Inclusive studies of charmed-meson decays and SU(4) 20-plet dominance model

Yoshio Koide

Laboratory of Physics, Shizuoka Women's University, Yada 409, Shizuoka 422, Japan (Received' 3 April 1979)

Inclusive branching ratios to states containing kaons in D^0 , D^+ , and F^+ decays are studied on the basis of an SU(4) 20-plet dominance model, where strangeness-changing decays of D^+ are strongly suppressed.

Recently measurements of inclusive branching ratios to states containing kaons in D^0 and D^{\pm} decays, B(D - KX), have been reported by Vuillemin *et al.*¹ from inclusive studies of the *D*-meson decays at the $\psi(3772)$. A very surprising result is that the sum of the branching ratios to states containing charged and neutral kaons in the D^{+} decays is only about $\frac{1}{2}$ although this sum in the D^0 decays is nearly 1.

In the conventional scheme, dominant modes in charm decays are strangeness-changing modes. Only when there exists some selection rule which suppresses the Cabibbo favored modes $(\Delta S = 1)$ in the D^* decays can we explain the observed large branching ratio to "no kaon" state in the D^* decays, $B(D^* \rightarrow \text{no } K)$. We have already known an example of such a selection rule. An SU(4) 20-plet dominance for the weak interaction of current-current type leads to the suppression of $D^* \rightarrow \overline{K}^0 \pi^{*}$.²

In a previous paper,³ Katuya and the author have pointed out that studies of $B(D + l\nu X)/B(D + K\pi)$ and $B(D + K\pi\pi)/B(D + K\pi)$ based on quantum chromodynamics (QCD) lead to "moderate" 20 enhancement, i.e., $c_{-} \simeq 4$ and $c_{+} \simeq 0.5$, where c_{-} and c_{+} are the enhancement factor for 20 and the suppression factor for 84, respectively, and QCD one-loop calculation gives $c_{-}c_{+}^{2} = 1.^{4}$ They have also predicted $\Gamma(D^{+} \rightarrow \text{all})/\Gamma(D^{0} \rightarrow \text{all}) \simeq 0.05.^{5}$

The purposes of this paper are to understand the data of the inclusive branching fractions in the D^0 and D^{\pm} decays from the standpoint of the "moderate" 20 enhancement suggested in Ref. 3, and to predict inclusive branching fractions in F^+ decays and lifetimes of the charmed mesons thereby.

The prediction $\Gamma(D^* \rightarrow \operatorname{all})/\Gamma(D^0 \rightarrow \operatorname{all}) \simeq 0.05$ in Ref. 3 has been derived from an estimate of $\Gamma(D \rightarrow K\pi)$ and the experimental values of $B(D \rightarrow K\pi)$. On the other hand, an estimate based on a naive quark-parton model leads to $\Gamma(D^* \rightarrow \operatorname{all}) = \Gamma(D^0 \rightarrow \operatorname{all})$, because we take the incoherent sum of all the diagrams.

In order to reconcile the quark-parton picture with the conclusion $\Gamma(D^* \rightarrow \text{all}) \ll \Gamma(D^0 \rightarrow \text{all})$ in Ref. 3, we assume that in the charmed meson decays caused by charm-quark decay $c \rightarrow s + u + \vec{d}$ the final-state quark system dissociates into two

