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%'e examine the question of whether or not special relativity requires that the pressure must be less than
the energy density of matter. To do this, we study a model of matter consisting of a classical one-
dimensional lattice of point particles interacting via a potential satisfying-the three-dimensional Klein-Gordon
equation. Despite the fact that for this model the pressure p can exceed the energy density pc, giving rise to
an adiabatic sound speed c, = (dp/d p)" & c, and in the low-frequency limit to a group velocity des/dk & c
and phase velocity co/k & c, for this type of lattice model, the formally calculated speed c, is not a signal
speed and we find that the, true signal propagation speed v„g„,l (c. Thus special relativity alone does not
guarantee that p (pc. We briefly discuss other constraints on p(p), none of which seem sufficiently
rigorous to rule out the possibility that p & pc2 at high densities. The significance of the present result for
the upper mass limit of neutron stars and the existence of black holes is also considered.

I. INTRODUCTION

The equation of state P(p) of matter at high den-
sities (p»10' g/cm') is totally unknown. None-
theless, it is often asserted that very general
physical principles place rigorous restrictions on
the allowed P(p). ' ' In this paper we examine the
following question: What restriction does special
relativity place on the allowed equation of state
of matter at high densities? In particular, does
the condition that no signal can propagate faster
than the speed of light necessarily imply that
P &pc?

It appears that in much of the literature which
addresses this problem, it is tacitly assumed that,
given an equation of state P(p), the adiabatic
sound speed c, = (dP/dp)' ' necessarily represents
the propagation speed v, for a signal in the med-
ium. Since it is v, which is definitely constrained
by special relativity, we must also examine sev-
eral related questions. Given a medium with par-
ticles interacting via a potential V(r), what is the
connection between V(s') and P(p)'? If the medium
is dispersive, what is the associated dispersion
relation &d(k)? Most crucially, what is the con-
nection between the group velocity ti = Chd/dk, the
phase velocity vs= &d/k, the adiabatic sound speed
c,= (dp/dp)'1', and the actual propagation speed
of a signal v, ?

We are motivated to study these questions be-
cause of their possible applicability to the dense
interiors of neutron stars, where the interaction
potential between hadrons is unknown. Taking the
point of view that the repulsive hard core exhibited
at lower densities becomes arbitrarily rigid at
higher densities, one might have that p(p) —~ for

finite p. However, one could immediately rule out
such a possibility if v, —~ as well, assuming that
special relativity and causality are still true at
high densities. In the limit of indefinitely rigid
interactions, matter could become incompressible.
Vile are therefore also led to consider what equation
of state could lead to the incompressible condition
p = constant and to check if, . as seems obvious
Ps irrta facie, such a situation also requires that

The importance of the answeis to all
these questions to our understanding of the upper
mass limit of neutron stars and the existence of
black holes will be examined in Sec. V.

II. SOME EARLIER RESTRICTIONS ON p(p)

For a gas consisting of free, noninteracting par-
ticles in three dimensions, one cad rigorously
prove on the basis of special-relativistic kine-
matics alone that P (—,

' pc'. [In 1' dimensions, one
has P ( (I/N) pc'. ] Such a result also applies to a
'pure radiation field. However, if repulsive inter-
actions between particles are included, this limit
must be reconsidered. In 1961, Zeldovitch' con-
structed an explicit classical model of matter con-
sisting of particles interacting via neutral-vector-
meson exchange which has P —pc' and dP/dp- c'
as p-~. On the basis of this model, Zeldovitch
concludes that c,= (dp/dp)'ts (c is a rigorous
upper limit to any allowed stiffness of matter.
This conclusion, however, depends on equating
the signal propagation speed v, with c„an assump-
tion which is not necessarily valid. Similarly, it
is known that the group velocity v need not equal
the signal velocity. For example, as first dis-
cussed by Sommerfeld and Brillouin, the group
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velocity of electromagnetic waves in a. dispersive
medium can exceed c for frequencies near reso-
nance. That v, for electromagnetic waves must
be less than c is obvious. This is ma.de absolutely
clear when one considers not the macroscopic in-
dex of refra, ction but the underlying microscopic
events in which the wave is propagating at speed
c between scatterings by the individual charges in
the medium. One then finds directly that v, (c.
Because of such confusion, we wish to carefully
distinguish between equations of state which are
"ultrabaric, ' i.e., which have P & pc', which may
or may not be physically allowed, and those which
are superluminal, i.e., with v, & c, which a,re ex-
cluded by causality.

