space-time. This interpretation rests on
the description of the internal state in twistor
theory. First the requisite techniques are
elucidated here on the simplest example of two-
twistor particles.

In a two-twistor decomposition of a particle,
let Z and W be constituents (cf. Appendix A).
Then, by Eq. (A5), for any complex X the
operators

Z' =Z +~I Wp,

W' = W~ - A, *IogZ
(3.1)

also describe constituents. The state function in
the coordinate picture is obtained from E(W~, Z )
by the contour integral'

AA'
}R' ' 'KR" ' 'R'

1
Wg «««WgZ~z ~. ««Z p

(2m i)'

x E(K~y -zx lU~j lx z~ay zgr)41ltz y

The points of the center of mass of a freely moving
particle with conserved momentum lie on a line
in the unitary space. The real parameter 7 of the
line may be taken as the proper time.

The rest mass m and the spin j are simul-
taneous Casimir constants of the Poincare and
internal groups. ' The twistor operator of the
rest-mass square

= -2IZ f.,W"I'

leads to the eigenvalue problem

( +m2)E=O. (3 7)

Solutions of Eg. (3.7) may be generated by a
method due to Hodges and Sparling. ' Let
G(W„,Z ) be an arbitrary but homogeneous two-
twistor function. Then

&(W, Z )

h A, , p. 6 W +~I zZ, Z + p.I W N. &dp.

(3.8)

is a solution of (3.7}, provided the function h(A, , p, )
satisfies

~h
2 =m'h. (3.9)

My suggestion here is to look at Eg. (3.8) from
a different angle. Let us regard (3.8) as a trans-
formation of the internal data of the particle. The
function h(&, il) is then associated with an internal
state.

Let G(W, Z') be a suitably chosen state func-
tion (of the lowest weight, e.g. ) with mass m
and spin j. Thus G(W, Z ) is already a solution
of Eg. (3.7). The role of the function G(W, Z ) is
to ensure the correct dependence on space-time
coordinates. The integral transformation (3.8)
produces another state function E(W„Z ) which
may have internal quantum numbers different from
those of G. On allowing for h(A, , p, ) to vary, the
function F(W, Z ) will sweep over internal de-
grees of freedom.

I do not propose that Eg. (3.8) represents the
ultimate method for introducing an internal-state
function; it merely serves to point out the eris-
~ence of such a function. A further reassuring
fact is that the internal observables commute
with the kinematical twistor (AS),

[any internal operator, A z]=0. (S.10)
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(Note that the validity of this equation extends to
all n-twistor systems. ) Hence we infer that there
must exist a procedure for obtaining the internal-
state function by integrating over space-time
degrees of freedom.

The use of Eq. (3.8) makes it possible to find
out horn internal operators are represented on
the space of internal-state functions. We re-
cast Eq. (3.8) in the form

PP(W, h') = f (hh/hh —ph/hp+P )h(h, p )

x eh{w z«+)h{lvz «G(W Z(h)d«

(3.1"l)

The function E(w, Z }will be homogeneous of
degree p, in W„provided h(«(. , ««, } is an eigenfunc-
tion of the operator

E(w„,z'}= Ilfh(«). , p)e ' { «G(w, z )d«(. Ad««, .
such that

(3.18)

dE(w, Z )

h(«(. , p){w~zje" "{ 'G(W„Z )dA. phd'

= )th(&, )({)—{e ' 'G(W, Z )jd«(. ph dp, .

By partial integration me obtain

(3.12)

(3.11)

Here we denote {W Zj=W I zz and{WZ j
=W I Z«t. The equivalence of Eqs. (3.8) and
(3.11) may be verified by comparing terms in
power-series expansions in ~ and p. .

Consider first the action of operator d ={Wtzj
on F:

Ph(«l, P) P&ls(«(. «{) ~ (3.19)

The remaining internal operators Z Z~ and S W
(a transition operator) may also be worked out
along these lines if desired. We then obtain a
representation of the two-twistor particle in
which the space-time information is suppressed
(excepting spin and mass) and the internal state
is characterized by an analytic function h(«(. , p. ).
The view has occasionally been expressed' "that
two-twistor particles are leptons. Supposing this
mill successfully be borne out, the present form-
alism may then provide a satisfactory framework
for building lepton models. We will not attempt to
do this here; rather we will carry out a detailed
investigation of three-twistor internal space in
what follows.

IV. RECOGNIZING UNITARY SPACE

d =-8/».
Similar ly,

dt =-8/sp,

[cf. Eq. (3.9)].
Next we take the homogeneity operator P

= W~W

(3.13)

(3.14)

pp(w. , h. ) = $h(., ,){(w.wt. ..wt*~"w*'~)

h{lV{Z«+hh{WZ «p jG d«) ~ d~

x G (W, Z ")d«(. ph d p. .
Hence the internal representation of operator d is

The purpose of this section is to provide moti-
vation for doing unitary physics. We find a real-
ization of unitary space by twistor states. This
would suggest to us an interpretation of unitary
objects in more usual physical terms. Thus,
l.ater on we will be hei.ped in selecting the ap-
propriate labels of unitary quantum states.

We consider now a particle with three-twistor
constituents (Appendix A). Internal transforma-
tions (A5) define a 15-parameter group. This has
a 14-parameter subgroup transitive still over the
allowable choices of the three twistors, ' with
group elements g = (U, A) where U (= SU(3). On
identifying

(3.15)
ta & abcA

2 bc (4.1)

Here P, is the degree of homogeneity of G(W, Z )
in W . The commutator can be evaluated by use
of Eqs. (A15):

we find that the group is isomorphic with ISU(3)
of Sec. II. The vector t' is an element of unitary
space [cf. Eq. (2.3)]. The ISU(3) generators may
be written in terms of twistor operators (A9} as

[w w' """'"'], e

(~s/s~ «{«/»)eh{w z«+)h{lvzt«(3 18)

d'= ~e' 'd~c, d, = gE'aged

AQ BQ + 35$Bg

(4.2a)

(4.2b)

Partial integration in (3.15) yields These are precisely the algebraically independent



1862 ZOLTAN PER JES 20

B"=3d"A'd 4 '-2. (4.3)

Definition (2.14) shows that B = ',B„"-—2.
Operators (4.2) satisfy the Lie-algebra com-

mutation relations (2.11). Comparing further with
results of Sec. II we conclude that the internal
observables of the three-twistor particle repre-
sent a structureless but possibly spinning point
of unitary space.

A quantum state of a particle composed of
three bvistors is given by an analytic and homo-
geneous function of three-twistor variables F(Z; )
where i =1, 2, and 3. It is not possible to gen-
eralize for three-twistor functions F(Z; ) the
transform of Hodges and Sparling starting from
(3.8) since there is now no way of arranging the
twistor indices suitably. Following a suggestion
of Penrose" we shall consider instead a general-
ization of the form (3.11) and set, formally,

&(x:)= f x(x;, )~u" "G'(x ')"x x"&.u, '

where g(A,;, g ) is analytic and

d3A, =
6

c' dig ~ dA) ~ de .