color-singlet hadron "jets." This assumption has been proposed by Ellis, Gaillard, and Nanopoulos,⁶ and they have obtained the semileptonic branching ratios $B(D^0 \rightarrow l\nu X) = B(D^+ \rightarrow l\nu X) = B(F^+ \rightarrow l\nu X)$ $+ l \nu X = [3(X_{+}^{2} + X_{-}^{2}) + 2]^{-1}$, where $X_{+} = (2c_{+} \pm c_{-})/3$. Figures 1(a) and 1(b) illustrate two types of D decays, $D \rightarrow h(\overline{d}u) + h(\overline{q}s)$ and $D \rightarrow h(\overline{d}s) + h(\overline{q}u)$, respectively, where \overline{q} is spectator, i.e., $\overline{q} = \overline{u}$ $(\overline{q} = \overline{d})$ for $D^{\circ}(D^{*})$, and $h(\overline{d}u)$ means the colorsinglet hadron jet produced by the color-singlet quark pair $(\overline{d}u)$ [hereafter we write $h(\overline{d}u)$ as $h(\pi^*)$]. The amplitudes for the decays (a) and (b) are proportional to the factors X_{\star} and X_{-} , respectively. Note that in the D^+ decays the flavor configuration of the jets in the type (a) is identical with that in the type (b). We assume that such diagrams (a) and (b) are coherent, and $\Gamma(D^* \rightarrow h(\overline{K}^0) + h(\pi^*))$ is given by substituting a factor $3(X_{+} + X_{-})^2$ for the factor $3(X_{\bullet}^2 + X_{\bullet}^2)$ in the $\Gamma(D^0 \rightarrow h(K^{\bullet}) + h(\pi^{\bullet}))$ + $\Gamma(D^{\circ} \rightarrow h(\overline{K}^{\circ}) + h(\overline{u}u))$.

Similar assumptions are applied to the Cabibbosuppressed decays $c \rightarrow d + \overline{d} + u$ and $c \rightarrow s + \overline{s} + u$, too.

There are other diagrams as shown in Fig. 2. (Hereafter we refer to the decays illustrated in Figs. 1 and 2 as types I and II, respectively.) We assume that the final-state quark system in diagram II decays into one color-singlet hadron jet h', and the diagrams I and II incoherent. We define the ratio of the contribution from diagram II to that from diagram I as R. The value of R is very sensitive to the masses of the ordinary quarks; therefore, we deal with R as a free parameter.

Under these assumptions, we get the total decay

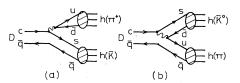


FIG. 1. Diagrams for *D*-meson decays caused by charm-quark decay $c \rightarrow s + u + \overline{d}$. Amplitudes for diagrams (a) and (b) are proportional to factors $X_{+} \equiv (2c_{+} + c_{-})/3$ and $X_{-} \equiv (2c_{+} - c_{-})/3$, respectively, which result from gluon corrections.

1739

 $\mathbf{20}$

© 1979 The American Physical Society

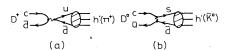


FIG. 2. Diagrams for *D*-meson decays where the incoming $C \neq 0$ $q\bar{q}$ pair annihilates to produce a C = 0 $q\bar{q}$ pair which subsequently evolves into ordinary hadrons. Amplitudes for diagrams (a) and (b) are proportional to factors X_{\star} and X_{\star} , respectively, apart from the Cabibboangle factors.

widths

$$\begin{split} \Gamma(D^{0} \rightarrow \text{all})/\cos^{4}\theta_{C} \Gamma_{0} &= 3(X_{*}^{2} + X_{*}^{2})(1 + 2\tan^{2}\theta_{C}) \\ &\quad + 3RX_{*}^{2} + 2/\cos^{4}\theta_{C}, \\ \Gamma(D^{*} \rightarrow \text{all})/\cos^{4}\theta_{C} \Gamma_{0} &= 3(X_{*} + X_{*})^{2}(1 + \tan^{2}\theta_{C}) \\ &\quad + 2/\cos^{4}\theta_{C} \\ &\quad + 3\tan^{2}\theta_{C}(X_{*}^{2} + X_{*}^{2} + RX_{*}^{2}), \end{split}$$
(1)

where $\Gamma_0 = (m_C/m_\mu)^5 \Gamma(\mu \to e \nu \overline{\nu})$ and we take into account up to the Cabibbo-suppressed modes of the order of $(\sin \theta_C \cos \theta_C)^2$.

