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Quantum effects in the early universe. II. gffective action for scalar fields in homogeneous
cosmologies with small anisotropy
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The one-loop contributions of conformally invariant scalar fields to the effective action are calculated for
homogeneous cosmological models with small anisotropy. The dynamical equations which determine the
classical geometry are displayed and the matrix elements of the stress-energy tensor between the initial and
final vacuums are determined.

I. INTRODUCTION

The central problem of modern cosmology is
to determine to what extent the currently ob-
served features of the universe must be ascribed
to initial conditions or to what extent they are
determined by dynamical. processes occurring
over the course of its history. Perhaps the most
striking structural. feature of the universe today
is its remarkable isotropy' and approximate
homogeneity. ' Beginning with the work of Mis-
ner'4 in 1968 there have been a number of in-
vestigations of physical processes which could
drive the universe towards a state of homogeneity
and isotropy. Much of this work has concentrated
on the dissipation of anisotropy in homogeneous
model cosmologies because of the conceptual and
mathematical simplicity of these models. On the
one hand, these investigations could contribute
to an understanding of the present state of iso-
tropy by showing how significant initial aniso-
tropies could be damped. On the other hand, as
has been stressed by Barrow and Matzner, '
these investigations could show that there could
be no significant amount of initial anisotropy
dissipated without an unacceptable increase in
the entropy of the universe. Either way these
investigations are important for the fundamental
question raised above.

One of the most effective processes for dis-
sipating anisotropy is the production of particle
pairs in the very early universe. Particles
obeying conformally invariant wave equations,
such as the photon and neutrino, will not be
produced in conformally flat geometries such as
the homogeneous, isotropic universes. This
follows from a general. argument of Parker.
Pair creation in anisotropic universes therefore
tends to drive them towards an isotropic state.
Calculations by Z el'dovich and Starobinsky'
and by Hu and Parker' have shown that even quite
large anisotropies can be dissipated in a few

multiples of the Planck time. These calculations,
however, are limited to times greater than of the
order of one Planck time after the start of the
universe in order to avoid the computational dif-
ficulties associated with the initial singularity, in
particular, the back reaction of the produced
particles. Initial conditions must therefore be
imposed at some arbitrary early time not quite
at the singularity.

In this series of papers'" we shall carry out
a model calculation of anisotropy damping which
can be extended all the way back to the start of
the universe and which takes into account the
back reaction of the produced particles in a con-
sistent quantum-mechanical way. The price for
doing this is that our calculation is restricted
to small anisotropies in a sense we shall de-
scribe below. Our calculation thus provides a
useful complement to the earlier work which can
deal with larger anisotropies but only in later
time regimes.

At the outset we shal. l describe the model we
consider, the reasons for its features and its
limitations. We consider the dissipation of
small amounts- of anisotropy in homogeneous
spatially flat universes containing classical
radiation by the production of conformally in-
variant scalar particles. The classical geometry
which describes such a Bianchi I universe can be
put in the form'

ds' =a'(q)[-dq'+(e ~"~);~dr'dx~], (1.1)
I

where P(q) is a symmetric, traceless, 3 && 3
matrix and both a and P depend only on the time.
The assumption of spatially flat sections simpli-
fies our calculations but not, we believe, in an
essential way. The assumption of homogeneity is,
of course, a central restriction of the model. The
assumption of small anisotropy can be translated
into a restriction on the size of P.

In these universes we shall. consider the pro-
duction of conformally invariant scalar particles

20 1772 1979 The American Physical Society



20 QUANTUM EFFECTS IN THK EARLY UNIVERSE. II.

obeying the wave equation

(1.2}

5r j5gog ——0, (1.4)

with appropriate boundary conditions to be de-
scribed below. For the problem under considera-
tion both initial and final particle vacuum states
might be characterized by a three-geometry
with a certain anisotropy. The probability that
this anisotropy persists will be given by )(0.[0 )('.
In the presence of particle production I'[g] will
be complex and this probability will be less than
one. The deviation from unity is a measure of.the
dissipation of anisotropy.

Several approximations will be used in calcu-
lating the effective action. One has already been
spelled out. We wiB consider only classical
geometries of the homogeneous form in Eq. (1.1)
with small anisotropies. The effective action can

The technical advantages of considering a single
scalar degree of freedom rather than the greater
number associated with the more realistic el.ec-
tromagnetic and neutrino cases are obvious, and
not, we believe, an essential limitation of the
model. A far more important omission is that
we shall not consider the production of gravitons.
There is no justification for this truncation of the
theory other than the technical simplicity thereby
achieved. Since gravity is not a conformally in-
variant theory it is as yet unclear whether there
are significant physical issues which are ne-
glected by restricting attention to fields obeying
Eq. (1.2}.

