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The statistical mechanics of a noninteracting, ultradegenerate system of relativistic, spin-1/2, magnetic
moments in an arbitrarily strong magnetic field is studied.

I. INTRODUCTION

A nonrelativistic, quantum-mechanical treatment
of Pauli paramagnetism was first given by Pauli'
in 1927. A relativistic treatment using classical
statistical mechanics was not given until much
later, in a paper by Frankel et gl. in 1967. Ig.
that paper the quantum-mechanical treatment
was suggested, and we present that treatment here.

We will discuss the quantum statistical mechan-
ics of a gas of relativistic, ultradegenerate
(T =0 K), noninteracting spin- —,

' magnetic moments
in a magnetic field. Expressions for the Fermi
energy and total internal energy will be given ex-
actly where possible or in some appropriate
asymptotic limit otherwise.

Apart from extending the nonrelativistic sta-
tistical mechanics, gn additional motivation for
this work springs from recent interest in the
structure of pulsars. ' It is now generally agreed
that pulsars are rapidly'rotating neutron stars
supporting strong magnetic fields of the order of
10'3 G at the surface4; the size of the field in the
interior is unknown and could be even larger.

In turn, neutron stars' themselves are thought
to consist mainly of dense neutrons, whose gravi-
tational collapse is prevented by their degeneracy
pressure, with a thin crust of ordinary matter and
a core whose composition is doubtful. In view of
the recent interest in the possible existence of
black hioles, the problem of the maximum mass of
a neutron star has attained new importance, since
a knowledge of this maximum mass would enable
astronomers to distinguish between black holes
and neutron stars. This problem was first con-
sidered in the work of Oppenheimer and Volkoff, 6

who used the equation of state for relativistic,
noninteracting neutrons to calculate the maximum,
mass of a simple model neutron star. Since then
much work has gone into obtaining more accurate
equations of state for dense matter, but the pro-
blem of the maximum mass is still not completely
settled. ' Furthermore, the effect of a very strong

magnetic field on the equation of state has not been
treated. '

The magnetic energy of a neutron in a field of
the order of 10' G is approximately 10 ' of its
rest-mass energy and, therefore, makes a com-
pletely negligible contribution to the equation of
state of a neutron star. What is more, the field
is only known to exist at the surface of the star.
However, these known. physical systems stimulate
the interesting question as to what would be the
equation of state of a relativistic neutron star
where the magnetic field was much more intense
and, furthermore, where this intense field per-
meated throughout the star. We will obtain ex-
pressions for the total energy which would enable
an equation of state to be obtained and used in fu-
ture (numerical) calculations of the mass-radius
relationship of such a highly idealized model mag-
netic neutron star. We have reported some of
the preliminary results in this paper elsewhere. ~

II. THE SINGLE-PARTICLE ENERGY SPECTRUM

The Dirac equation for the system is

(ihcP + ,' tto~„E '" —mc')—4= 0,
which has been solved' to yield the following posi-
tive-energy levels:

Z(p, s) = Q'c'+ lt'I3'+ m'c'

+2ttBs(P'c'sin'8+ m'c')' ']' '

where m is the mass of the particle, s= +1 is the
spin quantum number, 8 is the angle between the
momentum p and the magnetic field B which we
take to be uniform and in the z direction, and p, is
the magnetic moment of the particle.

We note that Eq. (1) can also be obtained from
the energy levels of a charged fermion (e.g.,
electron) with an anomalous magnetic moment in
a magnetic field via the following procedure: The
energy levels of such a particle are'
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E= (p, c + (mc [1+(B/B,)(2n+ s+ I)]' + sI4B /2)' ',

where B,=m2c2/eh, n=0, 1, 2, . . . , and p is the
anomalous part of the particle's magnetic moment.
If we let the charge of the particle go to zero, then
the magnetic moment becomes entirely anomalous.
There are no Landau levels for a neutral particle,
so to recover (1) from (2) we note that the limit
must be taken such that (8/B,)(2n+ s+ 1)

P4 /m c . We then obtain from (2)

E= [p2c2+ m'c4+ p2B2

+2gBs(p 'c'+m'c4)'/ ]' ',
which directly gives (1) since p4'=p2sin28 and
now IIL= p. .

The spectrum given in (1) has some very inter-
esting properties. Let Eo=mc2 and a= pB~ and
consider the spectrum for s =+1, which corres-
ponds to particles with spin up (since /4 for a
neuter on is negative):

E(p, l) = [P'c'+ a2+ E '

-2a(P'c sin 8+E )'/ ]'/

Equation (3) is displayed in Fig. 1 for various
values of g and 8 as a function of p, along with the
corresponding equation for spin down. We see
that for p&E0 the spectrum is monotonically in-
creasing (this is, of course, always true for spin
down). However, for a&EO and 8uw/2 there is a
smooth minimum which becomes a cusp at 8
=v/2. In fact, at 8=v/2 the energy of the parti-
cle is zero for Pc = (a —Eo')'/2. Hence at zero
.temperature we expect the particles to fill the
levels starting at the lowest energy —that is,

zero. Thus the intense magnetic field depresses
the single-particle energies for spin-up particles,
with maximum depression occurring for particles
moving at right angles to the field. The conse-
quences of this peculiar behavior for the Fermi
energy will be quite marked, as we shall see.

