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Our previously presented integral equation formulation of the Kinnersley-Chitre transformation theory is

generalized to the case of electrovac-to-electrovac transformations. The solution of the integral equation for
a case in which the kernel has a finite number of simple poles is obtained. In particular, we. show that when

the transformation corresponding to one simple pole is applied to Minkowski space, one obtains the Ehlers
transform of the extreme charged Kerr-NUT (Newman-Unti-Tambourino) space. We also find the general
solution corresponding to a confluence of two simple poles.

I. INTRODUCTION

In an earlier paper' (designated as I) we demon-
strated how vacuum-to-vacuum Kinnersley-
Chitre (KC) transformations' can be effected by
solving a linear integral equation of the Cauchy
-type. Preliminary studies' have indicated that the
contact which has thus been made with the well-
developed field of linear integral equations, and
with complex function theory in particular, is
apt to be fruitful in the further elucidation of the
solution-generating theory. Since it seemed
plausible that our approach would admit an ex-
tension to electrovac fields, we sought and found
just such a generalization.

It is gratifying to be able to report that with a
suitable reinterpretation exactly the same linear
integral equation can be used to effect electxovac
to-electxovac EC transforrnations. Where in our
formulation of the vacuum problem we used
2x 2 matrices, we now employ 3 &&3 matrices.
In particular, it is possible to associate with any
given stationary axially symmetric electrovac
spacetime a certain complex 3 && 3 matrix poten-
tial F(s), which depends not only upon the non-
ignorable spacetime coordinates but also upon an
additional complex vari3ble s. It is assumed
that F(s) is analytic in an open neighborhood of
s =0, and that

0 z 0

F(0) = i0 0-
0 0 1,

in the representation we shall employ.
If E,(s) is the potential associated with a par-

ticular seed metric, then

F(s) —= [I+sf(s)]F,(s)

is the potential associated with another stationary
axially symmetric electrovac spacetime, pro-
viding that the 2 x 2 matrix function f(s) is analytic

in an open neighborhood of s =0, and that it sat-
isfies the linear integral equation

1
d [f(s)+s 'I]E(s)

2tti c s -t (1.2)

where the kernel E(s) is given by the similarity
transformation

Here

0 0

Q(s)= -1 0 0

0 0 is/2. -
while y(s) is an arbitrary spacetime-independent
3 x3 Hermitian matrix function of s, analytic in
an annulus about s =0 inside the. region of analy-
ticity of F,(s) and f(s). The contour C is any
closed positively oriented contour surrounding
s =0 and within this annulus, while the point t in
Etl. (1.2) lies in the interior of the region en-
closed by C.

In the next section we shall define the F-poten-
tial associated with an electrovac spacetime,
and we shall describe a calculational procedure
which may be employed in its determination.

II. DIFFERENTIAL EQUATION FOR THE 3 X 3
F-POTENTIAL5

p = -(Es A Er) ~ (Ea A Kr) 0 0, (2.1)

except on a set of measure zero (e.g. , on the
axis). It is convenient to introduce a two-
dimensional duality operator *. For any 0-, 1-,
or 2-form a such that the Grassman product

We shall denote the spacelike Killing vector
by X& and the timelike Killing vector by K&,
assigning the symbols K& and K& to the respective
covectors (1-forms). ' We assume that

20 1783 1979The American Physical Society



l784 ISIDORE HAUSER AND FREDERICK J. ERNST 20

nr (EzEr) vanishes, we define

*o.—= p '(nK, Er)r (e'e'e'e'), (2.2)

vector fields (Kz, Kr, E„)vanishes. This conclu-
sion is based upon the observation that

where the 4-form e'e e'e is the invariant volume
element. In particular, we shall employ this two-
dimensional duality operator in order to define
another field z such that

*dz =-dp or *dp=+dz. (2 2)

W~ = 2PF, (2.4)

where P =-,'(1-iD) projects onto the subspace of
eigenvalue +i of the duality operator D. The
sourcefree Maxwell equations give us dW„=O.
Furthermore, we assume that the Lie deriva-
tives of 5 with respect to Es and E& vanish. It
follows that we may introduce complex potentials
ys and y& such that

dys =Est W„, dy&=Kzr 8'„.
Two additional closed self-dual 2-forms are

provided by

W~ = -4P(22fK~ + y g &) (2.5)

A complex 8-potential exists whenever one has
a closed self-dual 2-form W, whose Lie derivative
with respect to some vector field E vanishes.
From these attributes of W one can infer immedi-
ately that Er 8' is an exact differential, i.e., there
exists a complex potential 8 such that d 8 =E r W.

