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Two macroscopic effects of parity nonconservation are considered. (i) Particle emission by rotating black
holes is shown to be asymmetric. In particular, neutrinos are emitted preferentially in the direction opposite
to the hole's angular momentum. (ii) It is shown that in a rotating thermal radiation there exist equilibrium
neutrino and antineutrino currents parallel to the angular velocity vector.

I. INTRODUCTION AND SUMMARY

Parity noriconservation was predicted theoreti-
cally by Lee and Yang' and discovered experimen-
tally by Wu' in a famous experiment in which she
observed electron emission by radioactive cobalt
atoms. Wu found that the atoms emitted more
electrons in the direction of their spins than in the
opposite direction. Another manifestation of par-
ity nonconservation is the left-handedness of neu-
trinos. The spin of neutrinos is always antipar-
allel to the direction of their motion. Antineu-
trinos are right-handed; their spin is parallel to
the direction of their motion. In the present paper
it will be shown that effects very similar to that
observed by Wu occur on a macroscopic scale as
well. (A brief account of a part of this work had
been published earlier. ")

In the next section of this paper particle emission
by rotating black holes is shown to be asymmetric.
In particular, more neutrinos are emitted in the
direction antiparallel to the hole's angular momen-
tum and more antineutrinos in the parallel direc-
tion. The characteristic parameter of asymmetry
is' -QM, where 0 is the angular velocity and M is
the mass of the black hole. (The minus sign sig-
nifies that neutrinos are emitted preferentially in
the direction opposite to that of the hole's angular
momentum. ) For a rapidly rotating black hole this
parameter is of order -1. It is noted that the re-
sults obtained apply not only to black holes but to
any rotating star emitting thermal neutrinos. If
the chemical potential of neutrinos in the star is
positive (negative}, then the star accelerates like
a rocket in the direction parallel (antiparallel) to
its angular momentum.

In Sec. III it is shown that intrinsic parity non-
conservation for neutrinos gives rise to an equil-
ibrium neutrino current in a rotating thermal ra-
diation. In a charge-symmetric radiation, when
the chemical potential of neutrinos p. is zero,
neutrino and antineutrino currents are exactly
equal and opposite. A nonzero value of p, results

in a net energy flux. The neutrino current density
and energy flux are calculated as functions of an-
gular velocity, temperature and chemical potential
of neutrinos. It is argued that particles other than
neutrinos can also develop currents as a result of
parity-violating weak interactions. Possible as-
trophysical consequences of macroscopic parity-
violating effects will be discussed elsewhere.

II. BACK-HOLE EVAPORATION

Hawking has demonstrated' that a black hole of
mass M and angular velocity 0 emits particles at
a constant rate given by

=(2tt} ' g I'„,. s exp +1
j, m, P

where

(4 vM)-1(M2 a2)1/2[M + (M2 a2)1/2]-1 (2)

is the black-hole temperature,

a= Z/M= 2nM[M+ (M' 2)'/'], -
J is the angular momentum of the black hole, and
a can take all values from zero to M. (We assume
that the black hole is uncharged. ) The quantity
I'„,. ~ is the absorption coefficient or an incoming
particle with energy ~, angular quantum numbers

j and m, and polarization or helicity p. The upper
and lower signs correspond to fermions and bo-
sons, respectively.

Assuming for definiteness that the black hole's
angular momentum is directed upwards, Eq. (1)
implies that the hole emits more particles with
the same (upward) direction of angular momentum
than with the opposite one. One expects also that
more particles are emitted with spin directed up-
wards than with spin directed downwards. Given
the left-handedness of neutrinos and the right-
handedness of antineutrinos, this means that neu-
trinos are emitted preferentially in the lower
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hemisphere and antineutrinos preferentially in the
upper hemisphere.

To describe this effect quantitatively we shall
rewrite Eq. (1) in the form

=(2w) 'Q I', f„,.„(8)

x expI I+1, (4)
&(o —mA't

i

where f„, (8) characterizes the angular distribu-
tion of particles in the mode (&u, j, m) and

2s JI f„& (8)sinede=l. (5
0

From the neutrino field equations in the Kerr
metric, it can be shown' that

(6)

where, Y',. (8, Q; a&a) are the spin-weighted
spheroidal harmonics introduced by Teukolsky"
and L is the lepton number: L=+1 for neutrinos
and L = -1 for antineutrinos.