(4.4)

The procedure outlined in Eqs. (3.12)-(3.18)
yields the representation of ISU(3) generators in

unitary space

»I =-8/Sx)» x»f» =-S/8&
x (4.5a)

and (choosing function 6 with vanishing weights)

A» =M»(x(.») —M»(p, ),
where ~k are the Bargm3nn operators""

3M3(A) =A»9/sx(x yA»8/BA»- 2A3&/N3,

M & =x,s/W. , —z, 8/W. , ;
M»=A.»8/BA, », i 4k.

(4.5b)

(4.5c)

Representation (4.5b) and (4.5c) of the genera-
tors of SU(3} is, apart from a sign, the standard
Bargmann-space representation [cf. Eq. (1.7) in
Ref. 28j. The negative sign in (4.5b} results from
our choice of y(A.;, »»,") as a representation func-
tion. The argument p' is taken from whereas
~~ & C'* is a skewed product of two ~ vectors.

Homogeneity of the twistor function F(Z, )
enforces that g(X;, p ) is an eigenfunction of op-
erators A'„A» and B. Since the components
of the momentum d' do not commute with Ak and
B, they cannot be diagonal operators. Altogether

internal twistor operators since the quantity B„"
does not belong to the Lie algebra of ISU(3). How-

ever, B"„canbe expressed in terms of the gen-
erators, using (A12b):

8 independent commuting Hermitian operators
are needed" in order to label uniquely the func-
tions g. The five SU(3) labels are to be described
in detail in Sec. VI and we have operator B and
the two Casimir operators giving j and m.

The function y(A, ;, »»») provides a suitable de-
scription of a three-twistor internal quantum
state. Although the form of the scalar product
of three-twistor state functions is not known ex-
plicitly, the set of iritenzal functions ean be
endowed with the scalar product

(x, x') = f x(x;, u')'x'(xi, u')« ~ xu, (4.8)

where the integration extends over C' x C'* and

dA. = ' exp(-A. „A, *')d3A. ;

and

d'p, k. exp(-»»"»,*).

(4 I)

The space of three-twistor internal states is
thereby made a Bargmann space.

V. SYSTEMS WITH EXTENSION: FOUR-TWISTORS

a, =- d,-4, d' =- -'c'~kd
2 /k' (5.1)

O' =—-B4, C=—-B44, i,j,k =1, 2, 3,
CV =C.

Operators d', d~~, and the trace-free part of Bk
generate the ISU(3) subgroup. Commutators
(A11}become in this notation

The representation space of the standard quark
picture" is a linear space which has little of
the structural richness of a manifold. The propo-
sition here is to place the quark model in the
K3hlerian manifold of unitary space where an
object with extension and shape is a sensible no-
tion. We now show that a system of four-fwzstors
may be pictured as an object which has spatial
extension in the manifold. Since we are concerned
with internal properties only, we need not actually
use twistors. The four-twistor particle will be
described, in an abstract fashion, by its internal
operators d„, dt", and B», satisfying (A11) and
(A12) with a, f»=1, 2, 3, and 4.

The algebraic relations (A12) impose constraints
on a four-twistor particle. Of these, d„,d,„,=0
give two Hermitian conditions on the momenta
d„and d„,B„'d ~' =0 yield a further condition
involving the U(4) generators B». It is not neces-
sary to manipulate with individual components
when solving the constraint equations. We intro-
duce a 3+ 1 decomposition as follows:
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and

[B),B4]=5;B', -5,B~, [d', d~] =0 =[d', d~ ],
[d B»] 5» d 5Id» (5.2a)

what more tedious computation employing the
commutator

[b' f ]=d'b + e'"'a„B, (5.8)

[a„C)= -ai,
[b', C] =b',

[b', b4t ] = 5)C +B),
[d', b'] = e'"a„
[a4q bg ] e4)»d

[a;,B',] =+ 5»4a, ,

[b,B,] —-5,b"

(5.2b)

(5.2c)

(5.2d)

(5.2e)

(5.2f)

(5.2g)

(5.2h)

leads to constraint equation (5.4c), and this
completes the proof.

It may be worthwhile to point out, for possible
future applications, the existence of an algebraic
constraint equation, formally analogous to Eq.
(5.4a) but with the vector d' replaced by

q; = e;„at'b» - —,'dit(C+ I). (5.7)

We multiply. Eq. (5.4c) with bt and b' to obtain

(5 8)

whereas

[a;,a~] = [a;,at ~] = [a;,d'] = [a;,dJ ] = [d', bJ ]
= [ai, b'] = [b', b~] = [d4~, C] = 0.

Equations (A12a) may be written as the single
non-Hermitian condition

a;d' =O. (5.3)

The remaining constraint equations (A12b} are

(5.4a}

d'(b'd~4)+ e'~»a&(B»dt4) =0, (5.4b)

gg~a~~e ~, +d5gd~ +c""a&g a~"e —&5"a&g~~d~ =0.jul l j 4 lmn

(5.4c)

Here (5.4a} is a Hermitian constraint, weil
}known from the twistor theory of ISU(3) [cf. Eq.
(4.3)]. Equations (5.4b) and (5.4c) follow from the
commutators (5.2) and from (5.4a). The proof
relies on the color algebra of Appendix B which,
eventually, is also defined by (5.2) and (5.4a}.

First I derive (5.4b), using the decomposition
(4.2b) of B» into irreducible parts. The commu-
tator (5.2h) yields for the vector f» defined in

(B1)

[b*,f» ] = (b"d,'}5». (5.5)

Multiplying Eq. (5.2e) with ft from the right
and using Table I and (5.5), I obtain d~(b'd~)

a»f; which is Eq. (5.4b}. A similar but some-

Observe now that the Lie algebra given in (5.2)
contains an ISU(3) subalgebra. In the previous
section, the ISU(3) generators have been inter-
preted as observables of a point particle (with
spin) in the unitary space. In order to find an
interpretation of the full set of four-twistor
internal operators, it will be of help to consider
their properties under translations involving only
three of the twistor constituents. We set in Eqs.
(A13) A;, =0, and t' = se'~ A, ». Then we have, in
addition to the ISU(3) relations (2.12),

a& =a;, C'=C,
b" = S'+ ~'~"~*a

(5.9a)

(5.9b)

[any oPerator„ any oPerators] = 0,
and let the masses of the particles be equal:

E~ -b2 ——6~2.

(5.10)

(5.11)

The angular momentum and the momentum of the
particles' center of mass,

A comparison of (5.9) with the s equation (B15)
suggests that, the vector b may be viewed as an
orbital momentum and that a; relates to momen-
tum. We shall work out this idea in the rest of
the present section.