In addition to the scalar field the universe will
be assumed to contain classical radiation whose
energy-momentum tensor has vanishing trace.
The presence of classical radiation allows the
anisotropy of the universe to be maintained at a
small value over its whole history. Without
some supporting matter the anisotropy would
inevitably grow large at some epoch because there
are no homogeneous, isotropic vacuum solutions
of Einstein's equations.

The dissipation of anisotropy by particle pro-
duction in the above model will be studied using
the effective-action method already outlined in the
first paper of this series. ' The central quantity
is the vacuum persistence amplitude —the ampli-
tude that an initial scalar particle vacuum ~0 )
evolves into a final scalar particle vacuum ]0,).
This is given in terms of the effective-action
functional I'[g] by

(0, [0 ) =exp(ir[g]),

where the classical geometry g is a solution of the
variational problem

II. THE EFFECTIVE ACTION FOR SMALL ANISOTROPY

In this section we shall evaluate the one-loop
effective action given by Eq. (1.5) to second
order in the matrix P which controLs the devia-
tion of the assumed classical geometry from
exact isotropy. We write the development
r[g] in powers of P as

r[a, p]=r,[a]+r,[a, p]+r, [a, p]+ ~ ", (2.1)

thus be developed in a perturbation series in P.
This is restrictive but certainly controllable. The
second approximation will be to evaluate the ef-
fective action in the one-loop approximation and
then calculate only the contribution to it of a
single quantized scalar field obeying Eq. (1.2}.
In this approximation

I'[g] =Ss [g] ——,
' i(Tr ln[G(x, x')]}„,,

where S~ is the classical gravitational action, C
is the Green's function of the scalar field propa-
gating in the background geometry g, and the
subscript reg indicates that the trace must be
suitably regularized.

The restriction to the one-loop terms in the
effective action is an approximation which cannot
be justified in its own context. This is because
the one-loop terms result. in significant correc-
tions to the classical action in the early universe.
Whether the corrections from higher loops result
in small or large corrections to the results of the
one-loop calculations is largely a matter of con-
jecture in the absence of any real ability to cal-
cul.ate these terms. On the positive side it can
at least be said that the one-loop corrections
make the physical amplitudes for particl. e pro-
duction finite in contrast to those calculated in the
test field approximation. One might, therefore,
hope that the higher loops which are neglected
will only result in further finite but qualitatively
similar corrections to the one-loop results cal-
culated here. Developing a more efficient ap-
proximation scheme for calculating quantum ef-
fects in the early universe remains an interesting
but largely unattacked question.

Iri this paper we shall begin this program by
calculating the effective action for small anisotro-
py and the equations of motion which follow from
Eq. (1.4). Solution of these equations will be con-
sidered in a subsequent paper. ' In Sec. II the
effective action is calculated to second order in
the anisotropy. In Sec. III the equations of motion
are derived while in Sec. IV the matrix elements
(0, ~T

~ )0 ) of the scalar field stress-energy
tensor are calculated.
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where I'„ is proportional to P". To evaluate the
individual terms in this expansion both the clas-
sical gravitational action and the one-loop cor-
rections must be expanded in powers of P.

The expansion of the classical action is straight-
forward. Its definition is"

P [d]=l' fd a(-p)a'R e(surface terms),

we can write

G =Go+Go(V, + V, + )G

= Go+ GoV&Go+(GoV2Go+ GoViGoVj Go + ' ' '
~

(2 9)

where the products are operator products. In-
serting this into the expression for the effective
action in Eq. (1.5) we find

Ss[a, P] =Vl '
J

dq[-6(a')'+a'P, 'pP'"] (2.3)

(2.2)

where l =(16')' is the Planck length and the
surface terms are chosen to cancel the metric
second derivatives in the action.'

Making use,
for example, of the results of Misner' one finds
for geometries of the form in Eq. (1.1)

(' [a]=-6(rt' Jdt)(a') ——'t(Tr)cp )„,,

r, la, P] =-~i[Tr(V,GO)]„g,

t,[a, P]=V) Jd )P(tPa"'r
—~i[Tr(V,Go)]„,
——,'i[Tr(V, G,V,G )]„„.