The right-hand side of Eq. (4) can be calculated
analytically in the case of low energies of the
emitted particles (M&@ «1) when the dominant con-
tribution to the Hawking radiation is given by the
mode with j= & and ~=+&. Neglecting higher
powers of M&, the absorption coefficient for neu-
trinos in this mode is

=M'C0' ~

Note that I'„,.~ is the same for neutrinos and anti-
neutrinos. (This is a consequence of the CP in-
variance of the neutrino field equations. ) Since
a~ «1, the spin-weighted spheroidal harmonics
reduce to the spin-weighted spherical harmonics

,I;. „(e,y)=,Y, (e, y;0),
for which closed analytical expressions are
known. ' In particular, for L, =+1 and m=~ —,',

I-s)2Fia (8, @)l'=(4w) '(1 —2mLcose}.

From Eqs. (4} and (6)-(9) we get"

dN
ddtdo

= (8s') 'M'&u'(cosh~/T+ coshQ/2T) '

&&[e "~ + cosh'/2T —L sinh(A/2T) cose].

(10)
As expected, the black hole emits more antineu-
trinos in the upper hemisphere (0 ~ 8& w/2) and
more neutrinos in the lower hemisphere
(p/2 & e cp).

For a slowly rotating black hole (MA «1), Eq.
(10) reduces to

„„=(6~')-9g'&o'(I 2nLMn cos e) . —
d td(Od0

The characteristic parameter of asymmetry in the
angular distribution of neutrinos, defined as the
difference of emission rates in the upper and lower
hemispheres divided by the total emission rate, is
of order -MQ. For a rapidly rotating black hole
(a-M) this parameter becomes of order -1. In
the limiting case a= M, T=0 [see Eq. (2)j, and

= (Sw')-'M'(u'(I —L cos e) .
dfdcod0

The asymmetry in the neutrino emission by ro-
tating black holes has been investigated indepen-
dently by I eahy and Unruh. " They performed
numerical calculations to determine the angular
dependence of the total neutrino flux on the polar
angle and used analytic methods to study the case
of low frequencies. In the latter case their re-
sults are in agreement with those of the present
paper ~

Particles other than neutrinos can be in both
positive- and negative-helicity states, apd in the
free-field approximation the angular distribution
of such particles is symmetric. However, if in-
teractions are taken into account, an asymmetry
can develop as a result of parity-nonconserving
weak interactions. " This is most easily under-
stood in the case of emission of particles which
decay asymmetrically. For example, it is well
known that in the muon decay p. - e +v, + v~
(p,

' e'+ v, + v~) more electrons (positrons) are
emitted in the direction parallel (antiparallel) to
the spin of the p, (p, '). The muons produced by a
rotating black hole are partially polarized, since
the hole emits preferentially particles with the
same (upper) direction of spin. This implies that
after the muons decay, more electrons will be
moving in the direction parallel to the hole's an-
gular momentum and more positrons in the anti-
parallel direction.

III. NEUTRINO CURRENTS IN THERMAL RADIATION

Another macroscopic effect of parity nonconser-
vation is the generation of equilibrium neutrino
currents in a rotating thermal radiation. The
physics of this effect is similar to that of the
asymmetric radiation by black holes.

The Fermi distribution for neutrinos in a rotat-
ing system has the form"

f(ar, m, L)= expI I+ 1
)

where 0 is the angular velocity, p, is the chemical
potential of neutrinos, and ~ is the projection of
the particle's total angular momentum on the di-
rection of A. Intuitively, it is clear that for a
given energy u, particles with greater values of
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ds'= dt' —dr' —r 'dP' —dz'. (14)

The neutrino field equations in curvilinear coordi-
nates can be written in the form"

0ybjtal angular momentum are distributed at larg-
er distances from the rotation axis. Then from
Eq. (13) it foliows that in any finite region of space
there are more particles with spin parallel to 0
than with spin antiparallel to Q. Since neutrinos
are left-handed and antineutrinos are right-handed,
we conclude that more neutrinos move in the di-
rection antiparallel to 0 and more antineutrinos
move parallel to A.

Although Eq. (13) is a direct consequence of the
argument in Landau and Lifshitz, "I failed to find
its complete derivation in the literature. Since
this equation is of major importance for what
follows, its deviation is given in the Appendix.

To calculate the neutrino current density, we
shall first find the appropriate spinor wave func-
tions g„~~ (p is the momentum projection on the
direction of A) ~ It will be convenient to use cylin-
drical coordinates,

and n —= (+' —p')'~'. The wave functions P„~ z are
normalized according to

(J)= ZA/A,

where

(23)

J(r)=
J

d&u J~ dp g p f(&o, m, L)j„~ ~(r).
0 I,=~X m

(24}

g„prig„, ~ ~ ir,dry dz =5~„,5iv 5(p —p')5((g (g').