The fact that for some momenta the energy dif-
ference between positive- and negative-energy
states can be considerably less than 2Ep and in a
particular case, zero, implies that pair produc-
tion is possible. The possibility of pair produc-
tion for charged fermions with an anomalous mag-
netic moment has been discussed by O' Connell"
and Chiu et gl." The latter have shown that when
pair production does occur, it does not do so at
the expense of the magnetic field energy, but re-
quires some thermal energy (however small).
This is so for our spectrum (1), with the excep-
tion that the depression of the spin-up energy
states occurs for all g&E0, which is not the case
for (2). We will have more to say about the spec-
trum acid its properties in Sec. VII.

III. THE FERMI ENERGY

The Fermi energy &~ is obtained from the num-
ber equation

N= n- = n- &+ n- =N, +N „PALS. ~ 92~ ~ 52 1 +
QeS

where N, is the number of spins up or down and
n-, , is taken to be the T = 0 K Fermi-Dirac dis-
tribution function. Hence, in the thermodynamic
limit where the sums over p may be taken as in-
tegrals we have

N„=
2 2 J) p dpsin8d8, (4)

pE

where the appropriate limits on p and 8 are ob-
tained from the constraint condition

[P2c2'+E2+ &2p(P2c2sjn28+E2)i/2]i/2(

Solving (5) yields the following integrals:

, (f P'dP)( sins~e
r C pi a ccina

(5)

k(o'- E,') ~

FIG. 1. Single-particle energy and typical Fermi ener-
gies for spin-up and spin-down particles as a function of
momentum p.

+ p2d sin8 d8
0 0

I/ ( $2 'QCPcsicc
p2dp

~
sin8d8

22/h'c 0

p( r/2
+ p2dp sin8 d8

0 0
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mhere

[~ 2 (g E ) 2]i/2 P [(~ + g)2 E 2]1/2

P, = [(~~—g)' —Ep']'", u2 = [~~' —(g+ Ep}']"'

y" p2+ 2+8 2
&

2 2 'i(2
Q= n s

p 20

Note that Pc has been replaced by P everywhere.
Integr ation gives

(-'II ' —tII —@I)'F"

x [2~2 '+ (g —Ep) (g+ 2Ep))
\II

27 a —Ep+go~2 —+ arcsin ', (8)
2 Ez

—,'[~,' —(g+ E,)']"'
(2m')

x [2g~2 + (g + Ep) (g —2Ep)]

'lT . 0+ +p-a&+ ——arcsxn (9)
2 6g

The equation for &~ is of course obtained by adding
N, and N . Note that for N to exist we must have
ez ~ g+ Ep, and for N, to exist as given by (8} we
must have c~~

)
g —Ep); in fact, these conditions

mere assumed in obtaining the limits in the inte-
grals (8) and (7). If we now put e~= g+ Ep 'n (9),
we see that N = 0 and therefore N, =

¹ Hence
there is some value of a, say ap, for which N =0
and fg = Qp + E() The equation for zp is clearly
obtained by putting a= ap 6g= Qp+ Ep and N, =N
into (8), for which we then obtain

N
2 3 3 (gpEp) (3gp + 5gpEp)

22/ V

22/Ac

a —E+gp(gp + Ep)
2 —+ a.resin — P

ap+ &p

(1o)

Thus as g increases from zero (where N, =N
=N/2), N decreases until g reaches gp, where
N =0 and all the spins are up. Then as g in-
creases beyond ap, the appropriate equation for
e~ must be (8) with N. =N, and where now

~

g —Ep
~- &„~a+Ep. So far this is strictly analogous to

the behavior of the corresponding nonrelativistic
equations. '3

However, (8) must eventually run into trouble,
since given that N is constant, me see that as a
increases, g~ must decrease to maintain the
right-hand side of (8) constant. However, ez
must be larger than ~g —Ep) for (8) to be valid,
and so there must be some value of g, say a„ for
which ez reaches its minimum value (g& —Ep) ~

The equation for g, is obtained simply by putting
N, =N, g=g„and Ez ——~a, —Ep) in (8) [note that,
in fact, we must have g, &Ep, otherwise (8) would
give N=O]:

2g a(
V (22/I2c) 2

Beyond g„cz must be less than g —Ep, and (8)
cannot be used. We must return to (5) and re-
solve it under the condition &~ ~ g —Ep Q ~Ep.
%hen this is done me obtain the integral

4+y p2 fl'( 2

N=
2 p2dp sin8d8 .