Furthermore, we parametrize the inclusive Dmeson decays as follows: (i) Hadron jets produced from nonstrange-quark pairs, $(\overline{a}u)$ and so on, onestrange-quark pairs, $(\overline{a}s)$ and so on, and twostrange-quark pair $(\overline{s}s)$ belong to no-, one- and two-kaon states, respectively. (ii) Hadron jet h(K) consists of one-body state K with the fraction $1 - \alpha$ and many-body state $h^m(K)$ with the fraction α . For simplicity, we assume $h'(K) \simeq h^m(K)$.

TABLE I. Semileptonic branching ratios and fractions of charged and neutral kaons in D^0 , D^+ , and F^+ decays, where we assume $X_+ = \frac{5}{2}$, $X_- = -1$, $\alpha = 0.8$, and $\beta = \frac{1}{3}$.

	R = 10	<i>R</i> = 8	R = 6	Experiments
$B(D^0 \to l \nu X)$	0.03	0.03	0.03	average
$B(D^+ \to l\nu X) B(F^+ \to l\nu X)$	$\begin{array}{c} 0.13 \\ 0.01 \end{array}$	$0.15 \\ 0.01$	0.16 0.02	0.098 ± 0.014
$B(D^0 \to K^- X)$	0.42	0.44	0.45	0.35 ± 0.10
$B(D^0 \to K^+ X)$ $B(D^0 \to \overline{K}^0 X)$	$0.01 \\ 0.56$	$0.01 \\ 0.55$	$0.01 \\ 0.53$	
$B(D^0 \to K^0 X)$	0.00	0.01	0.01	0.57 ± 0.26
$B(D^+ \to K^- X)$	0.13	0.15	0.16	$\textbf{0.10} \pm \textbf{0.07}$
$B(D^+ \to K^+ X)$ $B(D^+ \to \overline{K}^0 X)$	$0.05 \\ 0.35$	0.05 0.38	0.06 0.43	0.06 ± 0.06
$\begin{array}{c} B \left(D^{+} \rightarrow K^{0} X \right) \\ B \left(D^{+} \rightarrow K^{0} X \right) \end{array}$	0.02	0.03	0.43	0.39 ± 0.29
$B(F^+ \rightarrow K^- X)$	0.06	0.07	0.09	
$B(F^+ \rightarrow K^+ X)$	0.10	0.12	0.14	•
$B(F^+ \to \overline{K}{}^0 X)$ $B(F^+ \to K^0 X)$	$0.07 \\ 0.08$	0.09 0.09	0.11 0.11	

(iii) Fractions to $\overline{K}{}^{0}X$ (K-X) and K-X ($\overline{K}{}^{0}X$) in the many-body states $h^{m}(\overline{K}{}^{0})$ ($h^{m}(K^{-})$) are $1 - \beta$ and β , respectively. Therefore, fractions to $\overline{K}{}^{0}X$ (K-X) and K-X ($\overline{K}{}^{0}X$) in the state $h(\overline{K}{}^{0})$ ($h(K^{-})$) are $1 - \alpha\beta$ and $\alpha\beta$, respectively, where $\overline{K}{}^{0}X$ (K-X) state may contain the one-body state $\overline{K}{}^{0}$ (K-). Hadron jet $h(\overline{s}{s})$ consists of K*K-X and K ${}^{0}\overline{K}{}^{0}X$ with equal weights.

Then we obtain the following results:

$$\begin{split} &\Gamma(D^{0} \rightarrow K^{-}X)/\cos^{4}\theta_{C} \Gamma_{0} = (1 - \alpha\beta) [3X_{*}^{2}(1 + \tan^{2}\theta_{C}) + 2/\cos^{2}\theta_{C}] + 3X_{*}^{2}(\alpha\beta + \beta) + 3\tan^{2}\theta_{C}X_{*}^{2}/2 ,\\ &\Gamma(D^{0} \rightarrow K^{+}X)/\cos^{4}\theta_{C} \Gamma_{0} = 3\tan^{2}\theta_{C} [(1 - \alpha\beta)X_{*}^{2} + X_{*}^{2}/2] ,\\ &\Gamma(D^{+} \rightarrow K^{-}X)/\cos^{4}\theta_{C} \Gamma_{0} = \alpha\beta [3(X_{*} + X_{*})^{2} + 3\tan^{2}\theta_{C}X_{*}^{2} + 2/\cos^{2}\theta_{C}] + 3\tan^{2}\theta_{C}X_{*}^{2}/2 , \end{split}$$