(21)

The lepton current density in z direction corre-
sponding to the mode (&upmL) equals

j...c(r) = Ly'.p.i &' &'y.p.i
=(8w') '[((o+ pI )& „„'(&r)

—((u —pL) &„„,'(~r)]. (22)

Choosing the z axis in the direction of the angu-
lar velocity vector 0, we can now write the equi-
librium neutrino current density in the form"

r.)y= 0,
(I —Lr')y = o.

Here y„are the Dirac matrices satisfying

ypyv+ yu yet

(15)

(16)

The sum over m in Eq. (24) cannot be calculated
analytically. However, noticing that of all func-
tions j„(x}only Jo(x) is nonzero at x= 0, we can
easily calculate the current density J on the rota-
tion axis (r= 0). In this case Eq. (24) reduces to

The matrices ~„are determined by the equations

I „y" y" &,= ar-"/ax„+ I'".„y',
Tr(1'„)= 0, (17)

i (c, 0 }I', = I'„=I', = 0, I",= —
i

(0 o, f

(18)

where y, . . . , y' are the Dirac matrices in the
standard representation (see, e.g. , Ref. 17}and

0, are the Pauli matrices. The solutions of Eqs.
(15}with appropriate boundary conditions" are
now easily found in the form

~

exp(ipa —i(ut —imP),

where the two-component spinor q is given by

(i(~+pL)"' & .„,(o.r))
(L(~ pL) & Z„„,(nr))

J,(x} are the familiar Bessel functions, m can
take all positive and negative half-integer values,

(20)

and I'",„are the usual Christoffel symbols. In the
cylindrical coordinates (14}a suitable choice of
the matrices y„and I „ is given by

(cosh x+ cosh() 'x'dx = ](v2+ (')/3 sinh], (26)
0

and we find

J(0)= -AT'/12 —A'/48m'- A p'/4m'. (27)

It is interesting that J does not vanish even at
T O. One has to remember, however, that Eq.
(27) is valid only if the conditions of thermal equi-
librium are satisfied. In particular, the size of
the system must be much larger than the mean
free path for neutrinos. This mean free path is
a rapidly increasing function of inverse tempera-
ture T ', and thus the conditions of thermal equi-
librium break at sufficiently low temperatures.

Another interesting case in which Eq. (24) can
be treated analytically is the case of slow rotation,

~(0)=(4&') '
J~ d(u~'g [f((u, -a, L) —f(~, -', L)]

0 L~yl
pOO

= -(4w') 'T' sinh], ~ (cosh x+ cosh(, ) 'x'dx
~o

+sinh(, ~f (cosh x+ cosh(2) 'x'dx,

(25)

where t', = (A —2 p, )/2 T, (,= (A + 2p)/2T. The ,inte-
grals in Eq. (25) can be evaluated, '0
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where

f((g) =(e"'r+1) '. (29)

Substituting this expansion in Eq. (24) and using
the relations"

g Z„'(~) n (3o)

we find, after a straightforward calculation

1 f17 2(1 + II2/4+27 2 + 4II22 2 + ~ ~ ~ ) (31)12
I

Note that this result is in agreement with Eq. (27).
In the lowest approximation, the current density is
given by

(32)

In a charge-symmetric rotating radiation mhen
the chemical potential of neutrinos p, is zero, neu-
trino and antineutrino fluxes are exactly equal and
opposite. A nonzero value of p, results in a net
energy flux

S=SB/n, (33)

where

and

S= Jf d&u Jl dp g g f(td, m, L)n„2 zp (34)
0 L=al

n„p c(x)=y'„2 ~(x)(„2 ~(x). (35)

The energy flux S can be now easily calculated in
the case of sly rotation. Expanding the Fermi
function f(u, m, L) in powers of 0 and using Eqs.
(26) and (30) we get

S = —,—' A(p, 72+ p2/p2) . (36)

IV. DISCUSSION

(1}It is easily understood that the effect of asym-
metric neutrino emission occurs not only in black
holes but in any rotating star emitting thermal
neutrinos. In the latter case, the chemical poten-
tial of neutrinos p, is not necessarily zero. If
p, &0, then the star emits more neutrinos than
antineutrinos, and therefore it accelerates like a
rocket in the direction of its angular momentum.

when A«T and Ay«1, and the Fermi function in
Eq. (24) can be expanded in powers of A. Assum-
ing for simplicity that p, =0, we can write

f(&o, m, L)=f((u) —m&f '((o)

+ 2m2&'f" ((u}--,'m2&'f "'((u)+

(28)

(2}According to the Fermi distribution (13}, the
numbers of neutrinos in the states (&o, p, m) and
(&, -p, n2) are equal. The neutrino current density
arises because neutrinos with p&0 are distributed
closer to the rotation axis than those with p &0.
If we imagine a thermal radiation rotating in an in-
finite cylinder with perfectly reflecting walls, we
expect a counterflow of neutrinos to develop near
the walls of the cylinder. It is possible that the net
neutrino current averages out to zero. (At least,
the total momentum of neutrinos is equal to zero. )
It would be interesting to check this explicitly and
to find the current-density distribution for some
reasonable boundary condition at the walls of the
cylinder. "