(2.10)

(2.11)

(2.12)
to second order in P. Here V denotes the co-
ordinate volume over which the spatial integration
is carried out, a prime denotes a derivative with
respect to q, and the Minkowski metric has been
used to raise and lower indices on the P, &, viz. ,

ijp'=pg=p[y
To evaluate the one-loop corrections we begin

by writing down the action for the scalar field
theory whose equation of motion is Eq. (1.2):

S,[y,g] =--,' Jt d'pp(-g)'" (g '8 V'esq) +Blat') ~

(2.4)

The terms in the expansion of I' of higher order
than the lowest can be represented by a series
of Feynman diagrams as shown in Fig. 1.

The effective action in the limit of exact isotro-
py for a conformally invariant scalar field was
calculated in paper I. The one-loop contribu-
tions are the local action which gives rise to the
trace anomalies in the equation of motion. Com-
bining Eqs. (3.5} and (3.9) of paper I, one has

6(g')2 g" ) 2 fa' [4f',[a]=-V dn, +» —
~

-][
I

—
Il' a) (aj

Expanding the action in powers of p one finds

Sf [(p a p] Sf [y, a] +Sf [y, a, p]

+Sp,[y, a, P],
where

$& --—' dna' q ~ P~yP+ ~" & P

S» = d~x a'

(2.5)

(2.6)

(2.7)

(2.13)

where A. =(2880m ) ".
To calculate the higher-order contributions

1, and 1„ they must first be regularized, and
we will use the method of dimensional regular-
ization in the number of conformally related
flat-space dimensions to do this. We continue
the geometry and field theory to a number of
dimensions n where the expressions in Eq. (2.11)

S„=-J[d'xa'(-, ', p(, p'"0'+ p "p, 's&V eye).

(2.8}

+—I

2

Here q denotes the Minkowski metric in
rectangular coordinates.

The Green's function G may now be expanded
in powers of P. Denote the Green's function in the
limit of exact isotropy by Go. This function was
extensively discussed in paper I. If we denote
symbolically the contribution to the wave equation
of first-order action in Eq. (2.7}by V, and that
of the second-order action in Eq. (2.8}by V, then

+—I

3 + ~ 0 ~ 0

FIG. 1. Feynman diagram expansion of the effective
action. The circles containing the number n represent
the interaction V„. The contributions of the last two
diagrams displayed above are denoted by I' and I'&,
respectively, in Appendix A.
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are finite. We then subtract a counterterm
which is the integral of a local polynomial in the
curvature. The coefficients in this polynomial
have singularities at n =4 with residues such
that the subtracted expression in Eq. (2.12) is
finite.

The scalar field theory is continued to n di-
mensions in such a way that it is always confor-
mally invariant. This is largely a matter of
convenience. - The result is that the Green's
function in the limit of exact isotropy Gp can be
conformally related to the usual flat-space
Feynman Green's function through

G (x x') =[a(q)]' "~'G (x x')[a(q')]' "k

I', [a, p]=0 (2.16)

Inserting these expressions into Eqs. (2.1l }
and (2.12) we can find regularized expressions
for these quantities by dimensionally regulating
the resul. ting flat-space Feynman integrals in
the usual way. " The terms Tr(V, GD) and
Tr(V, GO), for example, are proportional, re-
spectively, to fd"k and fd"k(k' —ie) '. In the
dimensional procedure the regularized value of
both of these quantities is zero. Thus we con-
clude, in particular, that

where
fa (x-x')

G~(x, x') =
( )„J d"k

(2.14)

(2.15)

and that the second term in Eq. (2.12}vanishes.
It is the third term in this expression which con-
tains the interesting one-loop corrections.
Writing -(i/4) Tr(V,G,V,GO} out and denoting it
more compactly by I we have from Eq. (2.V)

dffg gff g d"g&g~ q~ g ~
g

~~
q 8 ]8~~G & g~ g g g ~)~yGp &

y
& ~ (2.17)

Using Eqs. (2.14) and (2.15), this becomes

d"x, d"x' "
q Z„„x-x'

where
(2.18}

is independent of the spatial variables. Near
n=4

K(gag(k) = (5&y5a-r+c&a5yi+5si5ya)(k ) 920

f dk
Koai(&) =

J~ 2 }n
& %yai(k)

and

(2.19}

+ ~ ln(k'}+ const+0(n —4),n-4
~t'terms giving vanishingl~
( contribution to I )

' (2.22)

t' d"k' (
'k+)k)( 'k+)~kk~k(

(2v)" [(0+k')~ —ie](k'~ -ie) '