Consider two spinning point particles with
(d'„A', ») and (d,', A,'»), respectively, in unitary
space. I et the observables of different particles
commute, i.e.,

i
&~ = &&a+&2u ~ (5.12)

TABLE I. Orthogonality properties of the color triplet,
(v

' }= (d', f ', s&4}, With A =
~ C2 -j j(+1)—4 B(B+ 2.).

d,'
span an ISU(3} Lie algebra. We define the unitary
operator

r
@56 —+1.2+~ 2 ~j.r

&,2+d ~ d~„
(5.13)

VmV5
i f5 0

I

AA

(where this time i =~ ).
Under the exchange of particle 1 with particle 2,

symbolically written as P,
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i6 i6 (5.14} The commutator (5.2d) takes the form

The operator 5 is called the relative phase. Some
interesting commutators involving the relative
phase are

[b', bit ] = -4„', + bi,c,
and from Eqs. (2.16}, (5.2b), and (5.2c)

(5.26)

[e",d'] =O, [e",A.",]=0,
ia &to] 2i5&a [

i6 &to] &lh

[
i5 s$lE] ~k [

i6 stk] e 256~@

(5.15)

[d', c]=-', d', [a ', c]=-', at', [bi, c]=', b'.

(5.27)

Comparison with (5.24) shows that c may be
identified as"

Here si~ and s» are the orbital momenta (B2) of
particles 1 and 2, respectively, and x' is defined

him
1 i6 12 dye Zm (5.16)

such that

[x ', d', ] = 0 = [x",d,'] .
Under permutation

px =-x

(5.17)

(5.18)

We now introduce a concept of relative momen-
tum, vector a;, in the complex unitary space,
formally by

Q = g d1] 8 d2~ ~
-i6 f i6 (5.19)

bi (stie in
cine ti}1 2

12
(5.21)

The particular choice of factor ordering is quite
important here, although

[bk an]

We find

Pb =-b'.

(5.22}

(5.23)

The components of 5' commute among each other
and

(5.24}

Now the difference B—C may be fuI. ly eliminated
from commutators (5.2) by use of the decomposi-
tion (4.2b). All that remains of operators 8 and
C is then contained in the quantity

a= B+C+2. (5.25)

This satisfies a,d' =0 as required in (5.3). Ex-
change of the particles gives

(5.20)

just as for relative momenta in real space. [In
fact, if the momenta were Hermitian, we had in
(5.13}e"=1.]

Next the relative orbital momentum b is de-
fined, again formally,

C=B,+B2, (5.28)

VI. HECHT'S SU(3) FORMALISM

In this section we review some of the techniques
developed by Hecht" for dealing with SU(3) rep-
resentntions. Hecht's work has not been arbitrar-
ily selected from competing approaches; rather,
it appears to be the only scheme available in the
literature which is sufficiently general for
I '0 SU(3) calculations. Designed originally for
nuclear shell-model computations, his notation
had to be altered, mainly to bring it closer to
current usage in particle physics.

The infinitesimal operators A~ of the group SU(3}
satisfy the Lie-algebra commutators (2.lla).
Unitary irreducible representations of SU(3) are
labeled by a pair of non-negative integers'0 (A, , p.).
A set of commuting infinitesimal operators is

and that the two spins must be oppositely equal,
S,'~ =-S2'~. Since both S» and S2'~ are translationally
invariant tensor operators of the SU(3) group de-
fined in (5.12), this latter condition is a legitimate
one. The total spin S~ is not necessarily zero,
however.

In summary, we find that the total angular mo-
mentum 4,', the total momentum d', the relative
momentum a;, and the relative orbital momentum
b' defined in (5.12), (5.19), and (5.21), respective-
ly, satisfy the four-twistor Lie algebra of (5.2).
We thus achieved a realization of a four-twistor
system in terms of two point particles with equal
mass and with oppositely equal helicities, in the
unitary space.

The group ISU(4) may be looked upon as a
"complexified" IO(4), which, in turn, is an in-
homogenized variant of O(4) [a 6-dimensional
inhomogenization though, not the group E(4)].
Now O(4) has a semisimple Lie algebra, being
locally O(3) SO(3). That is to say, the group
O(3} gives the rigid rotations of a body in the
real 3-space, whereas O(4) describes the separate
rotations of taboo bodies in the 3-space. The Lie
algebra of SU(4) is simple. But here our result
shows that the relation ISU(4) =ISU(3) SISU(3) can
be made sensible if interpreted in terms of the
associated enveloping algebras.
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chosen:

& =A.', +42, hypercharge

8, = ~(&", -&2), isospin projection.

(e.la}

(6.lb)

An irreducible tensor operator T ~&1" is defined
by its commutation properties

[~ &
T FEI ] YT riIz i [tlsy 7 rii ] Ig T rii

The hypercharge and the isospin 8 have the eigen-
values in unitary representations, respectively, (6.4a)

F=- +P+q, P =0, 1, .. . , A.
2A. + p.

I= '(q+p--e), e=O, i, . .. , q.

(6.2a)

(6.2b)
(6.4b)

[&~~ T'ri'I"g'] = Q ((~, v) Y'I'I.'l(~, u) YIIg&T',"g");,
I'

i 4k.

la& = l(A. , g)YII,&. (6.3)

A state la& of the representation space will be
labeled

In the matrix elements of the infinitesimal
generators A;, the representation labels (&, p)
will conveniently be dropped. Hecht has obtained
these matrix elements in a neatly compact form

AgIYII ) = f(YII )I(Y+ 1)(I+a)(I + a)&+ f(Y —(I+1)I ) I(Y+ 1)(I—a)(I + ~)& (6.5a)

A., l YII~& = f(YI, -I,)l(Y+ 1)(I+—')(I, —~)& -f(Y, —(I+1), I,) I(Y-+ 1)(I-—')(I, ——')&, (6.5b)

4',
I
YII

&
=f((Y- 1), —(I+ 2)(I, —~)) I(Y- 1)(I+~)(I, —~)&+f((Y- 1}(I- ~}(I,—2)) I(Y- 1)(I- ~)(I, —~)&,

(6.5c)

&'.
I
YII

&
= -f((Y-l), —(I+ 2), —(I.+ a)) I(Y-1)(I+2)(I.+ 5)&+f((Y-1)(I—k), —(I.+ 2)) I (Y-1)(I- 2)(I.+ 2)&,

(6.5d)

where

(I+I,+1)(p+ l)(A, -p)(p, +2+p)
(2I + 1)(2I + 2)

g &a; b I c&,&a'; b 'I c& &
= en, n, ,en, n ~

~ (6.9b)

(6.6)

