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We study the question of the existence of long-range forces that are stronger than electromagnetic forces

between ordinary hadrons. A phenomenological analysis is carried out which puts, limits on the magnitude of
the coupling constant X„entering a hypothetical interhadronic potential V~(r) —(X~lr)(rolr)" ', with a

length scale ro —1 F and 1 & N & 7. Bounds on the value of X„are obtained from a variety of sources,

including Eotvos- and Cavendish-type experiments, hyperfine structure of the hydrogen molecule, and the

level structure of exotic atoms. The dispersion-theoretic approach to the asymptotic behavior of interparticle

potentials is reviewed and used to analyze some of the theoretical implications of long-range forces. We stress

the fact that long-range potentials require that the scattering amplitude F(s,t) is not analytic at t = 0. Such

a lack of analyticity is often connected with physical states whose mass spectrum extends down to zero. The

implications of this for quantum chromodynamics (QCD) and the recent suggestions that QCD may imply the

existence of a long-range force between hadrons are studied. A speculative scheme is considered which might

yield such forces without requiring the existence of massless color gluons as observable particles.

I. INTRODUCTION

where g„, is a dimensionless coupling constant
typical of strong interactions (spin-dependent
factors, if any, are suppressed).

In contrast to this, the corresponding potential
VA'B arising from the electromagnetic interactions
between the hadrons is, of course, just the
Coulomb potential at large distances,

AB @AQB4 ri (1.2)

provided that the charge quantum numbers QA

and QB are both nonvanishing. The Coulomb po-

For many years one of the features which has
distinguished the strong (and weak) interactions
from the electromagnetic interactions is the range
of the forces involved. In particular, it has long
been accepted that any potential VAB(r) capable
of describing, at least approximately, the low-
energy elastic scattering of two hadrons A and B
must fall off exponentially with the distance r
between them. This is because in quantum theory
the range of the force is inversely proportional to
the mass mp of the lightest particle, or system
of particles, which can be exchanged between A
and B. Since the lightest known hadron, the neu-
tral pion, has a mass m, & 0, it has commonly
been thought, since the time of Yukawa, that for
large r,
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tential is the prototype example of a long-range
potential, defined as one which falls off like an
inverse power of r. In quantum theory, this long-
range character is associated with the exchange
of a single virtual photon, whose mass is zero.

If the particles are electrically neutral, but not
self-conjugate, one-photon exchange is still pos-
sible. If bothy and B have nonzero spin, this
leads to the familiar inverse-cube dipole-dipole
potential, proportional to the product of the mag-
netic moments of the particles. However, if both
particles are spinless, one-photon exchange can
give rise only to a, short-range force. Neverthe-
less, even if sA =sB =0, there is a long-range
force of electromagnetic origin, the so-called
van der Waals force, obtained by taking into
account electromagnetic interactions to order e .
In particular, consider atoms 1 and 2, both in
S-wave ground states with separation r between
the fixed nuclei. If one computes the second-order
level shift arising from the electrostatic inter-
action between the electrons and nucleus of atom
1 and those of atom 2 one finds, for distances r
which are large compared to atomic dimensions,
the result

@inst (r) Q /r (r))+ }

as first shown by London. ' Here C„ is a constant
whose va, lue depends on the structure of both
atoms. However, the result (1.3) must be mod-
ified when r becomes very large, of the order
of ~,„, the largest wavelength associated with
electric-dipole excitations of the atomic ground
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. states. The retarded character of electromag-
netic interactions then becomes important and,
as first shown by Casimir and Polder, '.has the
effect of changing the r ' behavior to an r '
behavior. Using a nonrelativistic description for
the atomic electrons and neglecting spin, these
authors found that the inclusion of the effects
of transverse-photon exchange between the
electrons yields the result

V",'(r) -D /r' (r-~ ..)
where

(1.4a)

~23 e
12 4+ 1 nr 2~nr (1.4b)

VA™B(r) D„B/r', -
where

(1.5a)

e e m m 7 e m m e
DAB 4 (+A+B+ +AnB) 4 (nA+B+ + +A) ~B4n 4m

(1.5b)

Here, e.g. , n'„and a„are the static electric
and magnetic polarizabilities of A, respectively.
These polarizabilities are defined, in contrast to
(1.4c), as the low-energy limits of appropriately
chosen invariant amplitudes entering the descrip-
tion of the tensor amplitude M""=M""(pA', k';pA, k)
associated with Compton scattering y+A-y+A.
If A. and B have spin then (1.5a) still holds but DAB
has additional terms which depend on the spin
orientation of A and B, that is, the long-range
potential is spin-dependent. '

The result (1.5) will be referred to as the "D
theorem. " It is a substantial generalization of
(1.4) because its derivation, which uses the tech-
niques of dispersion theory, depends only on the
validity of general principles such as I orentz
invariance, conservation of the electromagnetic
current, analyticity, and unitarity. 4 The D theo-
rem is therefore independent of any assumptions

and the a's are electric polarizabilities of the
atoms as they would be computed in nonrelativistic
quantum theory, e.g. ,

, ~ l(e.ler ~ Ble.)l'
n&p p n

for a one-electron atom with ground-state wave
function Po(r). The ratio V,",'/V, ',""is of order
(r&E) ' where ~ is an average excitation energy.

From the point of view of a manifestly covariant
formulation of quantum electrodynamics, the long-
range potential of order e4 between neutral spin-
less systems A and B can be regarded as arising
from the exchange of two photons between A and
B. Within such a framework one can show that"

about the internal structure of the particles A and

B, be they atoms, hadrons, or other kinds of
elementary systems. However, it does assume
that the exchanged photons propagate as free
massless particles in going from A and B and
negj. ects radiative corrections to the Compton
amplitudes. From a dispersion-theoretic point
of view, the long-range character of the retarded
van der Waals potential (1.5a) is a consequence
of the fact that the smallest value of the invariant
mass Q' =(k, +k, )' of a system of two photons is
zero.