22/hc}'
1 arcs inc

(12)

The derivation of (12) will be discussed fully in
connection with the total energy in Sec. IV. Inte-
gration gives

(22/Ic) 'p
(13)

(14)

To do this, we note that in (8), p:~ includes the
rest-mass energy, whereas ez in (14) does not.
Thus we replace e~ by e~+ E, in (8), assume g
«Ep, &~«Ep and expand the arcsin function ap-
propriately This then. recovers (14), and simi-
larly for N .

Collecting the results, we have the following:
(a) For 0 &g ~gp, where gp is given by (10), e~

is given by (8} and (9).
(b) For gp

~ g ~ g„where g, is given by (11), (~
is given by (8) with N, =N.

(c) For g~ g„az is given by (13).
Note that for g ~ g„&~ does not depend on Ep,

and that as I3-~, &~-0. The reason for the lat-
ter behavior can be seen from Fig. 1. As noted
before, for g &Ep the energy spectrum is monotoni-
cally increasing for both spin up and spin domn,
and so ez~ ~g —Ep). Once g is greater than Ep,
however, the spectrum for spin up has a local
minimum and &~ can decrease below a- Ep,
trapping particles in this minimum. Eventually,
as g approaches infinity, particles mill be trapped
in the cusp at P = (g2 —Ep2)'/'/c, where they will
be confined to an increasingly narrow range of p
values near (g' —E,')'/'/c and 8 values near 2//2.

Equations (8), (9), and (13) show that &z and its
first derivative are monotonically decreasing func-
tions of g, with az at g= 0 being given by [Ep
+(}2c)'(32/ p)' ]' '. It is interesting to note that
there will be a discontinuity in some higher de-
rivative of-& at a= a, .

We need to check that (8) reduces to the non-
relativistic, weak-field result, namely
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IV. THE TOTAL ENERGY

The total internal energy of the system is given by

U= Ep, sn-, ,
PoS

Taking the p sume to integals and writing U= [2m V/(21/hc) ] (I, +I ), we obtain the following.
(i) For 0-a- ap:

I, = [Ez —(a —Ep) ] / [T'4:z (17a +6aEp —3Ep )+pa (a+2Ep)(a —Eo)+2tz J

where

+pa&+(a +ez) arcsin + ———,'(a'+Ep ) ln ~z+ [4:2 (a —Ep)
'

E a —Ep

P2

P dP[(P2+ E 2)1/2 y ](~2E(6 r) [(P2+ E 2)1/2 ]2F(6 r)J3a "1

p dp[(p2 + E 2) 1 /2 + a] (+2E(6 r) [(p2 + E 2) 1 / 2 a]2F(6 r)}3a p

E 2+ ~2P2 )1/2 1/2

P +Eo

[(p2+ E 2)1/2+ a]2[1 E /'(P2+ E 2)1/2] 1/2

2[p'+( -E)'J
2~&(p'+ Ep') '"

+(p2yE 2)1/2 & 0

(15)

p„p„and o. have been defined in Sec. III and F and E are elliptic integrals of the first and second kind,
respectively. Also,

I = op~ [s2' —-(a+E,)']' '[2s2'+

+—,ay~ ——+ arcsinm . a+Ep'I
2 z~ )

Pg
+ P dp[(P'+ E ')"'+a]3a

(a+ Ep) (3a —Eo)]

+ [~ 2
( yE )2]1/2

a+ Ep

A E{ 2 arcsin, . 2+ E 2„/2, r)

[(p + Ep )' —a]'F{ —,
' arcsin, 2+'E 2 1/2 r&{

where

I22

P dp[(p'+ E,')"'+.]f~' E( ~, )r[(P'+ E—,')"' .J'F(r,-r)),3a (16)

fp(1 —422) '/
r= oarC»~l -2+E 21/2) ~

This is as far as we can take the integrals for the total energy.
(ii) For ap (a a1, U is given by (15) with I, replaced by I.
(iii) Let a ~ a1. For this region a rather remarkable result appears, so the integral will be treated in

some detail. As was pointed out in Sec. III, for a~ a1 we must solve (5) for ez (a-Ep, a&Eo.
Let C = a + Ep —q&, sp that the equation tp be splved js

g2+p2(2a(p2sjn2e+E2)1/2

or

f(p2) p4 +P2(2+2, 4a2 sln2g) + Q4 4 2E 2 (0

where we have written pg as p.
Now f(p2) =0 at
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p1 (8) =2a sin 8 —C + [(2a sin 8 —C ) —C +4a Ea)' (18)

p (g) =2a'sin g —C —[(2a'sin g —C )' —C +4a'E ]'/2

Clearly, from a graphical consideration of f(p ), we require that p1 (8) and p2 (8) be non-negative, which
in turn means we require

C2 (2&2 sjn28

Also, we require p, '(8) and p, (8) to be real, which from (18) means that the condition

g(sin28) = a2 sin48 —C2 sin'8+ E02 ) 0

must be satisfied. Now g(sin28) =0 at

C2 ~ [C4 4 2E 2]1/2
sin'g =

20

(19)

(20)

(21)

and so to satisfy (19) we must take the positive sign in (21). Hence from a graphical consideration of (20)
and (21) we deduce that the allowed values of 8 are between