This integral is most easily carried out by ro-
tating both ko and ko' through an angie +v/2 in
the complex plane so that the denominators be-
come the norms of Euclidean four-vectors. The
integral can then be carried out in a standard .

fashion ' and the result is

«gai(k) = (5(&5ai + 5~&5&i + 5~i5ya)

1 I'(2 -n/2)[1 (n/2 -1)]'
16(4s)"" (n' —1)1'(n —2)

,f terms proportional to tensors &i

+I
(constructed from kq and 5~& )

(2.21)

We do not need to quote the last terms because
they all give vanishing contributions to 1 since p

960@' (n-4) J
f

1920 (' 4) J
d +( +}

(2.23a)

(2.23b)

where C ~„t; is the Weyl tensor in four dimen-
sions and the last equality is understood to hold
to the quadrs, tic order in P in which we are
carrying out the calculation.

In the dimensional procedure the effective

In these expressions k' is the Euclidean norm of
the four-vector. The values to be used in Eq.
(2.18}are obtained by rotating ko back through
an angle -v/2 in the complex plane. The diver-
gent part of J comes from the pole at n =4 in

Eq. (2.22). Calculating the residue of the pole
term in Eq. (2.22} to define the divergent part of
I, one finds



1776 J. 8. HARTLE AND B. L. HU 20

action is regularized by adding a counteraction
which is the integral of a local polynomial in the
n-dimensional curvature. For a conformally
invariant field theory, such as the scalar field
under consideration here, the counteraction must
be constructed from curvature quantities which
are conformally invariant or pure divergences in
the limit of four dimensions. This requirement
leads to a counteraction of the general form"

fl 4 f'

S = ~ dx( g) [A(R py+ 4R gR +R)

+B(R g)~
—2R~gR + gR )] ~ (2.24)

Here A. and B are numerical constants and p., is
an arbitrary parameter with the dimensions of
an inverse length. The term multiplied by A. is
the argument of the Gauss-Bonnet identity in

four dimensions and thus a pure divergence
there. The term multiplied by B is the square
of the Acyl tensor in four dimensions and thus

conformally invariant. The addition of this
counteraction will imply a trace anomaly of the
form

T = o.'&'R+P(R~~R —~R')+yC q„5C

(2.25)

where n, P, and Z are related to A, B by"
o. =2B/3, P=-2A, y=A+B. (2.28}

The values of A and B are fixed by the require-
ment that the counteraction in Eq. (2.24) cancel
the divergences in the one-loop effective action.
The works of a number of authors' "using
various methods of regularization have fixed
these values for the scalar problem at hand at

I'

A = -(5760m ) ', B = (1920m ) ' (2.27)

corresponding to trace anomaly parameters
o. = P = (2880w') '. The present method of dimen-
sional regularization reproduces these values.
For the value of B we wil. l demonstrate this im-
mediately below by showing that with this value
the counteraction cancels the divergence in the
effective action calculated to second order in I8

which is displayed in Eq. (2.23). Some care is
required in determining the value of A. in per-
turbation theory because the argument of the-
G3uss-Bonnet identity is a pure divergence. To
determine A the effective action must be computed
for geometries in which the integrals of this di-
vergence, which is to say the associated surface
terms, do not vanish identically. Ne carry out
such a computation explicitly in Appendix A.

Retaining just the pole term in Eq. (2.22),
combining it with the counteraction in Eq. (2.25)
at the value of B in Eq. (2.27), and expanding the
result about n =4 and to quadratic order in P one
finds

/a'}' (a~ )I" +(s.).„„~=~vfi aq —
I

—
I

—
I

—
I P,,p'"+a[»(v.a&+-,']P,',p""I, (2.28)

wig

where as before A. =(2880m') '. The pole at n =4 in Eq. (2.23) has been canceled. Some relations for cur-
vature quantities in n dimensions useful in deriving this result are recorded in Appendix B.