The isospin-raising operator A.', possesses the
matrix elements

Here and onward the projection indices Y, I, and
I, of state la& are collectively denoted by II, and
primes distinguish among states belonging to the
same representation

(YII,+1 I&, I
YII,) =[(I-I,)(I+I,+1)]'t2

Note that A. ', =A., '.
We shall now extend the short notation (6.3) of

SV(3) labels for use with tensor operators. The
Wigner-Eckart theorem for the matrix elements
of the tensor operator T(b} assumes the form

Ic& = l(~, ~)ll.&,

le'& =
l (~, I )ll. &

.
The conjugate of state la& is defined

le q =
I (q~), —Y, I, -I,

&
-=I(u~},- lip,

(6.10)

(6.11)

(6.7)

(6.6}

(aI7'(b)Ic& =(c; big& (gll7'llc& .
Here (allTllc& is the reduced matrix element in-
dependent of Y, I, and I,. The SU(3) Clebsch-
Gordan coefficient (c; bla&, factorizes as

(c; bla&, =(c; b)~a&,(I,I«, I,I„II,I,Q,

where (c; blla&, is an isoscalar factor, and

(I,I«,I,I„II,I«) an SU(2} Clebsch-Gordan coef-
ficient. Greek subscripts label the multiplicity.

Clebsch-Gordan coefficients satisfy the ortho-
gonality relations'

(6.12a)

where g, stands for the phase factor
1)(A-g)/g+I~+ Yh (6.12b)

The Clebsch-Gordan coefficients exhibit the
symmetry property

dim(d)
(a; bid), =c$, . (d; b*le&, (6.13)

and the Hermitian adjoints of tensor operator
components T(a) form a tensor operator belong-
ing to the conjugate representation

T(a*)=$, T (a)

I~ isa
bI gb

(u; blc&,(e; bid). = 5. 5 (6.9a) with

(6.14)
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The dimension of the irrep la& is given

dim(a) = —2'(A, + 1)(p, + 1)(A. +p, +2) .
6- (A, , 1») coefficients are defined by

'a{a, b, c, d; e f; pJ= p u(I, I»I,I„;I,I/}&a; b[le&, (e;d[[c&, (b;d[[f&,, (a;f [lc&,

(6.15)

(6.16)

where u(I, I»I, I0;I,I/) is a 6-j coefficient' of SU(2). The 6- (A., p) coefficients satisfy the relation

Z&a; f [[c), z'li(a, b, c, d; e,f; p) = g (b;d[[f),,„(a;b[[e&, ,(e;d[[c), u(I, I»I,I„;I,I/), (6.17)

which provides a convenient means of computing the value of 'u(a, b, c, d; e,f; p).

VII. MATRICES OF ISU(3) GENERATORS

Translation operators d' (and d1 ) transform
according to the (anti) triplet unitary irreducible
representation (irrep} of the group SU(3). The
components of the corresponding irreducible ten-
sor operators may be identified as

d(1o) d1 ~*(o1)
1/3 1/2 1/2 0 1/3 1/2 1/2 1

( lo)
1/3 1/2 1/2 P 1/3 1/2 1/2 2

( 10) 3 2[» ( p1)d, /3 PP d, d2/3 PP d3

(7.1)

The components of tensor operators belonging
to the contragredient representation have been
given by Hecht":

11/21/2 P2 2t 11/2 1/2 P2 1 l

(11) ] 3 ( ll)
T ooo

——2 &3 T3, T „,
T 010 2( 1 2) si T 01-1 Tl si

(7.2)

yl
1/21/2 +2 3 i 11/2 1/2

Q2 3 '

(V.3)

where

We may employ the SU(3) recoupling techniques
described in the previous section for obtaining the
matrix elements of the ISU(3) generators d', dt,
and A». It follows from Eqs. (V.l), (7.2), and
from the Wigner-Eckart theorem (6.V) that the
task then is equivalent to' the determination of the
corresponding reduced matrix elements. Fur-
thermore, the matrices of the SU(3) generators
are completely determined by the SU(3) repre-
sentation labels (A., p, ). We have'"

&/, pll&ll&, p& =- —(g..)'",1

translation operators vanish trivially. This fol-
lows from the decomposition of the product
(1,0) 8 (A., p, ) into irreducible terms. Application
of Speiser's graphical method" (Fig. 1}yields
that the remaining matrix elements contain the
states situated at the head of an "up" or "down"
or "sideways" weight vector of the (1, 0) triplet.
Correspondingly, we employ the notation

I&B-3, (~+1, p)lldl[B, (~, p)&[2,

D'= ~„,. ', „ I&B-3, (1, p-l)lldl[B, (~, p)&l',

dim(A. —1., p, + 1}
(7.5)

b dim(A. , p, )

XI&B-3,(~-1,p+1)[ldl[B, (& p))l'

The quantities U', D', and S' may be calculated
from the diagonal matrix elements of operator
equations (2.13), (2.14), and (2.27):

&a[dtd'Ia& =a, (7.6a)

&a[A» d d; [a& =BI»,

&al&g&/»d'd'; la& = [-I(i+1)+-'B'

', B+—', C2]&. —

(7.6b)

The evaluation of Eq. (7.6a) proceeds, applying
(6.7), as follows:

&aid,'d'la& = Q &aid('Ib&&bid'Ia&

= g l&b[d'[a&['

= Q &a' (1 o)'Ib&'l(blldlla&l'. (7.7)
i, ,b

Next we take the trace and use the orthogonality
property (6.9b) of.the Clebsch-Gordan coefficients:

g» —= 2C2=A. +P, +A, P. +3k. +3P, .

Some of the reduced matrix elements of the

(7 4)
Tr&ald1'd'la& = Q d1m(b)l&blldlla&l'

~a, &b

= dim(a)(U '+D'+S') . (7 6)
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Hence Eq. (7.6a) yields

U +D +S =1.
Equations (7.6b) and (7.6c) contain operator

expressions of the form

(7.9)

T d d (7.10)
Q AXIS

In Eq. (7.6b) we have T,' =A» and in (V.6c) we
have T» =A&A»~. .T.he quantity (7.10) involves an
invariant coupling of irreducible tensor opera-
tors." To make this manifest, we first need the
values of the Clebsch-Gordan coefficients

((ll) Y;I,I„;(10)Y',I,I„[[(10)I;I I„& .

From the symmetry property (6.13) it follows that

FIG. 1. The six sets of equivalent SU(3) representa-
tions provided by the substitution group. Substitutions
are represented by reflections of the (X,p) plane. The
decomposition of the direct product (1,0) (3 (X, p) is ob-
tained by Speiser 's graphical method.