In a, series of intriguing papers, Bludman and
Ruderman" and Ruderman' examined several
models of matter in which the adiabatic sound
speed c, exceeds the speed of light. Two types of
models were studied in detail: lattices of particles
intera, cting via. neutral-vector -meson exchange and
a classical field model.

In the pa.rticle models, individual particles inter-
act with each other by a short-range repulsive
Yukawa interaction. Despite the fa,ct that the par-
ticles interact through ordinary retarded neutral-
vector fields, there exists a regime of high density
in which P & pc' and in which the sound speed c, & c.
They conclude that such a model is noncausal by
identifying the signal propa, gation speed with the
sound speed. They conclude that "such apparently
noncausal behavior (occurs) whenever the calcu-
lated self-energy of a, pa'rticle exceeds its renor-
malized rest energy. " They also conclude that
Lorentz invariance alone imposes no restriction
on c, or on the ratio of the pressure to the energy
density. Nonetheless, most physicists would tend
to disallow such models if they did indeed violate
causality (which we take here to mean that v, & c).
In the second paper, ' Ruderman takes the point of
view that the origin of the noncausality lies in the
choice of boundary conditions imposed on the prob-
lem, much as the motion of a point electron in
cia,ssical electrodynamics can show pre-a, ccelera-
tion (or runaway solutions). In the last paper, '
they conclude for a quantum-mechanical model
that real matter, if it is sta, ble at very high densi-
ties, must not show "noncausal sound propagation. "

The other class of models examined by Bludman
and Ruderman' are Lorentz-invariant nonlinear
field theories which, in the limit of low densities,
reduce to a noninteracting Klein-Gordon field.
For such models, the dispersion relation leads to
a group velocity in excess of the speed of light
for some frequency ranges. However, by applying
the classica. l analysis of Brillouin and Sommerfeld
to these models, Fox, Kuper, and Lipson' were

able to show that the acoustic branch of the model
is causal. However, they could say nothing about
the optical branch. (Though they find that a neces-
sary condition for causality violation is that the
infinite frequency limit of the phase velocity shall
exceed the speed of light, their result has no bea, r-
ing on the particle models whose dispersion rela-
tion is not derived from a wave equation. )

In the following discussion, we shall only address
the problem of classical particles interacting via
a field. Bludman and Ruderman have previously
considered a, one-dimensional lattice of particles
with one-dimensional interactions and a. three-
dimensional lattice with three -dimensional inter-
actions. We have examined a one -dimensional
lattice of particles with three-dimensional inter-
actions, which exhibits all of the physical features
of the Bludman-Ruder man models, and yet is suf-
ficiently tractable to provide a clearer view of the
origin of the apparent noncausal behavior of ultra-
baric matter. We present the results of our analy-
sis in the following section.

The point charges are assumed to be regularly
spaced at equilibrium positions I a (/ is an integer).
The deviation from equilibrium of the lth particle is
denoted by x, (t) and assumed to have the standard
normal-mode form

(t) ~ el (& fk tel pf ) (2)

with e parallel to a and where ~e (« ~a~. Then

p(x', t')=g Q 5(x' —I a-x, (t'))

a.nd

J(x', t') =g g x'(t')5(x' —I a —x, (t')),

where we have placed the observation point on the

(4)

III. AN ULTRABARIC EQUATION OF STATE
e

To clarify the problems posed by the Bludman-
Ruderma, n model, we consider a one-dimensional
lattice of point pa, rticles interacting via a potential
A.„satisfying the three-dimensional Klein-Gordon
equation,

m~c)" 4v
A, = ——J„,I )

where J'„=p(x, t)U„, A„={P,A}, p(x, t) is the
charge density (not electric charge), m* is the
mass of the neutral vector meson mediating the
repulsive intera. ction, and U„ is the four-velocity.

The force experienced by a pa, rticle of charge g
in the lattice parallel to its motion is

F(x, t) = gVP(x, t)+-—I aX(x, t)
c gt
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nth particle and have excluded its contribution to
the charge and current densities.