The remainder of 1, comes from the logarithmic and finite terms in Eq. (2.22) inserted in Eq. (2.19) and

then in Eq. (2.18). The spatial integrations are easily carried out because of the homogeneity of the

geometry. There remains only the frequency integral in Eq. (2.19) with K(k) evaluated at k=0. The inuP

term in Eq. (2.22) acquires a negative imaginary part when rotated back through an angle of -v/2 in the

complex plane to the values used in Eq. (2.19). Combining the resulting expression with Eq. (2.28} and the

quadratic part of the Einstein action from Eq. (2.3) one finds the following expression for 1,:
+~ ~~& }a ~d ~11~+1~3

&.I', PI &I &n I-
I

-='I —,I-'I I Pl &"'+"Il'~+»(uo)lw~P "I"Il] (a ~ la)

dn dn'Pl'~(n}&(n n')P""(n'—)
~
. (2.29)

Here we have defined

p 00

g (rl) = — d &u cos(&a&rl}»&
m Jo

(2.30)

and combined all scales which enter in the same
way into a single regularization scale p, . The (2.31)

answer is complex and nonlocal.
It is not difficult to verify explicitly that this

expression gives the correct trace anomaly in
Eq. (2.25) to quadratic order in P and with a =P =A.

through the rel.ation
5T= ——[I'-S ].a' aa
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III. EQUATIONS WHICH DETERMINE. THE CLASSICAL
GEOMETRY

To second order in the anisotropy the contribu-
tion of a conformally invariant scalar field to the
one-loop effective action at homogeneous spatially
flat geometries is given by the sum of Eqs. (2.13}
and (2.29) derived in Sec. II. The equations of
motion which determine the classical geometry
are found by varying this effective action with
respect to a and to Pq&. In this section we shall
derive these equations.

We consider first the equation

«ai = pti

and calculating

5I', [a, «j/5«'i = -2C,.&,

(3.2)

(3.3)

where c~& is a 3 x 3 matrix of constants. The
quantity w;& differs by only a scale factor from
the shear 0&&.

a„=«„/a. (3.4)

The action I", depends only on the first and
second derivatives of pq&. A first integral of Eq.
(3.1) is therefore easily seen to be given by re-
expressing I', in terms of

5I,[a, P]/5P" =O. (3.1) Explicitly one has from Eq. (2.29} for Eq. (3.3)

1 ~ , d«;i fa t' fa'l ' fa" l
3~—-[-,'ax+In(pa)] '+ dq g(g g )

de (I i &a)
This is a linear integro-differential equation for «&i given the scale factor a(q).

The equation for a(q},

51'[a, P]/5a =O,

is to all orders in p the equation

ft = -(P/2)r,
where T is the trace anomaly in Eq. (2.25). This follows immediately from the conformal invariance
of the scalar field or directly from Eqs. (2.13) and (2.29). To second order in p Eq. (3.7) is

~2 ~II -3a"" 12a'a" fa" I
' (a' ' (a" t fa'

6—+tr(«'} = + +9~ —
~

-24~ —
~

—[+6]—APa . a a' (a i ~a &a i I, a

+ Tr ~(«'} +2 —
I («')'- -'(«)" + 2

~

—
~

«'ai ' Iai

(3.5)

(3.7)

(3.8)

Here w stands for the matrix Kgg K' for the matrix
w&&, and Tr denotes a trace over the spatial in-
dices. Equation (3.8) is a fourth-order, non-
linear differential equation for a given ~. While
it is complicated, it at least has the virtue of
being local. Equations (3.5) and (3.8) are two
coupled equations for a and Pi& and thus the entire
classical geometry. They could be recast in
other forms. For example, Eq. (3.8) could be
replaced with a nonlocal third-order integro-
differential equation which is the energy integral
following from the lack of explicit dependence of
the effective action on q (or alternatively from the
equation To, =0, see Sec. IV). With suitable
boundary conditions these two equations deter-
mine the classical geometry, the vacuum per-
sistence amplitude, the particle production
probabilities, and the back reaction of the pro-
duced particle. We expect to return to a dis-

cussion of the solutions for these quantities in
a subsequent paper. "

IV. VACUUM MATRIX ELEMENTS OF THE STRESS-
ENERGY TENSOR

The equations of motion for the classical geom-
etry 51"[g]/5g q

-—0 can be put in the form

G = l'[T*' +(0.1~ italo-)] . (4 1)

where 6 &=8 z- &g zR is the Einstein tensor of
the background with metric goq, T"z is the stress-
energy tensor for the classical radiation, and

T z is that for the quantized scalar field. By
writing out these equations we can identify the
matrix elements. While we have al,ready dis-
played the dynamical equations for the classical
geometry in Sec. III, we shall here calculate
these matrix elements to quadratic order in the
anisotropy as they may be useful in comparing
our results with other calculations. To shorten
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our expressions we shall write simply T z for
(O. IT»»IO ). All components will be quoted in the
orthonormal frame defined in Eq. (B2) of Ap-
pendix B unless otherwise noted.