I

((11)F,I„(10)I'2I, [[(10)I'3IQ = (-1) ' »»((10)I'2I, ; (11)F,I, [[(10)I'3I3&. (7.11)

The coupling of representation (1, 0), a triangular representation, involves no multiplicity problem. Values
of the isoscalar factors appearing on the right-hand side of Eq. (7.11) are given in Ref. 17, Table 4, p =1.
Unfortunately, the signs of the entries on p. 31, column p=1 in that reference are incorrect, when [L(. =0
and they have to be reversed. The sign anomaly in the case of triangular representations follows from the
sign convention (according to which, among the isoscalar factors with the largest value of I, and of I„, the
one with the smallest value of I", and I; and with the largest value of I~ is positive).

Using this information we obtain

T'„ddt»=4 Q T "d "d*"l((11)II„(10)11,[(IO)ll&&(IO)ll (Ol) -11,[(00)& .
all II' s

From symmetry relation (6.13),

(7.12)

(7.13)

We are now in position to evaluate the quantity

C = Tr(a[T»'d~Id»[a& .
Inserting complete sets of states, we get

(V.14)

C = —g (a[T " [a'&(a'[dn~ ' [b)(b[d ' la&((11); (10)II,[(10)ll,&g, . (7.15)

The phase factor $, may be eliminated by the relationship [Eq. (6.12a)]

&a[T " Iai& (aI[T(xi)[a

(a'[d* "[b)=(b[d 'o [a'&*,gl, ol.

We find then

(7.16)

C = —~ g (a; (11)II,[a'&(a'; (10)II,[b&(a; (10)II,[b&((ll)II, ; (10)II,I(lO)rl, &[&blldlla&['&a[IT[la&*
b, all II' s

(7.1V)= —~g dim(b)'u(a(11)b(10); a(10)p}[(b[[d[[a)['(a[[T[[a&*,

and the value of the multiplicity index p is determined by the precise choice of operator T. The summa-
tion extends over the nontrivial terms b=(X, p- I), (A, +I, p, ), and (&-I, p, +1).

Equation (6.1V) may now be used for the calculation of the 6 —' (Xp, ) coefficients
'u((~, p)(II)(~' p')(Io); (~, u)(10)p):
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&(x, p}Y, —,
'

p, ; (10)-,'Oll(z', P')Y I &'u = Q u(-,'p. ,I„,'p-, I.„I„O)
2 3 12

2 12

&& &(11)Y I.; (1o)Y I, ll(1o) —sO&&(~ p)Y&a V~ (Ii}Y»fall(»}Yiafia&

~ &(»)Y,.I,.; (1o)Y.I,II(~'p') Yi4&, (7.18)

where the subscript L labels quantum numbers of a state with the lowest weights (i.e., with p =0, (I =()).
Let the "triangular delta" tI, I,Ig be defined by '

1 if I„I„and I, can be triangle sides,
LI1I2Ig—

0 if I„ I„and I, cannot be triangle sides.
(7.18)

Then the value of the 6-j symbol required in Eq. (6.17) is"
1/2

(7.20)

In Eq. (7.18) some "quark" [i.e., state (10)] coupling isoscalar factors occur. The values of general
quark coupling isoscalar factors have been calculated by Asherova and Smirnov. '4 For convenience, we
list these values in Table II. Substitution in Eq. (7.18}yields the nonvanishing 6 —(& p, }coefficients

'u(n) =-a&(A, , P)(Yr, + l)(II, —a); (ll)00ll(Ii. , I»)(Y~+1)(I~- a)&»

&(~, p)(Yi+1), a(p —1); (11)—lail(Ii, V)Yi, i&„
v 3 (p, + 1)(A, + p, + 1) 'i'

h

'u(p) =--,'&(~, p. ) ,Y„I(ll)ooll(z, p. )Y,I,&„
'u(I~) =-—

&(Ii, p)Yr, +I,Ir, + —,'; (11)00ll(&, p)(Y~+I), (IJ. + —,')&»

e3 (p, +I@. ~"
&(~~, (»)(Y, +1), —.(u+1); (11)-1,all(~, p) Y,I,&„2 2(p, +2)

where we denote

(7.21)

~,(~) if (It', N')=(I, ( —1)

'U((A p, )(11)(A.'p, ')(10); (Ii, p, )(10)pj = 'Il»(P) if (Ii, ', p, ') = (Ii, + 1, p, )

qt, (I) If (~t', p')=(It-i, p+I).
The multiplicity index p enumerates the possible choices of operator 7»' in expression (7.10). For p= 1

we set T»' =A». The isoscalar factors in (7.21) are directly given as

&+ilA(ix) l&&
&~; (II)&ll~'&, =

& llAll )

(7.22)

(7.23)

where the matrix elements &a' A(n"I la& are listed in (6.5). We need not actually bother with factoring out
the reduced matrix element &a lAlla& since it would reappear in expression (7.17). Isoscalar factors (7.23)

TABLE II. The quark coupling isoscalar factors ((A. , plF&f&, (I, 0)F&f2ll(V, p'IFI), adapted from Asherova and Smirnov,
Hef. 34, where Y=-3 (2A, '+ p')+p+q and I=)p'+2 p-2 q.

Y2 I2

If,

1.
3 2

1.
3 2

I—
g

0
I

(A, ', p,') = (A, + 1, p,)

q(~ —p+1)(p —q+ 1)
(A, + 1)(A, + p, + 2) (p, +p —q + 1)&

p(A, +p- q+2)(p, +p+1)
„(A, + 1)(A, + p, + 2) (p +p —q + 1)

(A. -p+1)(A, + p, -q+2)
(A, +1)(A, + p, +2)

P', p,') =P.-1,p+1)

Pq(~+ p —q+2)
(A, + 1)(p, + 1)(p+p —q + 1)

(A, —p+1)(p, -q+1)(p, +p+1)
(A, + 1)(p, + 1)(p+p —q + 1)

(1+p)(p- q+1)
(A. + 1)(p,+1)

(X', p,') =(A, , p, —1)

Q. +I -q+2)(p. -q+l)(p+p+1) 1/2

(A, + p+ 2)(p, + 1)(p, +p —q+ 1)

pq(~ -p+»
(A, + p, +2)(@+1)(p+p—q+1)

(1+q)(p+p+1) '/'
(A, + @+2)(@+1)
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have been evaluated in Ref. 17.
In the alternative situation p =2 we choose T»'=A+». A safe way of calculating the corresponding iso-

scalar factors in (7.21) is to remember that T ~„",' =-(V3/2)T', and T,~,~, =-(1/R2)T', if T» is a traceless
operator. So we take T» =A.„'A» ——,'5»A. ",A„'. In order to carry out a procedure such as that for p =1 [cf.
Eq. (V.23)], we must compute the matrix elements &(Xp)~A„'A»~(A. p, )). This is easily done by successive
application of Eqs. (6.5}. Let me show an example:

&(A p)YII, [A»A,'((A p) YII ) =&(A p)[A,'(f (YII,)( 1'+ l, I+ ,', I, +—1)+f(Y„-(I+ 1)I,}((Y+1)(I- ,')(I—,+ 1))].