In the case of stationary axially symmetric
electrovac spacetimes we introduce three natural
closed self-dual 2-forms (W~, Wr, W„). The
simplest is that associated with the Maxwell
2-form $. It is

d(K„rW) =2i fdic f(Krr W) -dye(K~r W)]

= 2i [(EzrW„*)(KrrW) —(Err W„*)(E&rW)]

=-2iK, r[W„*(ErrW)+ (E,rW„*)W]

2i -(K~K r)r (Wsw) = 0,

s

dFi' = Kr r (Ws~ Wrs W~) ~ (2.8)

where E„ is the covector of E„.
Ne suspect that the significance of the vector

field E& is not yet fully appreciated. Some day,
perhaps, the solution-generating theory will be
extended to solutions without symmetries, and
non-Killing fields such as X„may play a role in
that hypothetical future theory. However, the
present paper is not concerned with such spec-
ulations.

For purposes of comparison with Kinnersley
and Chitre it should be noted that our 3 x3
matrix Il ' canbe expressed in terms of their
2X2 matrix H, their 2&&1 matrix q, their 1&2
matrix Li"~, and their 1 x 1 matrix K "~ as

where we use the fact that the 4-form W„*W neces-
sarily vanishes. In conclusion, we may introduce
a comp&ex 3 & 3 matrix potential I' -' such that

and

Wr = -4P(M~Kr +y fF) . (2.6)

~(i)
a~d"' aiH"')

(2.9)

The Kc transformations apply only to those
axially symmetric stationary electrovac space-
times which satisfy the condition that the scalar
product of F with the 2-form EsK& vanishes.
Assuming this condition now, one may show that
the Lie derivative of each of the potentials
(yz, yr) with respect to each of the Killing vec-
tors (E~, Er) vanishes, and from this one may
conclude that the Lie derivative of each of the
2-forms (Wz, Wr) with respect to' each of the
Killing vectors (Kz, Kr) vanishes.

What is less obvious is that if E&r W and
E&r W are exact differentials, W being any of
the closed self-dual 2-forms, then E„rW
is also an exact differential, where

(2.7)

In other words, the Lie derivative of each of the
2-forms (Wq, Wr, W„) with respect to each of the

pep =I+tgf —g(H+H ) ~

where

(2.10)

and

I = = — ~ (E„E,)Es

Kz

From the definitions (2.7) and (2.8) it follows
immediately that

(2.11',

Substituting Etl. (2.10) into Eg. (2.11), we have

As was amply discussed in Ref. 2, H and y sat-
isfy the relation



20 INTEGRAL EQUATIOÃ METHOD FOR EFFECTING. . . . II 1785

where

However, because H and y satisfy the "self-
duality relations"

hedH = -ip*dH, hedy = -i p*dy,

this equation simplifies to

-22[ QE'IQ QEI' tl2]j dEI'I
0 1

(2.12)

4iS-(z +p*)dE['i, (2.13)

The key step in the development of the E-poten-
tial for electrovac fields consists of multiplying
Eq. (2.13) by an arbitrary complex parameter t
and deducing that

x(t)r(t) =itad E[", (2.14)

where

I'(t) = t[1-2t(z+ p*)] 'dE"',
X(t) =—i(P(t) -it[IZE ' Q+QE ' tQ],

(2.15)

(2.16)„

Noting that

dE ' t@r(t) =0,

and evaluating the exterior derivative of Eq.
(2.14), we see that I'(t) satisfies the relation

dr(t) =r(t)Qr(t).