From Eq. (4.1) and Eq. (1.5) it follows that if
we define 1 a' 11 =- — —+s

a a i/0r =--t (4.9)

which is a consequence of the fact that T q is
constructed from an action, [Eq. (4.3)]. Noting
that the connection coefficients in the orthonormal
basis are (see Appendix B)

A =I'[i,"]-SsB]
then in a coordinate basis

2 5A
(-g}"8-~'

With the metric parametrized as in Eq. (1.1)
variation with respect to a gives the trace of
T z according to

(4.2}

(4 3)

with the others vanishing or connected to these
by symmetries, we find the conservation law
implies

a'—(a4T0)' = —T +s (T'i —'5'~T2 —) .a 0 a (4.10}

Inserting Eqs. (4.4} and (4.5) this can be written
to quadratic order in P»& as

1 5A
a' 5a (4.4) (a4T')' = a' —+ P'5A 5A

5a 'J
5p»»

' (4.11)

Variation with respect to P;& gives to linear
order in P»; the following components written in
the orthonormal frame:

This can be integrated because 8 has no explicit
dependence on q. The result is

Tsg 3»2 a4 5p

In these relations if

A = dry Z(a", a', a, P", P}

(4.5)

(4.6)

1 ggii gg 'li
a

'
'»,s" p*'~s-- "s ~ -p»~s- +~ .a iQ. a /3.

(4.12)

and y represents one of the variables (a, P»&), then

(ss " &2 i' ag
5y isy" sy'& '

ay
(4.7}

T" =O (4.8)

identically. Equation (4.5) is already accurate
to quadratic order since there are no trace-free
tensors of quadratic order which can be con-
structed from the P;, . The component T,'can be
found by solving the conservation law T0.&

=0

The remaining component of T & can be de-
termined to quadratic order in P as follows: Since
a spatial vector cannot be constructed from P»&

we have

T & —(T»& —'5»&T )+ —'5»&(T To) (4.13)

all the components of the stress-energy vacuum
matrix elements are determined from Eqs. (4.4),
(4.5}, (4.8), (4.12), and (4.13).

For the explicit effective action given in Eq.
(2.29) we find the following results for T'~

3 5 T~, T, and T,'accurate to quadratic order in
P. The remaining components are determined by
Eqs. (4.8) and (4.13):

The constant can be found by appropriate boundary
conditions derived from the definitions of the
initial and final states. In our example it will
vanish because there are no scalar quanta in the
initial and final states.

Since

T -3&' T, = —.—I3—[his+»(va)] — da'&(n n'), -+
I

—I+
I

—
I

ax@ & d
a4dg & d»I

'
d»I „d»I' .(a j (ai, j

a"" a"'a' (a'I' a" (a'i' (a'& '
T= 6 — +4 . +3I —

I
-8—

I
—

I +2I —
Ia a' Ia J a (a) Ia j

I'a5' (a' l
+ Tr 4I —

I
(»»')+4

I
—I(»»')'+3(»»')'-(»»')"Ea] I, a j

--I, I
+- —

I

(a'» (a"' (a"\' (a" 1 (a i2 1 a'i
a iai I, a»aJ (a 2(ai 2 a i

(-2
i
—~+2 —

~

Ki K +2i —ir' 8'+2c' D"- cB'2'}.
Il, a j a j ~ Itaj

(4.14)

(4.15)

(4.16)
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Here

D;p = [—,'in+ ln(ga)] P,"q — dry'&()7 —q')Pfg ~

& ~oO

action, called A in Eq. (2.24).
Continuing the expansion begun in Eqs. (2.10)-

(2.12) one finds the following expression for the
third-order effective action:

ACKNOWLEDGMENTS

(4.17)
&,[a, P] = -& i Tr(VBGO+ V,GOV, GO+ 3 V,GOV, GOV~GO}.

The authors are grateful for helpful. conversa-
tions with D. Boulware, M. Duff, and A. Lapedes.
This work was supported in part by the National
Science Foundation.

APPENDIX A: THIRDARDER DIVERGENCES

In this appendix we discuss the determination
of the coefficient of the argument of the Gauss-
Bonnet identity in the counteraction Eq. (2.24).

The argument of the Gauss-Bonnet identity

9 =Z.», Z»' -4Z.,It"+Z' (Al)

is a pure divergence which for the metric of Eq.
(1.1) has the following expansion in powers of P,J.

9= —,—Tr --,'e —+-,'~+" ~
~

. (A2)
Q df), Q

In this relation, which follows easily from the ex-
pansion of the curvature squares obtained in
Appendix B [Eqs. (B10)-(B12)], tr;& = Pf& and the
trace is over the spatial indices.