The potentials are computed with the aid of the
Green's function for the three-dimensional Klein-
Gordon equation:

(7' = t —t', r =
~
x —x'

~
). With this, (t) and A are

00 p 00

(t)(x, t) = d'x'dt'p(x', t')G(x x-', t t')—,
«00 «00

1 ' d(dG(««I t . tl) e t(d I t')
Jx -x', t „2m

~/2

x exp i —,—p' ~x-xd(
C

where p, =—m0c/I and where G(r, 7)=0 for r& cr

A(x, t) —f= d'x'dt'J(x', t')G(x x', t -t'). -
C

t

Placing the observation point at the position of
the nth particle and using Eqs. (3) and (4) yields

and

" dedt' e '"" ' 'exp[-(It' —&u'/c')'~'I (n -l) a, +x„(t) -xt(t') I]
l(n -l) a+x„(t) -x, (t') I

l&n

A: [x„t g
" "d(ddt' x, (t')e '"" ' )exp[-(p. ' —(u'/c')'~'I (n-l)a+x„(t) -x, (t')I]

2 7f l(n -l) a+x„(t) -x, (t') I

Since we wish to obtain the force on the nth particle to first order in the deviations from equilibrium,
and since that force as given by (1) is

F[x„(t)]=-g V„- „,y[x„(t)]+-1 &A[x„(t)]

it is clear that (t)[x„(t)] must be computed to second order in the xt's while A[x„(t)] need only be computed

to first order in the x, 's.
Expanding the quantity

~
(n —l) a+x„(t) -xt(t')

~
and using the fact that 5(&u) = (1/2w) f"„dt'e'"' results in,

to the required order in the x, 's,

Q[x (t)]— g x 2(t)e-tt In-t ltt 1 2+ I1 + 1g 1

a, ,„ ln —l! " '
I n l I a (n l)2a'

and

-x„(t)x1(t)exp — It
0

~

n
C

c'
I n —lI a (n —l)'a'

(n -l)'a'
I

Consider this relation for vo & uc. If p,a»1 we can sum only over nearest neighbors with negligible
error. Then if we note that Eq. (2) implies

x„„(t)+x„,(t) = 2 x„(t)coska,

the dispersion relation becomes

ZQP g ~ (d
A[x„(t)]=— ' Q x, (t)exp — g' —,'

~n -l ~a
n~l «

where only terms containing x„(t) have been retained for (t)[x„(t)]and where the vector notation has been
dropped since the motion is one dimensional.

Now using Eqs. (1) and (2) results in the dispersion relation

2 I

a In —l, l
"

(

In —l,la (n l 'a' (—
l&n

~ 2 1/2 2(p2 —0 2/C2)1 2

—x, (t)exp — p,
' —,' In —l ~a p,'+

C
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pa g'e "' 4 2 2e 40
m+- — coska &u

'= sin (—', ka).
C

In the long-wavelength limit (ka «1) we have

k'c'(pa)'(g'e "'/a)
mc'+ (pa)(g'e "'/a)

The pha, se and group velocities in this limit a,re

(o, d(u, (pa}'(g'e "'/a)
k ' dk mc'+ ( pa)(g'e "/a) l

If (pa)(g'e "/a}»mc', then

v, = v, = (p, a)'~'c» c.
The computational method used here was that employed by Bludman and Ruderman. ' To verify the

validity of this technique the. calculation was repeated using the explicitly retarded, closed form of the
Klein-Gordon equation Green's function'

5(t —f' —lx-x'I/c) pd( pc[(t -t')' —lx-x'I'/c']'~'}, !x-x'I
7 lx «xi! [(t tl)2 lx «I!2/ 2]ll2

Ta,king the sum yields
2

e/n = m c' ——ln(1 —e "') .a

But n = 1/a so that

1 2

e= — mc ——ln(1 —e "')
a 'g a

Now the first law of thermodynamics dE= 1'dS
-Pd V implies that

(10)

P=

for a system at zero temperature. If there are N
particles in the system then

E = (e/n)N, V= Na,

The results obtained by this method were identical
to those obtained above. "

We may derive the one-dimensiona, l "pressure"
for the chain model by considering the interactions
when all the particles are at rest. In this case
retarded effects do not enter into the calculations.