(2.17)

(2.18)

This is, however, the integrability condition for
the existence of a potential E{t)satisfying the
defining equation

dE(t) = 1 (t)QE(t) .
For a given choice of r(t) this equation does

not, of course, define the potential E(t) uniquely.
We shall select E(t) so that it also satisfies
the conditions

(2.19)

and

E(o)=Q ',

E(0)-=»m =E&'&
o ~t

E(t)tX(t)E(t) =ilP(t) .

(2.20)

(2.21)

(2.22)

{
-4e h+izc e 0)

o

-2i[IZEI' Q+QE ' I2]jdE ' =0

That these subsidiary conditions can be imposed
upon E(t) can be shown as follows.

First, it should be observed that if E„(t) and
E,(t) are both solutions of Eq. (2.19) for the same
choice of I' {t), then

d[E, (t) 'E, (t)] =0;

that is, E,(t) =E,(t)u(t), where u(t) is a space-
time-independent matrix function of t.

Since I'(0) = 0 and r(0) =dE ', Eq. (2.19) implies
that dE(0) =0 and dE(0) =dE[' QE(0). We follow
the conventions of Kinnersley and Chitre when we
select E(t) so that Eqs. (2.20) and (2.21) are
satisfied.

Finally, if Eq. (2.19) is multiplied on the left
by E(t)tX(t), and then Eq. (2.14) is employed,
one obtains

E(t)tX(t)dE(t) =itE(t)t@dE ' QE(t)

Adding to this equation its own Hermitian con-
jugate, one readily concludes that

d[E(t)'X(t)E(t)] =O;

that is, E(t) X(t)E(t) is a spacetime-independent
Hermitian matrix function of t. Taking advantage
of the rema, ining arbitrariness of E(t), we can
choose it so that Eq. (2.22) is satisfied; thereby
obtaining complete agreement with the conven-
tions of Kinnersley and Chitre.

In conclusion, by solving Eq. (2.19) subject to
the subsidiary conditions (2.20)-(2.22) we can
associate with any given electrovac spacetime
a 3 x 3 E-potential. These are the starting equa-
tions from which one can deduce the integral
equation (1.2) which permits one to effect KC
transformations.

In I we presented an interim derivation of the
vacuum-to-vacuum KC transformation equations
and of the vacuum specialization of our integral
equation. That approach relied very heavily
upon the infinite hierarchy of potentials machinery
which Kinnersley and Chitre had developed.
Since, however, the final integral equation made
no reference to the infinite hierarchy, we felt
that eventually a more direct derivation would
be found.

It must be admitted that we first found the
present electrovac generalization of our integral
equation by using exactly those techniques which
were described in I. Recently, however, we dis-
covered that the use of the KC infinite hierarchy
of potentials can be obviated by applying the known
solution of the classic Hilbert (Riemann) problem,
discussed in Ref. 3, to the analysis of Eqs.
(2.19)-(2.22). This results in the rapid identifica-
tion of the KC transformation group and the elegant
derivation of our integral equation. It may even
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allow us to prove certain outstanding conjectures.
However, these sophisticated aspects of the theory
will be addressed elsewhere. The present paper
is concerned instead with the practical application
of the solution-generating techniques, which we
hope will be of interest to a wide audience.

III. SOME PREVIOUSLY OBTAINED F-POTENTIALS

To carry out a KC transformation upon a given
spacetime, one must know E(s) for that seed
metric. In time we shall probably have quite an
extensive catalog of E-potentials. Up to the
present time, however, almost all the E-poten-
tials which have been constructed pertain to
vacuum metrics. In the case of Minkowski space
Kinnersley and Chitre' found that

was the subject of study of T. Jones. ' In the next
section we shall describe some new electrovac
resul. ts which we have obtained by solving the
integral equation (1.2).

IV. n SIMPLE POLES

where

0,

(4.1)

In I we considered vacuum-to-vacuum transfor-
mations generated by

0

EMB(s)

A. —1+2sz .X+1-2sz
2A,s 2A.

s
gi

(3.1}

n~ and u& being nonzero real constants. We now
consider the electrovac-to-electrovae transforma-
tions generated by

(4.2)

where C(s) is a 3 x 1 matrix which satisfies
the condition

E(s) = O

0

&()(ol p FM8(s) 0 &()ls) p

0 1, 0 0 1,

(3.2}

where A, (s):= [(1—2sz')'+ 4smp']', while in the
case of a static vacuum metric they found that

( e-4(o) 0 0' i -e(s) 0 0i

C(s)~it(s)C(s) =0. (4.3)

This is a natural generalization of the vacuum-
to-vacuum transformations which we considered
previously. We shall see that the same method
of solving the integral equation (1.2} may be
used in connection with the transformation gen-
erated by (4.2).