 $\Gamma(D^* \to K^*X)/\cos^4\theta_C \Gamma_0 = \Gamma(D^0 \to K^*X)/\cos^4\theta_C \Gamma_0.$

 $\Gamma(D^0 \to \overline{K}{}^0X)$, $\Gamma(D^0 \to K^0X)$, $\Gamma(D^+ \to \overline{K}{}^0X)$, and $\Gamma(D^+ \to K^0X)$ are given by the exchange $(1 - \alpha\beta)$ $\leftrightarrow \alpha\beta$ and $(1 - \beta) \leftrightarrow \beta$ in the results $\Gamma(D^0 \to K^-X)$, $\Gamma(D^0 \to K^+X)$, $\Gamma(D^+ \to K^-X)$, and $\Gamma(D^+ \to K^+X)$, respectively. We also obtain

$$\frac{B(D^{0} - l\nu\overline{K}^{0}X)}{B(D^{0} - l\nu\overline{K}^{-}X)} = \frac{B(D^{*} - l\nu\overline{K}^{-}X)}{B(D^{*} - l\nu\overline{K}^{0}X)} = \frac{\alpha\beta}{1 - \alpha\beta}.$$
 (3)

Parameters in our model are X_{\pm} , R, α , and β . In order to suppress the strangeness-changing decays of D^* , according to Ref. 3, we use $c_{-}=4$ and $c_{+}=0.5$, that is, $X_{+}=\frac{5}{3}$ and $X_{-}=-1$. In order to realize to small $B(D^0 - l\nu X)$ and large $B(D^+ - no K)$, we must suppose that R is considerably large (R=1-10), although it is usually considered that *R* is negligibly small. If $1 - \alpha\beta > \alpha\beta$ and $1 - \beta > \beta$, we can derive $B(D^+ + (K^0 + \overline{K}^0)X) > B(D^+ + K^{\pm}X)$ and $B(D^0 + (K^0 + \overline{K}^0)X) > B(D^0 + K^{\pm}X)$, respectively. Since $B(D^0 + K^-\pi^+) \simeq 2\%$,⁷ we suppose $(1 - \alpha)^2 \simeq 2\%$, so that $\alpha = 0.8 - 0.9$. If we assume that the states X in the many-body state $h^m(K) = KX$ belong to I = 0 and I = 1 with equal weights, we get $\beta = \frac{1}{3}$.

In Table I, we give the predicted values of $B(D + l\nu X)$ and B(D - KX) for R = 6, 8, and 10, where we use $\sin \theta_C = 0.22$, $X_* = \frac{5}{3}$, $X_- = -1$, $\alpha = 0.8$, and $\beta = \frac{1}{3}$. $R \simeq 8$ is favorable. Further detailed determination of the parameters is not so significant at the present experimental status. We also give the predicted values of $B(F^* - l\nu X)$ and

1740

(2)

 $B(F^{+} \rightarrow KX)$ in Table I, where we put the same assumptions as those in D decays and we neglect the contribution from $F^+ \rightarrow \tau \nu_{\tau}$ decay.

We note that dominant inclusive decay of F^* is that into the no-kaon state: We get $B(F^+ \rightarrow no K)$ $= 0.79, B(F^+ - K) = 0.05, B(F^+ - KK) = 0.16, \text{ and}$ $B(F^{+} \rightarrow KKK) = 0.00$, while $B(D^{0} \rightarrow n_{0} K) = 0.02$. $B(D^{0} \rightarrow K) = 0.98, B(D^{0} \rightarrow KK) = 0.02, B(D^{+} \rightarrow no K)$ $=0.47, B(D^+ - K) = 0.45, \text{ and } B(D^+ - KK) = 0.08,$ assuming the same parameters as in Table I and R=8.