= &(A P )[1f (YII,)f(YII,) i (A P )YII ) +f (Y, —(I + 1),I,)f(Y, —(I +1),I,)j[ (A P )YII )

=f '(YII.) +f'(Y, —(I+ 1),I.} (7.24)

The calculation of the 6- (A, p, ) coefficients is completed by adding the diagonal terms given in (7.4). The
results for both values of p are

—
3&~V IIAII~V», (~) =-'(~+ 2~+ 6),

—3P ~IIA ll~~», (P) = -s(»+ V),

—3p~llAll~e)u, (~) =-. (~ —a+3),

—P V IIAAllxe)&, (n) =-', (Z+ I +1)u —2 ——. C. ,

—P ~llAAII&V». (P) =-'(~+ @ +1)~+-'(»+ ~) —-'. &.,

—&&u IIAAII&p)u, (&) =--'~(V+2}- 2 —-&. .

(7.25)

Equations (7.6) take the form

U2+D2+$ = 1,

-(p. + 1)D'+ (A. + 1)U» = 2B + 1 +
3 t (7.26)

» X(A + p + 1)+ [» (A + p + 1)(p, —A. —3)+ A + fi —1]D +» (2A + p)U + [A. —2 —
» A (X+ 2 p, + 6)]S =B + 3B + 3 C2 —j (j + 1) .

This system of linear equations is readily solved
for the reduced matrix elements of the transla-
tion operators:

(-'B-&- »)'-(i+ »)'
(A. + 1)(A, + p, + 2)

be studied. This task has actually been carried
out. For completeness, in the following section
we review the properties of the ISU(3) represen-
tations discovered by Perjds and Sparling. "

(»B+y+»)'- (j +»)'
(g+1)(A, + p, +2) (7.27) VIII. STRUCTURE OF THE REPRESENTATIONS

where

(»'B+z —-»)'+ (j+—,')'
(~+1)(~+1)

(7.28}

All the matrix elements of the generators of
ISU(3} are now available in Eqs. (6.5) and (7.27).
Next the structure of ISU(3) representations can

The discrete unitary irreps of the group ISU(3)
may be pictured" in the space of the labels 8 and
(A. , p.). It is a corollary to the Wigner-Eckart
theorem (6.V) that each allowable point of the
(B, (A, , l»)} space represents an SU(3) multiplet.
An irrep here is the innermost region bounded by
zeros of the reduced matrix elements of the
translation operators d' and d&~. These matrix
elements are U', D', S', and



ZOI TAg PERJ 201870

(-'& —~ —-')' —(j + ~a}'U. ~

(g+ 1)(X+~+2}

(k&+a+-.) -(z+x 8.1)
(A. + 1)(A. + p, + 2)
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(A. + 1)(li + 1)
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. (2 & (2

~B ~ ~ B-
(8.3b)

(8.4b)

Invariance, then, follows at once from (7.27)
and (8.1). An additional and independent substitu-
tion symmetry for ISU(3) is under

(8.5)

Hence, there are altogether 12 sets of equivalent
ISU(3) representations.

IX. MODELS AND PARTICLES

It is tempting to':make a comparison, at this
stage of development of our scheme, with the
observed systematics of hadrons. The link which'
connects the theory of unitary space with relativis-
tic phys ics is the twistor repr esentation. Any at-
tempt at a classification of hadron states into
irreps of the ISU(3) group will give at best ap-
proximate results, since particle interactions are
ignored here. There is no reason to presume
that interactions (other than gravitational) are in-
sensitive to the intrinsic twistor structure of the
particles involved. On the contrary, it is to be
expected that the ISU(3) symmetry of the kine-
matical twistor (A3) will prove a broken symmetry
in interactions. More impressive is the extent
to which hadron states can be made to fit already.

Let us first stay at lower energies where new
degrees of freedom such as charm do not show up
yet. Here a hadron is intrinsically characterized
by the eight quantum numbers called the spin,
mass, baryon number, the two SU(3) multiplet
labels, the hypercharge, and the two isospiri
labels. Then it is, at least, a strange coincidence
that the simplest, pointlike objects in the unitary
space have precisely this number of labels. "

Appareritly the parallel goes much farther. One
may identify, a suggestion by Perjes and Spar-
ling, "the hadron SU(3) quantum numbers with
(A., p, ), Y, I, and f„respectively [cf. Eq. (6.2)].
The identification of spin and mass with the
Casimir eigenvalues j and m, respectively, is
inherent to the twistor representation' (Appendix
A). There remains the baryon number on one
side and the label B on the other.

Conventionally, the baryon number has the eigen-
values 0 and +1 for an elementary particle. " Is
this not a peculiar observable'P Most particle
properties derive from group theory as eigenvalues
of Hermitian operators. It is hard to imagine
an operator fitting into a particle symmetry group
which would have the eigenvalues 0 and +1 in all

irreps. This is one of the difficulties I feel to be
present in the conventional formalism. The other
concerns the quark occupation number operators.
In the by-now-standard picture, each kind of
quark bears a uniquely specified baryon number.
This then tells the number of quarks (and anti-
quarks). That is to say, group theory, together
with the subordination of baryon numbers, gives
the number of quarks —again a peculiar situation.
We have the two Casimir operators of the group
SU(3) of which the quarks are elementary repre-
sentations, and we have the two numbers of
(anti) quarks. And these two pairs of quantum
numbers are generally different. The behavior
of quarks, objects defined by SU(3), depends on
something lying outside group theory.

Here we present a more consistent picture. Our
quantum number B has a discrete range which
may extend over the whole real line R. The
stability of stable particles is not especially due
to baryon conservation but primarily to vanishing
of the matrix elements of transition operators d'

and d~~ which change baryon number. In fact, all
stable particles occur at such points of the ISU(3)
irreps. The stable baryon and antibaryon octets
with the quantum numbers LB, (A, , p, )j =(+I, (1, 1)j
are only found in the j = —, irrep (ignoring, for the
moment, negative spin values). The baryon de-
cuplet (I, (3, 0)j and its anti-decuplet (-I, (0, 3)j
occur only in the j = —,

' irrep. Meson octets with
10, (1, 1)j occur only in the j=0 and 1 irreps and
thus they may be identified with the octets of
pseudoscalar and vector mesons, respectively.
There is room in the j = 0 irrep for the pseudo-
scalar-meson singlet but a vector singlet is pro-
hibited by the inequality ~+ p ~ 2j which is valid
for all ISU(3) irreps. There are two possible
ways of explaining the absence of this meson and
generally of the unstable Regge recurrences:
Either they lie in nonunitary points" or they
belong (or mix) to higher SU(3) representations. "
In any case, an extensive revision of our current
thinking on this is implied. I expect that the issue
will be settled by model calculations with inter-
acting state functions in the unitary space.