C2+ (C4 4 2E 2)1/2 1/2
ar csin

2 2
I 20

and 2//2. We. take the possible range of 8 to be 0 to 2//2 and double the integral. The region of integration
is displayed in Fig. 2, and the integral for the energy is as follows:

4@V
(222@C)'

where

p2(i) /2) g/2
I= p'dp sing dg[p2+ a'+ Eo —2a(p sin 8+ Eo )'/']'/

&,( /&) arcsino (

where p1(2//2) and p2(1//2) are given by (18) and are equal to p, and p„defined in Sec. III.
We now make the following changes of variable: Let P= [(a+xe~)2 —E02]'/2, so that -1(x(l, and let

y = cosg. Then the 8 integral in (22) becomes
(i-e2)'/'

dy((a+ xez) + a —2a ((a+ xez) —y'[(a+ xfz)' —Eo ])' ')'
0

Now let

Z' = (a+ xE ~)
' —y'[(a+ xe~) ' —E0'] .

Then (22) becomes

('' "*'& ZdZ[(a+xap} +a' —2aZ]' '
I= j) dx@ (a+ xi') '[( ) Z ]1/2

42+X&p y X 0 /

(22)

(23)

Clearly, this double integral is independent of

Ep, since &~ is also independent of Eo for
Thus for p ~ z, the total internal energy of the sys-
tem is independent of the mass of its constituent

1

P = {C—/a Eo)

P{ ) P {-")
FIG. 2. Region of integration in the (p, 8) plane for

the total energy when a —a&.

I

particles —a very strange result indeed. Of course,
this procedure can also establish independently that
ez is independent of Eo, as shownby Eq. (13).

In fact, we have not evaluated the integrals in
(23) exactly. However, given that the total energy
is independent of Eo, it must be equal to the zero-
mass result, for which we have readily evaluated
the integrals exactly.

For the zero-mais case, we see from (10) and

(11) that ao ——a„and the total energy is found to
be as follows:

4m'1/'

(22/hc)
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where
(i) for 0 &a &ap,

I= ,' pr(—e~'—a') '/'(0:2, '+ a'/6)

+—,acr arcsin

4,-
- 2 1/2

12 a ( a2 )

(ii) for a~ ap,

U= 3'~,

(24)

(25)

magnetic field. Now for neutrons, g= Ep implies
a, magnetic field strength of approximately 10 6;
hence, since neutron-star magnetic fields are of
the order of 10'3 G, the most useful limit to take
in the total energy is a «Ep, retaining the density
as an arbitrary parameter as much as possible.
What is more, a/Ep forms a natural expansion
parameter in its own right.

(i) The region 0 asap. Here the integrals for
the energy are essentially the same as those for
the Fermi energy given in (6) and (7):

4@V
U=( )3 (j,+ J'),

where

where er is still given by (11}.
To reiterate, (25) is a completely general re-

sult; it is always valid for g~ gi ~

Hence, as g- ~, the total energy tends to zero,
as does the magnetization, since at zero tempera-
ture it is given by M=-BU/BB '4 In vi.ew of the
shape of the single-particle energy spectrum as
shown in Fig. 1, it is not surprising that the Fermi
energy, and hence the total energy, since U&1V &~,
tends to zero. What is remarkable is that the
Fermi energy and total energy (and hence other
thermodynamic 1luantities} are completely inde-
pendent of the mass of the particles beyond a
well-defined value of the magnetic field.

alld

f- P2 v/2
J,=

Jl P dP sin8d8E(p, 1}
Pi arcs inc

pi s'/ 2

+Jt P'dP Jt sin8 d8 E(p, 1)
0 0

p2 arcsineJ= PdP sin8 d8 E(p, -1)
gi 0

p . v/2
+J P'dP sin8 d8 E(p, —1) .

Since a «Ep, '

we may expand as follows:. 2»n28+E2«2E(~ ]) (p2+E 2)1/2 (P 0 )
0 (p2 + E 2) 1/ 2

0

(26)

(27)

V. EXPANSIONS OF THE TOTAL ENERGY

Although (15}and (16) can be used to evaluate
numerically the total energy as a function of the
magnetic field in the region 0 & g & g, for various
values of the density, it is useful to have an ex-
plicit analytical expression for the energy in
some suitable limit. This is especially true if
the equation of state is to be used in calculating
the mass-radius relationship of a model neutron
star consisting of relativistic neutrons in a strong

gP cos 8
2( 2 y E 2)3/2

(~2s 2g+E 2 i/2
E(~ 1) (p2+ E 2)1/2+ v 0

0
(p

2 + E 2) 1 / 2

gp cosa
2( 2+ E 2)3/2

(28)

When the expansions (28) are inserted into J', and

J, the resulting double integrals can be evaluated
exactly. The results are as follows:

+/.* 2+E 2)i/2
1p (p 2yE 2)3/2 1E 2p (p 2+E 2)1/2 lE 41 P1 (P1 0 )

lm Ep ~II

+ (T 2+ E 2) i/2
+lp (p 2~E 2)3/2 1E 2P (P 2+E 2)1/2 1E 4ln P2 (P2 0 )

Ep

-p2(p2+ 0 ) (,OO4. —TpaEO —pa ) -p1(p1 +Ep ) (,00:4, +,0aEO —pa )
2 1/. 2 2 2 3 2 2 2 2 i/2 2 .2 3 2 2

2E2, "
+ (* 2+ E 2)i/2+1 2

p (p 2+E 2)1/2p 0P1 3E 2ln P1 (P1 0 )
1 0

(P 2+E 2)1/2 0

2E 2— —+ (~ 2+ E 2)i/2
+p (P 2+ E 2)1/2+ 0 P2 3E 2 ln P2 (P2 0 )

2 2 0 (P2yE2)1/2. 0 E

E, , /, (2g„—2a e4, + aEpf/, + 3a Ep —a Ep )
Pi 4' 2 2 2 3 2 2

i +Eo
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where

P2 4 2 2 2 3 2 2

30(- 2+ E 2)1/2 (2~F 42 ~F 42EO~F 342 E0 42 E0 )
Eo &

+
16

EI8'
&

I+EIe
&

I
—EI2 &

I
(3&F'+'3'"&F'(0:F+a) /, 1b t 1) fi/ 11"

1542 I, 'j'2 j ( 'j'3/ i2'kP

—EI O', —I+E +, —I

—EI —,— (S~F —6a~F +-3a 0:F ——3«F- 342) +f ll 1 '1'
/12 1

4 3 3 2 2 23 3 1 4 (29)

y42 E 1/2 e +42+Eo)1/2 gF+428'= arcsin ~ 0, 1P = arcsini I, j'2=
2&

'
. 20: j

' (4aeF)' ' '

is given by (8) and (9), and j'(21/2, 1/j'2), E(8', 1/k) and E(2//2, 1/to), E(8',1/)2) are complete and incomplete
elliptic integrals of the first and second kind, respectively.

The above expression can be expanded by noting that the modulus of all the elliptic integrals is I/O
=(442&F)' /(eF+42). This is a, small parameter, since in the region 0 &a&ap, &F~a+Eo and we have as-
sumed 42/Ep «1 in (28). Using the small-modulus expansions of elliptic integrals, '5 we obtain

+ ( 2+ E 2) 1/2
i.
p (p 2yE 2)3/2 1P E 2(p 2yE 2)1/2 1E 4ln P1 (Pi 0 )

+ - & 1 1 0 8 1 0 1 0 8 0

pip (p 2pE 2)3/2 1E 2p (p 2+E 2)1/2 1E 41 P2 (P2 0 }+(-2+E 2 1/2

0 n

2 2 1/2
+42 3EO ln 2 2 1/2 +

0 EOP2(P2 + E0 } 0 Eppi(pi + E0 }Pi 1 +Ep) 1
— 2 21/2 1 2 2 1/2

P2+ 2 +Eo

(30)

is

P'

+q —8 ——sin8 cos8 +—sin 8 cos8 — + 7
~

——3 2 I 3 ~ I f 4 3 f / P1 13EP F
g 3 5 15 306+ ' 6z i 3

+—,Q ——, sing cosP +—sin p cosQ + -~
—7

~ I+
2 3 4 ~ 3 p2 t'13Ep

14 306F i KF j

This is still complicated expression as the parameters p„p2, 8', and ip are also functions of a. How-

ever, this complexity is necessary if we wish to retain the maximum flexibility in the choice of the range
of the density. . This can be seen by noting, for example, that for very small a, &„ is given approximately
by (Ep + o')'/', where o =lfc(3112p}'/3; hence expressions such as P, = (&F2 —Ep'+2aEO —a')'/ cannot be ex-
panded further unless we specify the relative sizes of a and a.

We note that putting 42=0 in (30) quickly recovers the well-known result for the total internal energy of a
relativistic noninteracting Fermi gas. '

(ii) The region ap a«EO. In this region J' =0 and the exact result for J. [within the approximation (28)]

2+ 2 1/2
&p (p 2+ E 2}3/2 1E 2P (P 2+ E 2)1/2 —1E 41 Pi (P1 Ep )

iss 0

2 2 2 2 1/2
Pi(pi +E0 } {15sF +ipaEO —042)+12 1(pi +Eo } + 2~E 2 1/2 SEO ln2 2 1/2 2 2 3 2 2 42 2 2 1/2 y E0 P 2 pi + (pi + Ep )

0

E 2 1/2 (2sF —2a eF + aEpoF + Sa Ep —a Ep )
Pf 4 2 2 2 3 2 2

1+ O

+ [(SsF +
3

42 CF —342 )E(8 sl/)2) —(SEF —6aoF +342 KF —
3

42 fF —Og )F(8,1/k}]+ (31)