The predicted lifetimes of the charmed mesons are as follows⁸:

 $\tau(D^{0}) \simeq 1.4 \times 10^{-13} \text{ sec}$. $\tau(D^{+}) \simeq 7 \times 10^{-13} \text{ sec}$. (4) $\tau(F^*) \simeq 0.7 \times 10^{-13} \text{ sec}$

where we use⁹ $\Gamma_0 \simeq 2 \times 10^{11}$ sec⁻¹. A recent Fermilab experiment¹⁰ using an emulsion-spark-chamber arrangement has found an event which corresponds to the decay of a charged particle with lifetime of $\sim 6 \times 10^{-13}$ sec. We would like to identify this particle with the D^+ meson.

This work was supported by the Scientific Research Fund of the Ministry of Education.

by M. Katyua (private communication).

- ⁶J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B100, 313 (1975).
- ⁷I. Peruzzi et al., Phys. Rev. Lett. 39, 1301 (1977). ⁸The present studies of $D \rightarrow KX$ lead to $\Gamma(D^+ \rightarrow all)/$ $\Gamma(D^0 \rightarrow all) \simeq 0.2$ and consequently weaken the statement $\Gamma(D^+ \rightarrow \text{all}) / \Gamma(D^0 \rightarrow \text{all}) \simeq 0.05$ in Ref. 3 where $D \rightarrow K\pi$ and $D \rightarrow K\pi\pi$ have been studied. After this work was completed I received a report by Y. Hara [Prog. Theor. Phys. 61, 1738 (1979)] in which $\Gamma(D^* \rightarrow \text{all})/$ $\Gamma(D^0 \rightarrow all) = 0.2$ is concluded from studies of $D \rightarrow K\pi$ and $D \rightarrow K \pi \pi$ by making use of the current-algebra relations and amplitudes in the dual model. The pre
 - dicted ratio in Ref. 3 may be excessive. ⁹D. Fakirov and B. Stech, Nucl. Phys. <u>B133</u>, 315 (1978); X. Y. Pham and R. P. Nabavi, Phys. Rev. D 18, 220 (1978); N. Cabibbo and L. Maiani, Phys. Lett. 79B, 109 (1978); M. Suzuki, Nucl. Phys. B145, 420 (1978). These authors have predicted $\Gamma_0 = (1.2-2.5) \times 10^{11}$ sec⁻¹.
 - ¹⁰A. L. Read *et al.*, Phys. Rev. D 19, 1287 (1979).

- ¹V. Vuillemin et al., Phys. Rev. Lett. <u>41</u>, 1149 (1978). ²T. Hayashi, M. Nakagawa, H. Nitto, and S. Ogawa,
- Prog. Theor. Phys. 49, 351 (1973); M. K. Gaillard, B. W. Lee, and J. L. Rosner, Rev. Mod. Phys. 47, 277 (1975).
- ³M. Katuya and Y. Koide, Phys. Rev. D 19, 2631 (1979).
- ⁴M. K. Gaillard and B. W. Lee, Phys. Rev. Lett. 33, 108 (1974); G. Altarelli and L. Maiani, Phys. Lett. 52B. 351 (1974).
- ⁵One may find a stumbling block for this picture: The average D-meson semileptonic branching ratios measured in e^+e^- annihilation would vary with c.m. energy as the proportion of D^+ and D^0 varies, while data both from SLAC and DESY show no such variation. However, if we admit 2 standard deviations of the data, this picture is still not ruled out experimentally: The value $\Gamma(D^+ \rightarrow \text{all}) / \Gamma(D^0 \rightarrow \text{all}) \simeq 0.05 \text{ leads to } B(D \rightarrow e\nu X)$ =9.9% and $\simeq 6.6\%$ at $E_{\rm c.m.}$ =3.77 GeV and at high $E_{\rm c.m.}$ (4 GeV and above), respectively, where $\sigma(D^0)/\sigma(D^*)$
- =1.1 and \simeq 2.4, respectively. This has been emphasized

1741