A phenomenological approach to symmetry
breaking avoiding the details of state functions has
been proposed by Perjbs and Sparl. ing." This
attempts to be a generalization of the Gell-Mann-
Okubo mass formula' using the ISU(3) group. The
physical mass squares are given by the matrix
elements of the operator T, belonging to a
Hermitian octet. The behavior of the operator
under the full inhomogeneous group is accounted
for by-constructing it from the generators of the
group. The range of the octet operators that may
be obtained in this way is then restricted by CPT
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invariance. Only octet operators with positive
charge parity are allowable. (The statement of
Ref. 16 that there are only two independent Her-
mitian octet operators of this kind is false be-
cause the baryon number B has negative charge
parity such that the charge parity of a tensor
operator can be suitably changed by multiplying
with an odd power of B. However, we may ex-
plain the observed regularities in the mass pa-
rameters by assuming that all mass-splitting
operators excepting &', give a negligible contribu-
tion, and that our original mass formula is a
reasonable approximation. )

The particular identification of state labels with
hadron quantum numbers described here already
implies that the 6 reflection defined in (8.3) is
charge conjugation. The physical significance of
other elements of the substitution group is less
clearcut. One may argue that the existence of
substitutions follows from the nonlinear choice of
representation labels and, as such, is not tied
to physics. This had been my own opinion prior
to the discovery by Penrose4' that Chew-Frautschi
plots with opposite signature show a symmetry
with respect to the substitution (8.5). [It should
be noted at this juncture that a lepton classifica-
tion scheme involving the SU(2) substitutions (8.5)
has been developed by Sparling. "] Returning to
the dihedral subgroup of ISU(3) substitutions, with
6 allocated to charge conjugation, the remaining
elements (cf. Fig. 1) await a physical interpreta-
tion. It is a remarkable fact~ that the space-time
reflections 6', 8, and 6 are elements of a dihedral
group when acting on an appropriately chosen
class of massive particle states. So, at least in
some cases, an interpretation of ISU(3) substitu-
tions appears to be at hand.

The familiarity with the structure of ISU(3)
representations offers us an insight into the over-
all. properties of hadron state functions in the
unitary space. From the nondiagonal nature of
the momentum operator d' we infer that these
functions are of spherical rather than plane-
wave type. Therefore, a representation of inter-
actions by some binding central tensor potential
in the unitary space may be envisaged.

There are at least two different ways in which
additional degrees of freedom enter this picture.
First, there is the problem of representing
several particles simultaneously. Each of them
has a center of mass (operator Z') in the unitary
space. Suppose some of the centers of mass are
arranged appropriately for an iriteraction to take
place (classically expressed, the particles meet
in the unitary space). Will the particles interact?
In the space-time, of course, they still may be
galaxies away from each other. We may possibly

regard space-time information as being the
"intrinsic charge" from the unitary point of view.
This is dual. to the conventional picture in terms
of space-time wave functions where the unitary
information goes into the charges (Fig. 4).

Many related questions still remain to be solved
in this field. Three-twistor particles have been
seen to define points in the unitary space. New
hadrons associated with new intrinsic degrees of
freedom can be built from more than three
twistors. In Sec. V we have shown that the
unitary-space picture still extends to four-
twistor systems, but the picture may remain
valid quite generally.
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+a ~ aZ&a. (A1)

where

0 1 0 0

0 0 0 0

0. 0 0 0, ,

lf ]=

0000

0001
0 0-10

(A2)

are "infinity twistors" breaking conformal sym-
metry as required by the properties of a massive
particle. ' The kinematical data of the particle
form a symmetric twistor

A"=Z Z" Z'I"
a + a

wherefrom the mass is obtained as

m2 = 2(z.p„'.)(z,'p")

(A3)

(A4)

(with summation over the dummy labels).
When the mass of the particle is nonzero, the

constituent twistors, together with the partial

APPENDIX A: THE TWISTOR REPRESENTATION

It is an important result in the theory of twistors
that a relativistic particle ean be decomposed into
the sum of n twistors. ' The number n of constitu-
ent twistors may be as few as just one for a mass-
less particle and two for a massive particle. I et
these constituents Zj Z2 y ~ ~ ~ y Zg be labeled by
Roman indices a, b, . . . such that we write Z,
for an n-twistor constituent andZ~' for its con-
jugate. The Greek twistor indices range through
the values 0, 1, 2, and 3.

The "partial momenta" P' of the constituents
are defined by
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3-twstor space
state function F(Z;

&NKOWSKI SPACE-TIME

STATE FUNCTION P (x)

UNITARY SPACE

STATE FUNCTION 8(zf )zgg)

FIG. 4. Dual descriptions of a quantum state in space-time and in unitary space. The complete information is car-
ried by a function E(Z&~) of points Z& in the 3-twistor space. Contour integration over internal degrees of freedom
gives the Standard quantum field theory pictures in Minkowski space-time. Alternatively, by projecting out space-
time information we obtain the unitary-space description of internal quantum numbers. Two particles meeting in
Minkowski space-time do not necessarily interact because they may not have the appropriate charges. Space-time
information is dually expressed by charges in the unitary picture. Two particles meeting in unitary space may still be
galaxies away in space-time. A triplet of vector operators is associated with a particle in the unitary space.

momenta P', form a nondegenerate system.
That is to say, they do not lie in a single plane
of the four-dimensional twistor space. Then any

(0) twistor may be written as a linear combina-
tion of Z, and P' .

For a given physical particle, there is a set of
possible choices of constituent twistors. It is not
difficult to obtain the relation between two
arbitrary selections of constituents, although the
details of this have not been spelled out in pre-
vious works. Each of the new supporting twistors
Z,' of a massive particle is written in terms of
the old n-twistors and partial momenta,

(A5)

Since Z, is arbitrary, the coefficients in the
parentheses must vanish separately:

U„bU*~ -5'=0c

and consequently,

A(b, ) = 0.

(A8a)

The meaning of this result is that an arbitrary
internal transformation of the twistor constituents
is of the form (A5) with U = [U,'] an n xn unitary
matrix and A = [A„]an n x n complex skew matrix.