To evaluate the coefficient of 9 in the counter-
action one needs to calculate the divergent parts
of the unregulated one-loop effective action for
geometries for which the volume integral of 9
over the whole spacetime does not vanish and for
which the integral expressing the regulated one-
loop effective action is also finite. %e have
found it easier to find geometries which satisfy
these conditions in third order in P than in the
second order. For example, one could consider
a geometry in which P has an asymptotic behavior
such that w vanishes as g- -~ and approaches
a constant as q- +but for which I(', a'/a, and
a "/a fall off sufficiently rapidly to make the reg-
ulated one-loop effective action [Eq. (2.29)] finite.
In the integral. of 8 over all spacetime there will
then be no second-order contribution but there
will be a contribution from the integral of the
third-order term in Eq. (A2). Since this simple
example will also illustrate how to deal with the
divergences in third order, we shall now pursue
it to calculate the coefficient of 9 in the counter-

I g 2 d x d p g +]jg g

x P™(y)P„'(y), (A4)

where E~», is given by Eqs. (2.19) and (2.20).
Near n =4 the parts of E~z» which give a non-
vanishing contribution to 1", are given in Eq.
(2.22}. The divergent part is the residue of the
pole term. %e shall now evaluate this for the
geometry described above. The divergent be-
havior for P resulting from the constant asymp-
totic behavior of K means that some attention is
required in evaluating Eq. (A4). The function
E,'&'~p(x, y) obtained from Eqs. (2.19}and the pole
term in Eq. (2.22} will be a fourth-order differen-
tial operator acting on 5-function distributions.
Integration by parts may be used to evaluate ex-
pression (A4), but in view of the divergent asymp-
totic behavior for P care must be taken to retain
the nonvanishing surface terms. The result is

(",'" =
p&p ( p) f d xTx[(x')'x- —,'(x )'),

(A6)

where we have written all surface terms as the
integral of the total derivative (x )'.

The contribution I „of the last diagram in Fig. 1

may be written

(A3)

Diagrammatically, this is the sum of the last three
diagrams shown in Fig. 1. The first term of these
three is proportional to J d "k and Jd "k(k'-ie) '
which vanish identically in the dimensional pro-
cedure. The next two terms we denote by I',
and I „respectively.

Of the two terms in V, given Eq. (2.8) only the
second term will give a nonvanishing contribution
to l', . The first term will be proportional to
Tr(P) and its derivatives ail of which vanish
identically. For the remaining contribution to I',
we find

where

"*f "X "x p' (x)p '(y)p "(x)G,.x, „(x,X x) (A6)

d "y
(2w)" (2v)" (2v)" ~) 6 (P+ f+&) e~ *""'" '

G&»p„„(p, l, y) (A7)
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with

I
d "k (k -p);k;k„(k+q), (k+q)„(k -p)„

(A8)(2w)" (k'-i e)[(k +q)' -ie][(k -p)' i-e]
'

In Eq. (A6), P is a function of q alone. As a consequence, if Gj»,„„is expanded in invariants multiplied
by tensors constructed from 5~& and the momenta P, q, and x, only the tensor constructed purely from the
5jj will give a nonvanishing contribution to Eq. (A6). That term may be identified by Feynman parametriz-
ing Eq. (A8), translating the integration variable to eliminate terms in the denominator odd in k, and re-
taining only the loop momenta in the numerator. Denoting this term by C&»)& „we have

Gj»j„n=2 djw, dn ) dnn5 1- cj; i( i) (A9}

where
H = R~oj2p + cj2+q + (R|Qnt

The result for this integral is proportional to

1
wsjn jnan n(n+ 2)(n+ 4) (jj n j m )tn5 5

(Alo)

(All)

where the parentheses denote complete sym-
metrization and the numerical factor normalizes

Q,j» „ to have total trace (over spacetime in-

dices} unity. In particular,

jjn jinn Qjjnjmn
(n)

0 0
. rl

x de, 5 1-

where
(A12) .