The interaction energy between particles i and j
in the chain is

+2 - 4 I rg-ry f

lx, -~)l

If n is the number density (number per unit length)
and e the energy density, then the energy per par-
ticle e/n is

8- 4I J le
&/n=mc'+-', g' g' '

oo 4)g
=mc'+g' g la

In the nearest-neighbor approximation p,a» 1.
Thus the energy density becomes

2e- 4a"
e= — mc+

a a

and the pressure becomes
2

P = g—, (ua)e

Now (10}implies that

g 2e~ 44 ~C2= C—
a a

so that

P= pa g-

For e»mc'/a

P = (p,a)e, (i4)

with c,'=dP/dp= (pa)c'. Since p,a»1, c,'» c'.
With p & e, it might seem that such a, medium

does not conserve energy when expanded from a
dense state to a low-density state. That the sys-
tem is conservative, however, may be seen by
integrating directly the expression (11) for P from
a state with p=p, with energy Eo to p=0 and E

I

where E is the total energy of the system and V is
the total volume (length) of the system. Then

P = ———[N(e/n)] =—1 8 8(e/n)
& Ba Qa

that is,

P=~ „, —ln(1 —e )
g' (Va)e "'
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=Nmc'. One will find that fP dv = Eo —Nm c
That this must be so, of course, follows from the
definition of P by the first law of thermodynamics
with &= 0 and with no dissipation.

IV. ORIGIN OF THE APPARENT DISCREPANCY WITH
SPECIAL RELATIVITY

interparticle force can be transmitted: The force
propagation speed will set the upper limit for the
propagation speed. Thus we consider first the
cia,ssical analog of the one-dimensional Klein-
Gordon field:

8 ~ 8 —fJ, 3 X~t =0 ~gx' c„' Bt'

In order to try to clarify the origin of the ap-
pa.rent noncausality exhibited by our model, let us
consider a Newtonian analog (which neglects re-
tardation effects), i.e., the familiar chain of mass
points coupled by springs in Newtonian mechanics.
The force on the nth mass is

mx'„(t) = -y[2 x„(t) —x„,(t) —x„„(t)],

where y is the spring constant. Again taking x„(t)
of the form

(t) Cek/ttttte $ ottd

This is the wave equation for the transverse dis-
placement z(x, t) of a stretched string embedded in
a,n elastic medium which provides a restoring
force proportional to z. In this case, z is the
analog of either the scalar potential (t) or the vector
potential A.

When one end (at x= 0) of the string is driven
with a force F(t)=F,e '"o' the resulting displace-
ments are proportional to"

~ 2 1/2
z(x, t)~e '"o'exp i ', —t(,

' x, for ~,) p,c„

the dispersion relation becomes

m(d, ' = 4 ysin'(-', ka) . (15)

~ 2 1/2
z (x, t) ~ e '"o' exp — g' — ', x, for (o, ( t),c„.

cg

In the limit of long wavelengths (ka «1) this be-
comes

For ~p & p,c„ there is wave motion with phase
velocity

yk a ya
(dp kc,I Bzc.

with group and phase velocities

If we adjust ya' to be larger than mc', the group
and phase velocities will exceed c. At this point
the similarity of Eqs. (7) (for ka «1) and (15)
should be noted. The similarity is more than a
coincidence. It will be shown that (7) is the result
of an implicitly Newtonian calculation even though
retarded Green's functions were used in deriving
it.

In order to see how such a situation could arise
we now examine the propaga, tion of the force.
Equation (7) is the dispersion relation for the chain
with nearest-neighbor interactions. The force on
the nth particle can only come from its intera, ction
with the fields produced by the (n —1)th and (n+ 1)th
particles through Eq. (1). If one considers the
propagation of a, disturbance (in the increasing n
direction) through a chain initially at rest, it is
clear that the nth particle will not experience a
force until the perturbed field generated by the
movement of the (n —1)th pa.rticle has reached it.
It is therefore clear that a disturbance cannot
propagate through a chain at rest faster than the

cg
/t( 0 )

(1 2 2/ 2)1/2

However, for ~p &p.c& there is no wave motion.
The motion of the string is damped in space and
is everywhere in phase with the driving force.
That is, no retardation of any kind is evident, and
it appears that the force is instantaneously trans-
mitted to every point on the string. This is a gen-
eral feature of the one- and three-dimensional
Klein-Gordon equations for a stea, dy sinusoidal
force of frequency ~p & p, c&. I"ollozoing Bxillouin
and Sommexfeld, ' u)e take a signal to be a u)ave
train zohich vanishes prior to a staRing time tp.
Thus we consider the response of the string to a
signal of the same frequency'.