In the region 420 42«E0, we can simplify (31)
much more than was possible with (29). This is
because the conditions go - g and g «Eo require
420 «Ep which upon examination of (10) is seen to
be equivalent to a low-density condition: For po

«E„(10)yields

ao
——

I 1+OI + ~
(Ic)' /Sw'p /ffcp'

Ep 4 I, Ep

'Thus in this region we have the condition on the



1802 A. E. DELSANTE AND N. E. FRANKEL 20

density

&2 ™Ep—a+6(p, a) . (33)

This can be used to obtain an approximation for
To do this, we notice that for zero density,

(p = Ep —a in the region ap ~ a a~, where ap = 0,
a~ = Ep for zero density. Thus for very low den-
sity we write

where

«'/ 2 ~, (e)
K.(a) =.) 0)n& 00 J 0'EE E(P, I)

0 0
(36)

we first need to interchange the order of integra-
tions in (26) and (27). (The reason for this will
be given below. ) When this is done the total en-
ergy is given by

U=-, (K, +K),
2wAc) 3

We note at this point that since e~= Ep+ ap at
a= a„we must have 6(p ap) = 2ap. We now solve
(8} for 6(p, a) assuming that 6/Ep and a/Ep are
both small. The result is

«'/ 2 P2(8)
K (a) = sin8d8 P dPE(p, -1),

0 0
(37)

&(p, a) = 6(p)(1+ a/3Ep —6/2Ep+ ' ' '}
where

(hc)'
6(p) = (6~2p)2/'

2Ep

(34)
where P((8) and P2(8) are defined by (18).

To differentiate K, and E we use the st~dard
formula: If

t- C2(x)
f(x) =

4C((x)
Inserting (33) into (31) and after much expansion

and algebra we obtain

a 3&—=Ep 1 ——+ -+higher-order terms ~.
Ep 5Ep i

(35)
This expression is valid for a~ ap, a«Ep.

(iii) 2 different expansion of the energy An-.
other way of obtaining an expansion of (26) and

(27) is. to make a Taylor expansion of J, and J
about a=0. This is done as follows: In order to
use the expression

2

J,(a) = z,(0) + aJ,'(0) +—J,"(0) + ~ ~ ~

then

-g(x, C, (x))
sC, (x)

[If (38) is applied to the alternative expressions
(26) and (27), then repeated differentiation of the
terminal arcsina produces spurious singularities
at a=0, which are difficult to deal with —the forms
(36) and (37) avoid this problem. ]

Thus applying (38) to (36) and (37) we find

+ (&
2 E 2)(/2

K(al+K (a) =K(0) +K (0) ——,'a Ia (c —E/)'I'+E, ' I E +
0

(39}

where

K,(0) +K (0) = 2&~ (Er —E() )
'/'

«Ep q/E(e/ —E() )

Ep ln- + (~ 2 E 2)1/2

0

(4o)

and is a well-known expression. '2 Note that in (39)
and (40), &r is evaluated at a = 0, where it is
given by

[E 2 + {Ic}2(37/2p)2/3](/2

The nonrelativistic limit of (39) can easily be
taken by assuming hc(37/'p)'/2 «Ep and expanding
&~ accordingly. The result is the well-known
nonrelativistic one'

U 3(e/0 —Ep )
0 ypE 2

2 ( 2 E 2

]
I+ ~ P + ~ ~ ~ + ~ ~ ~

2(e2,' —Ep ) I, 6Ep'

(41)
Note that (39) is valid only in the region 0 ~ a
ap since we have Taylor expanded about a=0.
(iv) Discussion of results. For the region ap

a«E0 the expansion of the energy is straight-
forward and is given by (35). In the region 0 a
«Ep, however, we have two different expansions
given by (30) [or more fully by (29)] or (39).

These very different looking expressions can be
understood if we make the following observations.
Firstly, in the low-density limit (39) yields (41),
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and the condition for its validity is then

(hc)'(32/'p)'/'
&5E,

However, we know from (32) that

(I.)' /3v'p& '/'
ao= E -1, 4 )

so for low density (39) is in fact further restricted
to the region 0 - a «ao. On the other hand, (30)
was obtained with the sole restriction a«Ep,
and since ao «Eo for low density, we see that (30)
therefore has a considerably wider range of va-
lidity. In fact, the entire range 0 ~a & ap can be
covered for suitably low density, but with an at-
tendant increase in complexity.

Secondly, we expect that (30) should reduce to
(39) in the limit of very small a (or equivalently,
very high density). While to check this would re-
quire a very tedious calculation since it would re-
quire a careful expansion of (29) to order a, a
quick study of (30) reveals that for very small a
(or very high density) the terms linear in a do in
fact exactly cancel in this limit.

One remaining region readily amenable to ex-
pansion is the region a«E0 and a s ap. A Taylor
expansion of (30) in powers of (a- ao) could be ob-
tained, and at a = ao it would obviously join to (35).
%e do not give it here.

i'

VI. SOME RESULTS IN ONE AND TNO
DIMENSIONS

For completeness and to illustrate the effect of
phase space on the behavior of &~, similar cal-
culations have been done in one and two dimen-
sions.