The kernel. (1.3) assumes the form
where P(s) is an s-dependent generalization of
Weyl's potential function (j, found by solving the
equation

E(s) = p(s)I'(s)I" (s),
where

(4.4)

d(j (s) = [X(s}] '[(1—2sz) —2s p*]d(1), (3.3) r(s) -=E,(s)C(s) (4.5)

subject to the condition $(0) =()').

In I we presented among other things the I-
potential of Kerr- NUT (Newman- Unti- Tambourino)
space. This result was obtained by solving our
integral equation using Schwarzschild space as the
seed metric, and selecting

')I

1 -is ~ 0

and

(4.6)I'(s) = C(s) i'i(s)E, (s) '.
We will consider the case when I'(s}Z'(s) is analy-
tic in'some open neighborhood of s =0 containing
the points s =u& (1 i-~n). Choosing the contour
C so that it encloses all the poles u&, we obtain
from Eq. (1.2) the result

0 0 0

r(s)=p(s) is ' s ' 0 (3.4)
( ) g (a(t)-x(ug)

) (4.7)

where P(s) is regular everywhere except possibly
at the origin. We suspect that this method will
ultimately replace the evaluation of F(s) by
solving Eq. (2.19).

As far as we know, the only electrovac space-
time for which F(s) has previously been calcu-
lated is the Reissner-Nordstrom solution, which

where

X(t) -=[I+ tf(t)]I'(t)I'(t) .
Condition (4.3) implies that

(4.8)

(4.9)
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Therefore, Eqs. (4.7) and (4.8) can be solved
quite easily. We find that

~.(x(~.) —('(()('(()1
If -us

which includes the extreme charged Kerr-NUT
solution. The latter arises when Eo(s) is the
potential associated with Minkowski space, i.e.,
the one given in Eq. (3.1).

x [I- p(f)r(f)r(f)], (4.10)

where the f-independent matrices X(u„) (1 (k - n)
remain to be determined.

To determine X(u, ) first substitute from Eq.
(4.10) into Eq. (4.8) and take the limit as X(t) as
i-u, . With the aid of Eq. (4.9) we obtain

n

X(u, ) = g [f+u, f(u, )]r(u, )Z„r(u, )

V. ONE SIMPLE POLE

When n = 1 Eq. (4.10) reduces to

[X(u) —r(i)r(i)] I &
r(t)r(i)

t-u L' " t-u

where

(5.1)

where

+ r(u, )r(u, ),

I'(u; ) —I'(u, )
uz uy

(4.11)

(4.12)

r(u)r(u)
1- uuf'(u)f(u) '

In particular,

r(u)r(u)
I'()I'() '"""' .

(5.2)

and the diagonal elements are obtained by taking
the limit as u&-u;. Equation (4.11}is equivalent
to The changes in the complex Ernst-potentials are

therefore given by
n

I+Qg Q) I Q) 5.
&
—Z)& = F Q& ~

)=1

Therefore, we conclude that

n

X(us) = g I'(u;)[(I —Z) ']zsr(us}. (4.13)

SS = if, '(0)

z'(x rT(u)rs(u)
u 1 - nur(u)r(u) (5.4)

When the X(u„) of Eq. (4.13) are substituted back
into Eq. (4.10) one obtains the 3 x 3 matrix f(t}.
Finally, Eq. (1.1) gives the potential E(t) corre-
sponding to the transformed electrovac space-
time. In the next section we shall show that in
the case n =1 one obtains a family of metrics

f N(P)

czrT(u)r(u)r(p)rJy(p)
u 1 —aur(u)r'(u) (5.5)