0,F(t)= ' at x=0.
~ e-cMpt

Thus

F(x', t') =F,e '"0'u, [t' —t,] 5(x')

and

x(x, t) f f dx'dt'F(x', t )G(x-x', t —t ), ''
~ C)O 00

where the one-dimensional Klein-Gordon equation
Green's function is
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Thus
' t' 2 Z/2

z(x, t) ~ d& dt d&v -i~e-~ & 2 ~ [ i) &~-ot ~ (tt t )p(&1}
2m' CA

dmin@
j/2 V

llut exp pa
i

~ cl (0) b!P)t

t -~ 2Ã j

We now assume to) 0 and introduce a conver-
gence factor in order to perform the integration
over t'. When the resulting contour integral is
evaluated, it is found that

z(x, t)=0 for t (to+x/c~

2 j /2

z(x, t)~e '"o'exp — p'- ', x
CA

for t) to+@/cz.

Thus the complete solution is

~ 2 I/2
z (x, t) ~ e '"0' exp — p,

' —, x
CA

xu, (t-t, -x c/„).

Now we see that the displacement field propagates
down the string at speed cA. Ahead of this wave-
front there is no motion. Behind the wavefront
the motion of the string is in phase with the force.

This behavior is the time varying analog of the
well-known case in electromagnetism of the field
of a constantly moving charge. If the charge has
been in constant, uniform motion for a long period
of time, then the electric field, even at great dis-
tances, will point directly at the present position
of the charge and not at its retarded position. The

'

field appears to have instantaneous knowledge of
the position of the charge. However, if the charge
i's suddenly accelerated, the changed field will
propagate outward at speed c.

Before proceeding to an example for the three-
dimensional Klein-Gordon equation it will be in-
structive to calculate the dispersion relation for
the Klein-Gordon field itself:

With P(x, t) &e ""we obtain

2

-u+ —2-I =O.c

This yields a group velocity

do) ck
(u2 + p, 2)'&2

For v &,uc the group velocity is less than c but
for ~ ( p, c it becomes imaginary and is a clear
indication of anomalous behavior. The dispersion
relation here is similar to that for propagation in
a waveguide and & = p.c corresponds to the cutoff
frequency below which the waves are evanescent
(damped). "

To clarify the situation further we present an
example for the three-dimensional Klein-Gordon
equation. It is a somewhat unphysical example
but is mathematically convenient and illustrates
the point. Consider a point charge with &0 & LLl,c.

p(x', t') =ge'"o'5(x') .
Then, using the Green's function as before,

~ 2 1/2
y(x, t) = e'"o' exp — p,

' — '
~

x
~

,Ix.l

Now consider the response to a point charge ini-
tially at rest which begins to oscillate at time t,:

p(x', t'}=ge'"0'5(x')u, (t' -t,), t, )0.
In this case

( ~ 2 j/2
@(x,t) = g e'""exp —

~ p,
' — ',

~

x
(

xu t-t —'

Thus, the force is actually transmitted at speed c.
Clearly, since a signal cannot be propagated
through the lattice any faster than the interparticle
forces can be transmitted, the upper limit of the
signal propagation speed through the lattice is c.

If we solve a normal-mode problem with a fre-
quency m & p,c with normal-mode displacements
proportional to exp(-iar, t), we will inevitab)y ob-
tain a classical Newtonian dispersion relation
where the group velocity can exceed c because the
normal-mode displacement form does not have the
character of a signal and will result in an aPPaxent
infinite interaction speed for the force. Then the
normal-mode problem is not an initial-value prob-
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lem. In the analysis of Sec. III a dispersion rela-
tion that was valid for low frequencies only was
obtained (&o «p, ,c). A signal as defined by Bril-
louin and Sommerfeld wi11 contain all components
of frequency because there is a well defined time
at which the signal starts. Thus, the behavior of
the system for high frequencies is necessary in
order to characterize the propagation of a transient
disturbance, i.e., a signal.

The examples of a point charge previously con-
sidered illustrate the problem nicely. For the
first case of a steady harmonic oscillation, the
resulting field appears to be transmitted instan-
taneously (i.e, with no phase delay). However,
when the same charge is started from rest, the
disturbance in the field propagates at c and its
causal nature is evident.

The normal mode d-isplacement form [Eq. (2)]
is analogous to the former case of the point charge
that has been harmonica/ly oscillating from t = -~
and gives rise to a field which apparently propa-
gates instantaneously. Nonetheless, signals will
propagate with a velocity v, & c.