Transformations (A5) define a group. This
internal twistor group has the infinitesimal
operators"

where U and A„are complex numbers. Using
I "I~„=O in Eg. (Al), we obts. in the new partial
momenta

b ZbZO

d. =Z.I Z', d'"=Z'I"Z"
ab g NS be a

(A9)

P" =U*P'
a (A6) where

Let Z, be now an arbitrary n-twistor. Then
the n-twistor Z,' given by Eg. (A5) will repre-
sent the same kinematical data (A1) as does Z, ,
provided

(U'U*'-5')Z'Z"'+U'U*'A I" I '"'=0
(A V)

(A10)[Z, , Z~t'] = 5,'5~, [Z, , Z, ] = 0.
Operators d, b and d "are skew in their indices
and each of them commutes with the other. The
matrix B~ is Hermitian: (B,)t =Bf, The non-.
vanishing commutators of the internal operators
are
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[Bb,Ba] = 5b Ba - 5a Bb,

[dab' Bc] 5b dac 5a bc t

[d1'ab gcq 5ad1bc '5»dtac
dJ 4 d

(A11a)

(A lib)

(A11c)

From the four-dimensional nature of the twistor
space it follows" that the internal operators are
not all independent. They satisfy the nonlinear
algebraic constraints"

dc)~ =O (A12a)

thatsd)q, By) 'd =0. (A12b)

(A13)

affects the internal operators as follows:

When the number of twistor constituents is less
than three, these relations are trivially satisfied
and may be ignored. For 8, three-twistor system,
only Eq. (A12b) gives a restriction. But generally
both of Eqs. (A12) decrease the number of inde-
pendent internal operators.

An internal translation [cf. Eq. (A5)]

Z' =Z +A I Z~
a a ab

Z' ' =Z'+A*"I Z'
Q Q e0 b

APPENDIX B: THE COLOR BASIS

s(= end»fj

such that our vectors commute as follows

[f', d'] = 0, [d', s»] = 0, [s;,s, ] = 0,

(B2)

(B3)

[f',f'] = e'"s, , [f', s, ] =d's„.

Operator s& is orthogonal (both left and right}
to d' and f':

(B4)

Unitary space, a 3-dimensional complex mani-
fold, has the isometry generators d', d;, and
A» with commutation properties (2.11). We define
the non-Hermitian vector operator

f' =A»d —Bd', (Bl)

where 8 =— (d "d„) 'd'd„A, [cf. Eq. (2.14)]. Operator
f' is left orthogonal to d, . This is to say that the
factor f' appears to the left of an antitriplet op-
erator (d~ ) in the equation f'd~t =0. Care should
be taken of factor ordering here because [f ,d»]-
= 5~& —&~, where &~ = d'dI, and & =—&"„.

Furthermore, we introduce the antitriplet
operator

d' =d d~"b=d~"
ab ab s (A14)

d's,. =0 =f's, (B5)

A quantum state is described by a homogeneous
twistor function E(z,') with respective homo-
geneity degrees p, in the twistor variables Z, .
In addition, the twistor function is to be an eigen-
function of physical operators. Further general-
ity is achieved' by allowing state functions of the
form E(W', Z, ). This means effectively that for
some twistor operators (those denoted by the
kernel letter W) the representations of the
twistor and the conjugate twistor are interchanged.
Generally, a physical operator is constructed
from W', Zb, and

Zt'=-&/sZ. , Wt =s/sW', . (A15)

Examples of these operators are the generators
of the Poincare group of the form (A3) and the
internal operators (A11). Note that the distinction
between S" and Z, variables in the state function
is merely for the purpose of exhibiting the rep-
resentation properties.

The wave function conveniently describing the
particle in a coordinate picture is obtained from
E(W', Z„) by integrating over the light cone of
space-time point x"". In this process, the de-
tails of the intrinsic twistor structure are
"averaged out. " The method is explicitly shown
on an economically manageable example, the
two-twistor system, in Sec. III.

We refer to the set of vector operators (a
triplet of triplets)

(d', f ', s"'f- (B6)

as the color triplet. The indices I, n, . . . label
the colors d, f, and s as they take the values 1,
2, and 3, respectively. A notion of color has
been introduced previously in strong-interaction
physics with somewhat different properties. '
This notion is saved in the present theory as an
SU(3) degree of freedom independent of the flavors
labeled by the indices i, j, k, . . . .

Relations (B3)-(B5)are "analytic" in the op-
erators, i.e., they do not involve adjoints. How-
ever, definition (B6) does contain the adjoint
vector s '. Consider now the adjoint triplet

4,'"]=-(d,',f&, s, ] . (B7)

f r» =E' sgd»,

d 4A =-e sgf»

(B8)

(BB)

Equations (B2), (B8), and (B9) express each of

The vectors of the color triplet are l.eft orthogonal
to those of the adjoint triplet. The notation (B6}
and (B7) has the advantage that tensors may thus
be expressed compactly in terms of color compo-
nents. An example: T»~ = T;& v' v' v~~~.

Some simple algebra provides the useful rela-
tions
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TABLE III. The color commutstors [S";= &;,p""'(Aj' +6„'B)&,'] .

Id', dkj =0 gi fkJ 0

[fi fk] &ikl

fd', sk) = 0

tf ', ski =d'sk

[s;, ski =0

analytic
comrnutators

Id', d, l =0 (d', y„) =&,'&-&„' fd', st"] =&~'"'d( the nonanalytic

lf', fk l =-Sk+ (2 &+2)(&k —~k&)

ff' s'l =-2d's~'-&'"'&Id~(&+2)+f~ +& " d~&~

'fk] ~ (~Ak + 2Sk gk ~@)

the color vectors in terms of a skewed product.
The quantity A is given by

A =-,'C, -q(q+1) —.'If(@+2)—

such that

f'f
g

—-&A, s 'sg -6'A,

(810)

(811)

[d', A] =y'.

The color commutators with the SU(3) invariant
B are

[d', B]= —', d',

[f',B]=,'f', -
[s ', 8]=——,'s '.

(813)

(814)

Tables I and III give the complete list of the
orthogonality properties and commutators,
respectively, of color vectors.

The color triplet is an almost complete set of
vector operators. %e establish this by consider-
ing the expression sks '. Inserting here defini-
tion (82) of s, and that of s' and using (2.25), we
obtain the completeness relation

5'&'A d'AAdt+f'Af~t+s„st'-.

f"=f'+ (d"t' -d't")dt, (815)

Si =Si + +Cigkd t

Hence, at those points of a representation space
where A =0, the color triplet and antitriplet col-
lapse as a basis. Note that the expression (814)
for sks ' has the further virtue that by its use
both the commutator [sj,, s '] and the anticommuta-
tor (s„,s ] are determined

A clearcut interpretation of color vectors is
obtained in terms of unitary kinematics. Con-
sider a particle with momentum d' and center-
of-mass operator Z'(7). Equation (3.32) then
shows that the vector f is proportional to the
orthogonal distance of the center of mass from
the origin (Fig. 4). From definition (82), s& is
the orbital momentum vector. Thus f' and s&

vanish for a particle moving radially in unitary
space.

This interpretation is confirmed, incidentally,
by the translation properties of the color vectors.
The behavior of the ISU(3) infinitesimal operators
under a shift of the origin s" =z'+t' is given in
Eqs. (2.12). Hence from (81) and (82) we obtain
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