(3) Particles other than neutrinos can be in both
positive- and negative-helicity states, and applica-
tion of the Fermi distribution (13), say, to elec-
trons, gives a zero current density. However,
electrons and other particles can develop currents
in a nonequilibrium situation. One example is the
black-hole evaporation, where, as was shown in
Sec. II, electron currents can be generated by
processes such as muon decay. Another interest-
ing case is an expanding universe. Analysis based
on grand unified theories suggests" "that sub-
stantial deviation from local equilibrium in the
early universe can occur for a short time at tem-
peratures of order 10"-10"Ge7. If the motion
of matter in the universe has a rotational compo-
nent, baryon and electric currents (as well as a
net baryon number". ") can be generated during
this period. At T ~10" GeV the currents will be
dissipated by collisions, and local equilibrium will
be reestablished.

(4}Baryon and electric currents vanish in equi-
librium in the ideal gas approximation (13). One
expects, however, that nonzero equilibrium cur-
rents will result if parity-violating weak interac-
tions are taken into account. '

(5) Baryon parity-violating currents can give
rise to baryon density fluctuations in the early
universe and electric currents can produce elec-
tromagnetic fields. Possible cosmological con-
sequence of these effects are now being considered.
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APPENDIX: QUANTUM STATISTICAL
DISTRIBUTION IN A ROTATING SYSTEM

Let us consider a closed system consisting of
several kinds of particles (components). We shall
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assume that interactions between the particles are
weak, so that the system can be treated as a mix-
ture of ideal- gases. The statistical properties of
the system are determined by the values of its
energy E, momentum P, angular momentum L,
and the numbers of particles N'" in all compo-
nents. " Let us choose our z axis in the direction
of L. The total momentum of the system can be
made zero by a suitable choice of inertial frame
of reference. However, it will be convenient to
assume that P„=P,=0, while P, is not necessarily
zero.

The total entropy of the system is given by

where L=L, and P= P,. One could add the condi-
tions P„=P,=L„=L,=O, but from the symmetry
of the problem it is clear that these conditions will
be satisf ied automatically.

Using the method of Lagrange multipliers, we
can write

8 S'" —g f'!'&n + Pa'!'+ ym'!'+ Ilp'~']I= 0
n'

(A6)

where n, , P, y, and 5 are constants. From Eqs.
(A2), (A3), and (A6) we find

f„'"=[exp(o.;+ Pe+ ym+ 5p)+1] ', (A7)
S= S«&, (A1)

where S'" is the entropy of the ith component:

S'"=g [(1+f„'")ln(1+ f„'") f'" lnf„'—"] (A2)

for bosons and

P( &) N (&)Jn (A4)

(A5)

S& i) g [I& i) Inf& i) + (I f& j)}in(I f& i))]

(A3)

for fermions. " Here the summation is taken over
all one-particle quantum states, and f&" is the
average occupation number of the th state in the
ith component. The quantum state of a particle
can be characterized by its energy &, z component
of momentum p, z component of total angular mo-
mentum nz, and polarization or helicity 5. In this
case, n in f &" stands for a set of four numbers
(e, p, m, Ii). The occupation numbers f„"' can be
found from the requirement that the entropy S is a
maximum under the subsidiary conditions

where the upper and lower signs are for fermions
and for bosons, respectively, and I have dropped
the indices of e, m, and p. To determine the con-
stants in Eq. (A7), we note that Eq. (A6) implies

dE= —dS — ~dN'" ——dL ——dP.1 &. () y
P . P P P

Comparing this with"

(A6)

dE=TdS+ Q i&, , dÃ&" + AdL+ Vdl',
t

where p, is the chemical potential of the ith com-
ponent, 0 is the angular velocity, and V is the
center-of-mass velocity of the system, we find

(A9)

P=T i, c&,. =-ii, , /T, y= 0/T, 6= —-V/T

(A10)

f„'"= I'exp [T ~(e —ii, , —giga —Vp}]+ I}'. (A11)

In the rest frame V= 0, and (All) reduces to Eq,
(13). Note that the values of 0 and V are the same
for all components. In the frame where V=0, the
momentum density of particles other than neu-
trinos is equal to zero. (This is a direct conse-
quence of the ref lectional symmetry. ) The mo-
mentum density of neutrinos in this system does
not vanish, although the total neutrino momentum
is zero. [See Sec. IV, point (2).]
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