One may still wonder how the adiabatic sound
speed can exceed the speed of light, and yet sig-
nals propagate at speed less than c. One reason
may be that the p(p) relation arises from a static
calculation, ignoring 'the dynamics of the medium.
One would get the same equation of state whether
one used Newtonian theory or special relativity.
However, when we consider the dynamics of the
system we must take new considerations into ac-
count, namely the retardation of the interaction
forced upon us by special. relativity. The notion
that c, is a signal propagation speed is a carry-
over from Newtonian hydrodynamics. In that
case, one has assumed infinite interaction speed
but finite temperature, so that the characteristic
speed of a sound wave is tied to the thermal veloc-
ity, which itself is a function of the static thermo-
dynamic properties of the material. Therefore,
the static and dynamic calculations give the same
result in Newtonian hydrodynamics. In our model,
we have finite interaction speed and zero tempera-
ture. Thus in our model the adiabatic sound speed
is not a dynamically meaningful speed, but only a
measure of the local stiffness.

Another point is that a lattice does not have an
infinite range of allowed frequencies of vibration,
while it does have an infinite range of wave vec-
tors. The continuum limit of the lattice model
does have an infinite range of allowed frequencies
of vibration. If we consider a signal to be a wave-
form which vanishes prior to some time to, then
its Fourier spectrum will contain components at
all frequencies. This suggests that the group
velocity v, computed from a lattice dispersion re-

lation is not capable of accurately giving the veloc-
ity of propagation of the waveform because the
dispersion relation lacks the necessary high-fre-
quency information which defines the signal boun-
dary. A continuum dispersion relation does not
have this problem. So the apparent disagreement
between one's intuitive association of c, with v,
may be due to the misapplication of continuum no-
tions to a lattice.

V. IMPLICATIONS FOR THE NEUTRON-STAR UPPER
MASS LIMIT

In the preceding section, we have shown, at
least classically, that one can have p= p,apc'
—= &pc' with & & 1. For the particular model under
discussion above, we have dp/dp= nc'= constant.
Now given the equation of state of matter and a-
theory of gravity, one can compute the mass of an
object in hydrostatic equilibrium between the pres-
sure support and the gravitational attraction of the
matter. For objects of a solar mass or greater
Mo= 2 ~ 10"g and mean density greater than nu-
clear density p—= p~=2 & 10'~ g/cm', Newtonian
gravitational theory must be replaced by a more
correct theory of gravity to determine the struc-
ture of the resulting configurations since GM/Rc'
is large.

As is well known, for a given equation of state
the hydrostatic equilibrium equation can be inte-
grated (with the central density as a parameter)
to yield a sequence of objects of varying mass. "
At present, there appear to be only two physically
motivated viable theories of gravity. general rela-
tivity and the bimetric theory of Nathan Rosen. '
(By viable, we mean internally consistent and in
agreement with all current observational tests. )
In both theories, such a procedure leads to a mass-
eentral density relation containing a maximum.
To the left of this peak, all stars are stable to
small perturbations; to the right, unstable. The
value of the maximum mass depends crucially on
the equation of state and the theory of gravitation. ".

In general relativity, we have previously shown"
that, for an equation of state of the form p = &pc'
above some density pu (then matched to a softer
equation of state with p «pc'), for infinite central
density

This function has a maximum for &=1. For finite
central densities, we found the same result: If
the adiabatic sound speed is a constant, the maxi-
mum upper mass limit occurs if a= 1. Assuming
such a stiff equation of state to be applicable above
nuclear density [we actually use p = c'(p —p„)+p„
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in order to match onto the equation of state at
lower densities], we found M „x4.8 Mo if p„=p„.

In the bimetric theory, however, the situation is
quite different. " Despite the fact that for a given
equation of state there always exists some upper
mass limit, if one chooses p) pc', M,„ is larger
than it is for P & pc'. An approximate scaling ar-
gument (also applicable for Newtonian gravitation)
shows that M, o(- Q." '. Thus in the bimetric the-
ory, by increasing dp/dp without limit, the maxi-
mum mass of neutron stars can become arbitrarily
la,rge. Therefore, at least in the bimetric theory,
if matter at high densities is very rigid, collapse
to a singularity can be naturally avoided.