We shall now specialize to a static vacuum
seed metric, i.e., we assume that &,(s) is given
by Eq. (3.2). In this case

and

~-4 (o) Cs(rs(s)= i[A(s)+1 —2sz]es")C (s)-[A(s) —1+2sz]e " '
2A. (s)

S e4(o) C~ iS
(s) &(()(s)CT(s) z&-(z(s) ( )

A.(s) s

I'„(s)= C"(s),

Q~/j)( )
~ t )

(
)( )c)'(g) )8-(( ) ( )

s

(5.8)

I' (s) = se "los -i[A(s)+I —2sz]ezra'lC (s}*+[A(s)-I+2sz]e ~i'l (5.7)

I'"(s) = —sis C"(s)*.
Of course, the components of C(s) are not independent, for by Eq. (4.3) we have

& z[Cz(s )i2 CT(s) (s) CT( )s( (s)
s s (5.8)
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From E(ls. (5.6) and (5.7} it follows that

r, (o)I"(0) = -Ic'(o)I'
and

r, (o)i"(o)= o.
Setting a =1, we obtain from Eqs. (5.4) and (5.5) the following expressions for the changes in the potentials
Bandy:

e"&»C. (u) $
-"&"] ("}'lie'&»C ( )* f -«»

Csg
es~eCe(u) se 'I"' '")) C"(u)

&Q& (0)
A.(u) [1—u f'(u)I'(u)]

It remains only to evaluate the denominator A(u}[1-ur(u)r(u)]. We note that

r(u)r(u) = C(u)'a(u)[C(u)+ E,(u) 'E, (u)C(u)],
where

(5.9)

(5.10)

-1 0 0 4(s) 0 0 0 0

E(u) 'E(u)= 0 1 0 &()(u}+ 0 e "&» 0 E" (u) 'E (u) 0 e"" 0

and

0 0 0, , 0 . 0 0 1,

-1 0 0

1-2Qz
2Q

.A. (u)+1-2uz
2

Therefore

A. (u) —1,][,(u) -1+2uz
2uX(u) 2Q

0 0 0,

1-2uz
2Q

0

0

I-uf'(u)I'(u)=1 —uC(u) )2(u)C(u)- —( C"(u)+C (u) )(2u2(u)+ . )]].(u)zu, C'u
I ~,

& )——[&(u)]', e '~&"][A(u) —I+2uz] —IC (u)I'e' &»[A(u}+I -2uz]

+ IC (u)l(l —2ue)) .

Following Hoenselaers, Kinnersley, and Xanthopoulos' we introduce polar coordinates (r, 8) such that
I

A. (u) =2ur, 1 —2uz =-2ur cos 0.

One then obtains

u fC' +u cs
1(u)[1-ul'(u)I'(u)] = 2 r[l - C(u) Lp( )uC( u)]I- —u( uCe(u) + Ce(u) ' ) [(2u)'e2(u)+ 2ue- I]

iu Cs(u) '
e *""'(I+cose)-IC"(u)l'e"'"'(I—cosl) ——,'IC"(u)I'cose): (5.11)

Notice that the complex potentials depend only
upon the values of C(s) and C(s} at s =u, and not
upon the detailed functional dependence of C(s) on

s. While there is a constant imaginary contribu-
tion to 48 which depends upon Cs(0), such a con-
tribution is of no physical significance. We shall.

for simplicity assume in the following that C (0}
=0.

When the seed metric is Minkowski space,
both ~8 and ~y are inversely proportional. to an
expression of the form a+ by + c cos 6), where a, b,
and c are constants, among which there is a re-
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lation derivable from Eq. (5.8). A detailed com-
parison with the known complex potentials of the
extreme charged Kerr solution reveals that we
have obtained a solution which differs from that
one only by an Ehlers transformation. Thus, this
is a natural electrovac generalization of the re'-
sult found by Hoenselaers, Kinnersley, and
Xanthopoulos' in the vacuum case.

Aside from the extreme charged Kerr solu-
tion, the electrovac spacetimes which corre-
spond to the Ernst-potentials given in Eqs. (5.9)-
(5.11) are probably all new, although the vacuum
counterparts were found earlier. ' All these solu-
tions, of course, emerge from the n = 1 special-
ization of our more general solution embodied
in Eqs. (4.10) and (4.12)-(4.14).