(i) One dimension. The single-particle energy
levels are now, with 8=-0 in (1),

E(p, s) = [P c + (Eo + sa) ]'/2, s = +1 .
Let n, = 2/AN, /V. Then

(i) for 0 a ~ ao, where go n2/4EO, ——

n, =n/2+ 2aE, /n,

n =n/2 —2aEO/n,

(
2 y 4 2)1/2(n2+ 4E 2)1/j.

[n2+ (g E )2]1/2

U=2 nez+(a —Eo) ln
V 2 ep+n

2m@a a —Ep

Note that in one dimension only the two regions
a-ap and a~ ap occur.

(ii) Tauo dimensions. The reasoning here fol-
lows exactly that of the three-dimensional case.
Let n, = ( 22/Ic) 2N/V T.hen solving the constraint
condition (5) for e~ ~ a+ Eo gives the following in-
tegrals:

n, =
1(/~e—E11 )

2 2.

21r

+a d8(a sin48+Ds'in'8+E02)' 2,
0

n =v(e/, —Eo )2 2

(42)

2'
-a d8(a' sin 8+ D sin'g+ Eo ) /

0

where D= g~ —a2 —Ep'. Hence2

e,= (n/2m+ E,')"',

(43)

(44)

where

2e -arcsing p+ (8)
+ rd8 PdP,

e+arcs in8 P & )

P2 [ D +. (D2 4a2E 2) 1/ 2]/2 2

a constant. %e have not been able to evaluate the
integrals in (42) and (43) exactly. A.s in the three-
dimensional case, putting e~= a+ Eo in (43) and
integrating gives n =0. The value of a for which
this occurs is clearly

a, = (n/22/+ E,') ' ' —E, .
Thus (42), (43), and (44) are valid for 0 & g & go.

For ao ~ a ~ a1, (z is given by (42) with n, =n, and
as before a& is faund by putting a = a f Q~ a f Ep,
and n, =n in (42) and integrating, with the result

n = (4a1' —8a,EO) [2//2 —arcsin(EO/a'1) ]

+4a1'(Eo/a1) "'(1—ED/a, )
"' .

Finally, for a ~
a& we use the same reasoning

which led to (12) (see Sec. IV) to obtain the two-
dimensional version

U= ne~+(a —Eo) ln
q~+ n,

+(a+ Eo)2ln a+ Ep

(ii) for a~ ao, n, =n, and

p, (g) = [2a2 sin28+D a2a(a sin 8+ D sin 8+ E )' ]'
This reduces to

pr/2
n=Sa l d8 a sin'8+Dsin'8+Ep' '

arcsin8
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The results for the total energy are rather com-
plicated and are not given here. However, it is
interesting to note that for ED=0, U=2Ns~/3 for
all values of g—the same result as in three di-
mensions for a ~ a&.

We have inquired as to whether or not both &„
and U are independent of the rest mass m for g
&a„here as in the three-dimensional case. We
have not succeeded in answering this question be-
cause of the complexity of the integrals involved.

In conclusion, we can say that &~ increases with
increasing a (for sufficiently large values) in one
dimension, in two dimensions it is constant in one
region, and in three dimensions it is monotonically
decreasing.

VII. DISCUSSION AND CONCLUSION

We first summarize the results given in Sec.
V for the energy. In the region 0 & a & ap we have
two different expansions. For a very small field
(or equivalently, very high density) we have the
Taylor expansion given by (39). In the low-den-
sity, weak-field limit this reduces to the nonrela-
tivistic result given by (41). In the high-density
limit [hc(3w2p)'/2» Eo], (39) becomes

—g 1+ +U, Ep2

N 0

a2 E,' I'2c—~1+, ln~~ + ~ +
}0' o'2

I,Ep

where c = hc(3v'p) '/'.
A more general (but much more complicated)

result is obtained by expanding the energy inte-
grals for g«Eo. The results are given in (29)
or (30). These expressions can cover the entire
range 0 & a - ao provided ap «Eo, whereas (39)
only covers the range 0 ~ a «ap when ap «Ep.

In the region ap a - a~ the energy for g«Ep is
given by (35). This is a low-density expansion.
Finally, in the region a ~ a, we have the exact re-
sult U= 2' +/3, which is valid for any density.