In connection with the present discussion, which
allows the existence of ultrabaric matter, we wish
to add a, remark about the extreme limit of the
present discussion. For incompressible matter
p= constant. It is of interest in general relativity
because it allows the hydrostatic equilibrium equa-
tion to be integrated exactly. " Furthermore, it
places an absolute upper limit on the allowed mass
for equilibrium configurations. " It is easy to
show that, for an object composed of matter which
is incompressible above a density p» the mass of
the object must be

The incompressible model has never been de-
rived a,s the general limit of an explicit equation
of state. (It is not, for example, the limit of p
= np" with either n, n, or both —~.) And since
p=constant implies that dP/dp is infinite, the
ma, ss corresponding to this case is not generally
considered to be a physical possibility. In view of

I

the result of the previous section that dp/dp) c'
does not necessarily violate causa, lity, it is per-
haps possible that a model of matter can be con-
structed to yield the equation of state in question
with dp/dp) c' but with a subluminal signal propa-
gation speed. In that event, the physically allow-
able upper mass limit for a neutron sta,r in gen-
era, l relativity would be -8 M. In the bimetric
theory, however, the upper mass limit would be
infinite.

%e would therefore like to present an equation
of state that will yield incompressibility in a, suit-
able limit. Consider the equation of state

1/2 2

P(p) =
(

'
),q. (17)

po —p

for p- po. If we assume that e«p„ then this equa-
tion of state will yield an enormous variation of
pressure for a small cha.nge in density. For ex-
ample if p= p» P is infinite, while if p= pp
then

1/2 2
~ 1/2

po 2 2
P(po -') = |(2 = poc poc ~

po

To numerically compute a model neutron star,
one chooses a p(0) very slightly less than p, and
integrates the hydrostatic equilibrium equation
radially outward until P = (e /p, )' '

p,c'.
Now if we take the limit e- 0, we are integrating

the hydrostatic equilibrium equation from P = ~ at
x=0 top = 0 at the star surface. Our numerical
calculations for e = 0.01po gave M = 7.8 Mo at a,

radius of 26. 7 km, close to the exact values for
p= p„. That this equation of state really does re-
sult in an incompressible star can be seen by ex-
amining the general relativistic hydrostatic equi-
librium equation"

dP GM(r) p(r ) [1 + P (r)/p(r) c'] [1+ 4 mr'p (r)/M (r)c']
1 —2GM(r)//rP

If we set dP/dr= (dp/dr)(dp/dp) this becomes

dp GM(r) p(r)[1 +P (r)/p(r) c'][1+ 4''P (r)/M (r)c']
dh r'(dP d/p)[1 —2GM(r)/rc ]

(18)

If p is approximately constant, then M(r) —= 4vr'p, /3 and using (17), Eq. (18) becomes

dp 87rGPO r 1 [(p. —p)+ (~/p. '")(p, —p)i"][(p.—p)"'+3&/po"']
dr Sc' 1 — 8Gvp, r' /S'c E

~dp/dr~ will be at a maximum when r = R and p =
po —e. Then

dp 2GM 1 'l
p e ~ &' e+ 1 2dr Rc' 1 -2GM/Rc' i' B po po'~' po

=-('-')
i,
;:)'"
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As ~ -0 the density gradient vanishes and the
exact incompressible case is recovered.

VI. CONCLUSIONS

The question of whether or not the pressure can
exceed the energy density in physically realizable
matter, of course, must be asked of parts of
physics other than special relativity alone. How-
ever, none of the discussions we have been able
to find in the literature seem to-be of a sufficiently
general nature to rigorously guarantee that the
pressure of matter must be less than its energy
density. For example, Bludman and Ruderman
showed' only that "a quantum version of the. same
model, if it is stable against spontaneous pair
production, can be neither ultrabaric nor super-
lumiaal (i.e., P & pc' and dp/dp & c') if, at high
density, the correlation energy increases faster
than the number of particles. " Assuming both
special relativity and conservation of energy, and

even considering what appears to be only the kine-
tic pressure of a one-dimensional lattice, Geroch
and Hegyi" were unable to restrict pressure for
matter at high densities to p & pe'.

With the restriction removed that the energy
density exceed the pressure, neutron stars'may
exist with indefinitely large mass, avoiding the
necessity of the ultimate evolution of sufficiently
massive stars to physical singularities.

In conclusion we have shown that a particular
classical model of matter with p & pe' at high den-
sities has a signal propagation speed v, &c.
Therefore, ultrabaric matter need not be non-
causal and is not excluded by special relativity.
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