VI. POLES OF HIGHER ORDER

It is unnecessary to consider separately the
KC transformations induced by y(s) of the form

u~ =u+f
~ n~ =g(n+Pe }~

u2=u —f~ n =g(n —PE }~

(6.1)

where & is a small parameter which we ultimately
let tend toward zero. The solution f(s) of the
integral equation (1.2) corresponding to

ns Ps"'=s -u+ (s -u) (6.2)

can be obtained directly from our solution (4.8),
and is given by

(4.2) with P(s) containing poles of order higher
than the first, for the results of such transforma-
tions can be constructed from our solution (4.10)
by permitting appropriate conf luences of the
simple poles at s =u; (I &i ~n).

As a simple illustration we have considered the
case n = 2 with

f( )t=(I-, tl,q-
4 ' t-u (t-u)' &, ~t-u (t-u)2&

where N(t) = I'(t)I'(t), and the t-independent fields are given by

M, -=nN(u) + PN(u) ——,'P'[q, N(u) + q, N(u) +q, (I'(u)I'(u) - I'(u)I'(u)) —2q, I'(u)I'(u)],

~, =— PN(u) ——,'P'[(q, —q, )N(u) —2q, l (u)I"(u)],
q„=- up, q, —= uI'(u)I'(u) —p,

~e

q, = —,'u[-p+ —,'f'(u)I'(u)+ I'(u)1'(u)] —p —I (u)I'(u),
~1

q, -=u'[pp —p' p(,'r(-u) I-( u) +I (u)1'(u))+ (r(u)1 (u))'],

and

p -=i(u)I"(u).

(6.3)

As a check upon the result (6.3) we evaluated explicitly the change in the complex 8-potential for the ease
when the S.eed metric is Minkowski space and

C= 1

In this case we obtained the result

-2i P„r'+4iP,r' cos 8- 4P,'sin'8cos 8
r +iP r'( Ie os)-82iP, r (1+cos8-2cos'8)-P, 'sin 8(1-cos8) ' (6.4)

where, again following Ref. 8, we have introduced
coordinates (r, 8) such that

X(u) =2ur, 1 —2uz =-2urcos8, p=rsin8,

and new parameters

Po—= gn, P, = P/16u'.

The result (6.4) agrees with that given in Ref. 8
for the case of a combined "rank 0" and "rank 1"

I

transformation of Minkowski space, thus lending
credibility to the more general result (6.3).

VII. CONCLUDING REMARKS-

The breakthrough made by Kinnersley and
Chitre which was subsequently developed further
by Hoenselaers, Kinnersley, and Xanthopoulos
has significantly altered the character of the
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stationary axially symmetric field problem. Pre-
viously there existed no constructive technique
for generating new solutions of arbitrary complex-
ity which did not suffer from the blemish of pro-
ducing solutions with undesirable asymptotic
properties. Now, using KC transformations, one
can produce asymptotically flat solutions charac-
terized by arbitrarily prescribed multipole mo-
ments. Admittedly the procedures which have
been developed thus far are tedious when compared
to simple Ehlers or Harrison transformations,
but they do work, and in principle the calculations
could be done on an electronic data processor.
As a result we no longer feel that the primary
objective should remain the working out of spe-

cific vacuum and electrovac solutions. Rather,
one shoul. d take advantage of the insights which
the development of the KC transformation theory
has provided in order to discover a really clever
way of describing -the general solution. It is our
hope that the introduction of complex variable
techniques via our integral equation formulation
of the KC transformation theory will facil.itate
the discovery of such a description.
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derstanding, the statement that y (s) is Hermitian
means [y (s)]~ =y (s). Likewise, we say that Q(s) is
anti-Hermitian, which means [Q(s)]~ = —6(s).

Our notations and conventions concerning differential
forms, Grassmann products, duality operations, etc. ,
were described in an appendix to the paper by I. Hau-
ser and F. J. Ernst, J. Math. Phys. 19, 1316 (1978).

If instead one considers spacetimes with two commuting
spacelike Killing vectors, then the transformation
theory applies, but one must alter a few signs in the
equations contained in this section.
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