From these various expressions for the energy,
the equation of state is most easily obtained by
using the equation

U Nay
V V

where P is the pressure, which is derived else-
where. " In particular, we note that for a ~ a, we
obtain P= U/2V. This is an interesting result
in that it is an example of a noninteracting system
which violates the condition P ~ U/3V, which was
once thought to be a consequence of relativity.
Zeldovich" has obtained another counter example,
using particles interacting via a vector meson
field. In our case the violation occurs because of

I I E (

=,' ( '-E,')&;"('-E,') ~

FIG. 3. Energy for a spin-up particle in the cusp at
8 = w/2 moving solely in the & direction as a function of
its momentump„ for Q +Ep.

the neutron's interaction with an external field.
In addition, using P = U/2V and (13) and (25)

shows that the pressure vanishes as 8-~. To
see why this is so in terms of momentum transfer
at a wall, ' consider the case of a very large field.
The Fermi energy is then close to zero, and all the
particles are confined to the cusp in the energy
spectrum at P=(a' —E02)'/'/c (see Fig. 1). Fur-
thermore, nearly all the particles are moving at
right angles to the field, in the x and y directions.
Consider now a wall perpendicular to the x direc-
tion, and consider only particles moving along the
x axis. Since 8= v/2, their energy is given by

E(P.) =
I
(&„'c'+E,')

This is shown in Fig. 3. The velocity of a parti-
cle with momentum P, is given by

eE(P.) P„ct
+

(~ 2 2 ~ E 2) 1/2

where the positive sign if taken when p, is to the
right of the cusp. Since the field is so large, all
particles essentially either have momentum
(a' —E0')'/'/c with velocities ze(a'- E02)'/'/a, or
momentum —(a —E02) '/2/c with velocities
+c(a —Eo )'/ /a. Thus, of the particles hitting
the wall [say those with velocity c(~2 —E02) '/2/g],
half have momentum (a2 —E02) ' 2/c and half have
momentum -(a —E,')'/'/c. Hence the momentum
transfers at the wall cancel.

This argument will of course only be exact when
the field is actually infinite —the Fermi energy is
then exactly zero, and all the particles are con-
fined to the tips of the cusps in Fig. 3 (where the
density of states is now infinite). Thus the mo-
mentum of any particle can only be +~ and its ve-
locity +c. However, note that a particle can have
positive momentum and negative group velocity
(and vice versa), as well as the more conventional
positive momentum and velocity, and, in fact, this
unusual behavior is the very reason, as we have
just seen, for the momentum transfers canceling
exactly and hence the pressure vanishing.
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However, the vanishing of the pressure is
strictly a zero-temperature result. In real sys-
tems, T is never exactly zero, and to make the
zero-temperature approximation, we just require
that ez/kT to be very large. In this case, how-
ever, no matter how small kT is, &~ will eventually
be much smaller for a sufficiently large magnetic
field. The gas will then become classical, with
the pressure given by the classical ideal-gas re-
sult P= pkT.

While we have ignored the role of interactions
between the particles, needless to say in this
limit of ultrastrong magnetic field where &~-0,
particle interactions will play an increasingly
important role, especially in the super-dense
case.

The high-field behavior we have discussed is
dependent on the particular form of the energy
spectrum given in (1). We note first that (1)
should follow from the addition of a quantized
spin and the application of a Lorentz boost to the
energy of a neutral particle at rest, since the
Dirac equation itself should contain nothing more
than the spin (introduced by adding the term
~pa„„E'") and Lorentz covariance. As a, simple
example, in one dimension the energy of a parti-
cle with spin at rest is

~

Eo+ a
~

(although strictly
speaking a magnetic field does not exist in one
dimension, and we have a two-state system which
is identically equivalent to an electric dipole)
which must transform via a Lorentz boost to
[(Eo+a)2+ p'c']' '. In principle, then it should be
possible (although more difficult, since the mag-
netic moment of a neutral particle is entirely
anomalous) to perform the same transformations
in two and three dimensions and thus obtain (1).

The energy spectrum given in (1) may well be
drastically changed for high magnetic fields by
nonnegligible quantum-electrodynamical and other
analogous corrections to the mass and magnetic
moment of the neutron. These types of correc-
tions have been considered for the electron in
calculations by various authors, '~ " although as

pointed out in Ref. 20 more work is still needed
here. In our case analogous calculations would
need to be done for a neutral particle whose mag-
netic moment is entirely anomalous. It may well
be that for extremely strong magnetic fields the
spectrum is dramatically altered. Of course if
our spectrum is changed, among other things, the
argument concerning pair production given in
Sec. II may wel. l need to be revised, as is the case
for the electron spectrum in an intense magnetic
field, pointed out in Refs. 19 and 20.

Nevertheless, it is still of considerable interest
to study the statistical mechanics of the energy
spectrum given by (1), for all magnetic field
strengths. It is remarkable that such a simple
system can give such unusual behavior in its own
right, and perhaps some of this behavior persists
even when radiative corrections are taken into
account. In any case, the very weak to moderate-
field results, 0 & g «Eo, will still be correct for
all densities (within the noninteracting-gas approxi-
mation), and it is clear from (28) that these re-
sults will not always be equivalent to the nonrela-
tivistic ones.

We have seen that this relatively simple system
of noninteracting, relativistic, ultradegenerate
magnetic moments in an arbitrarily strong mag-
netic field displays a rich variety of physical be-
havior. We hope that these results and the ques-
tions they give rise to will make some contribu-
tion to the very difficult and complex structure of
relativistic statistical mechanics. It is also
hoped that the results may have some application
to the study of the relativistic magnetic stars
which may occur in astrophysics.
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