(A13)

div 12 1
(4w)' n-4

inserting this in Eq. (A12) and carrying out the

integrals over the Feynman parameters one
finds

(A14)

C(5) div 1
jjhjwn 120w2(n 4)Qjjkjmn

x (p4+ q4+ r '+p'q'+p'r '+ q'r ') . (A15)

Finally, inserting this in Eq. (AV) the resuit in

Eq. (A6) and evaluating the resulting expression
with the attention to surface terms already dis-
cussed for I', we find for the divergent part of
the last diagram

(A16)

"d "k. (2w)" (k'+H —i&)''

After rotating the k contour by e" ' this integral
may be evaluated by standard dimensional reg-
ularization techniques. " The result has a pole at
n=4. Near n=4

For the total divergent part of the third-order
one-loop effective action we therefore find from
the sum of Eq. (A16) and Eq. (A5)

(A1V)

This divergence is to be canceled by the counter-
action in Eq. (2.24). Using the expansion in Eq.
(A2) and Eq. (810) to evaluate the expansion of
the Weyl tensor, we find the following for the
third-order counteraction's divergent part:

JI d x Tr[—'(8)']n-4 (A18)

Comparing this with Eq. (A1V) we see that the
counteraction has the correct form to cancel the
divergence in this order and that A+B = (2880w') '.
The value of 8 has already been determined from
the cancellation of the divergence in second-order
perturbation theory as B =(1920w') ' [cf Eq. .
(2.23b)]. The result of the dimensional regular-
ization scheme for A is therefore

A = -(5V60w')-' (A19)

in agreement with that found by other methods.

APPENDIX B: CURVATURE IDENTITIES

In this appendix we shall list some useful
identities concerning the curvature tensor for the
metric

ds' =a'[-dq'+ (e'~); jdx'dxj],

in n —1 spatial dimensions. iI is an (n —1)
&& (n —1) trace-free symmetric matrix and both it
and a are functions of the time coordinate g
alone. Our results for tensor components in this
appendix will always be quoted in the orthonormal
frame

&u'=adrl, &u; =(ae~)jjdxj.

It is not difficult to convince oneself that the
Hiemann tensor components do not involve the
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a'
+S ' +S +St -gS

a (83)

(84)

Here s and t are the matrices defined by

s =-,'[(e')'(e ')+(e ')(e')'],

t = —,'[(e')'(e ') —(e ')(e')'],

where a prime denotes a derivative with respect
to q and in matrix expressions quantities such as
a'/a are understood to be proportional to the unit

dimension n explicitly so that the calculations of
Misner' may be taken over directly. The non-
vanishing ones are

a» (a)
R';.(= —,—-I —

I
+s'a' a (a j

1 a» a))
Ro = —

2 (n-1) ———
~

+Tr(sm)a' a a)
1 a" t'a') '—+(n -3)

)
—

(
+s'a' a (a]

(8'f)

+(n —2)s (
—[+st —tskai ij

alt (a4 ) 2'l

R = —, (n-1) 2—+(n-4) ~—
a

I
a

+ Tr(4*)I, (89)

where Tr indicates a trace over the spatial in-
dices.

To the lowest few orders in p these results
imply the following expressions for the squares
of the Weyl tensor, Hicci tensor, and scalar
curvature. They are expressed in terms of

«y =p(g:

matrix. The resulting nonvanishing Hicci tensor
components and scalar curvature are

C ()»C
"' = —4Tr(z" +41(."2)+O(P4), (810)

1 (a»5 ~a» ) (a'~ 2

R- R™8=. (n-»—nl—
I

-4l —II —
1 +(n'-»+6)I —

Ia' . (a& ia&(ai iaj
f(a» i al 2) i (all ) 2

+Tr 2(n —1) ( I
—

(
— —

I
~'+I ~'+(n —2)I —Ii(: I +O(P'),

())a & a J i Eai
n-1 a" a' ' ' a" (aI 2,

R = (N —)) 4 —+(n —4) — +4 4 —+(» —4)I — 4'~(li)I+0(P') ~

a a a, a ka

(811)

(812)

epy5 Npy5 4, eg
R»gy, R =C~()„()C +

(
)R»()R

2
R .

(n —2)(n —1}
(813)

The square of the Hiemann tensor can then be
computed from Q=C~g„~C " +4 —1 R pR

2

(n -2)(n-() ) (815)

If F is the combination of the squares of curva-
tures which give the square of the Weyl tensor
in four dimensions

Finally, we note that if the argument of the
Gauss-Bonnet identity in four dimensions is
written

+=R~ggR " -2R pR +3R (816)

then in terms of the n-dimensional Weyl. tensor

R~pyg R 4R~QR +R (814} 6' = C 8),,C + (n - 4)
(n -2)

then in terms of the n-dimensional Weyl tensor
this can be written

(n+ 1)
3(n —2)(n —1)
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