With the advent of quantum chromodynamics
(@CD) as a promising theory of strong interac-
tions and of the structure of ordinary hadrons,
the question of the interhadronic potential at large
distances has received renewed attention. This
is because in QCD hadrons are pictured as bound
states of a few colored quarks and/or antiquarks
interacting by the exchange of colored massless
vector mesons, the so-called color gluons. Be-
cause the hadrons themselves are color-neutral,
two hadrons cann'ot exchange a single color gluon,
which belongs to an SU(3) octet. Therefore, no
long-range force arising from single-gluon ex-
change occurs between any two hadrons, whether
they have spin or not. However, the exchange
of a pair of gluons is not forbidden on this basis
because two gluons can be in a color-singlet
state. This had led a number of authors to spec-
ulate that, in analogy with the van der Waals
type of potentials arising from two-photon ex-
change, gluon exchange between hadrons can give
rise to a long-range force between hadrons, i.e.,
a potential which falls off as an inverse power at
large distances. ' " Some authors have considered
the problem within the framework of "potential
exchange, " i.e., have described the interaction
between quarks and antiquarks in terms of poten-
tials (e.g. , the linear potential popular from the
charmonium model), and have computed a long-
range potential between widely separated color-
neutral quark aggregates.

A major purpose of the present paper is to
analyze the question of a l.ong-range interhadronic
force from a phenomenological point of view.
This is done in Sec. II, where we consider the
bounds on such forces which can be obtained from
the results of measurements involving a variety
of techniques, including gravitational experiments
both of the Eotvos and of the Cavendish type, ob-
servation of the hyperfine structure of molecular
hydrogen, and study of the level structure of
exotic systems, such as an antiproton bound in a
low Bohr orbit about a sulfur nucleus.

In Sec. III we review briefly the dispersion-
theoretic approach to the asymptotic behavior of
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interparticle forces and consider a number of
theoretical issues relevant to the question of the
existence of long-range hadronic forces. In Sec.
IV we study multigtuon exchange between hadrons.
We find that the existence or nonexistence of
long-range forces depends on how confinement
is implemented. We also consider the approach
based on potential exchange. We emphasize that
if the confining q-q potential comes from multi-
gluon exchange there is the danger that it has a
color-independent part, which would lead to
disastrous results for hadron-hadron forces.
In Sec. V we summarize our results and comment
on them as well as on related work of other
authors.

II. EXPERIMENTAL EVIDENCE ABOUT LONG-RANGE
FORCES BETWEEN HADRONS

Whatever the theoretical situation with regard
to the predictions of QCD or other theories of
hadrons about the occurrence of long-range forces
between hadrons, it is of interest to investigate
the experimental situation concerning these for-
ces. Other analyses of this have appeared, but
We do not entirely agree with the conclusions
expressed in some of them. "'~ We analyze only
cases in which the hadrons are separated by
many fermis, where there should be clean sep
aration between long-range and Yukawa forces.

We consider the possibility of both a spin-
independent (SI) interaction and, if both hadrons
have spin, of a spin-dependent (SD) interaction
between two hadrons. We parametrize these
potentials as follows: The potential between in-
dividual hadrons, which may have spins S, and S»
is taken to be either one of two types,

ps' r N-j, r g
V '=~ ~ Sc=A, ' ~ 200MeV,r r r

(2.1)

gsD r 1V"= " ~ I-cS S =~» ~ 200Mev2 N

(2 2)

where r&&r„with r, taken to be 1 F by conven-
tion. The X„are dimensionless constants that
characterize the long-range potentials. We ask
what information is available about V„' or V„
for various values of ¹

It turns out that very different aspects of phys-
ics are sensitive to the existence of V„ for the
various values of N. Since the underlying theory
does not seem to be a good guide to what value of
N, if any, is to be expected, we consider all
integer values of N, from N=1 through N=7.

A. Gravitation experiments

We first consider what can be learned about
long-range forces between hadrons from experi-
ments involving gravitation. The first example
of this was given long ago by Lee and Yang. "
There are two types of experiments that are rel-
evant, those in which the inverse-square charac-
ter of gravity is tested and those in which the ex-
act proportionality of gravitational and inertial
mass is tested. The latter experiments are rel-
evant because the hadronic long-range forces
between two objects will be proportional to the
number of hadrons in each object and this
number is not strictly proportional to the iner-
tial mass, if we compare objects of different
atomic composition.

We assume that the gravitational potential be-
tween two objects is given exactly by the New-
tonian expression

Gm, m,
grav

=

where m, and m, are the masses and G = 6.7
x 10 ' cgs units. Corrections due to general
relativity are unimportant in the present context.

To compare with V„., we ean rewrite V,",,„
approximately as

Gm'

2.4x10 "
N,N, (cgs units) (2.3)

~$1 N- j.
y"'= ~- ~ (3 x ]0 ")~~1 2P (2 4)

so that

V12 N -].
0»«0")(&+5). (2.5)

Here the term 1+5 corrects for the fact that the

with N~ the number of nucleons in object "i."
While this expression masks the lack of propor-
tionality of nucleon number and mass, it is con-
venient for the purpose of rough comparisons.

Vg",„can be compared to the potential V„"be-
tween the two objects arising from the potential
V„" acting between their constituents. We as-
sume that the objects are far enough apart in com-
parison to their size so that r can be replaced by
the separation R of their centroids and neglect
screening of one nucleon by another. We also
assume that V~ is the same for any two nucleons.
This appears likely if the potential arises from
gluon exchange. Under these assumptions we
obtain from V„" an interaction energy
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gravitational potential involves the masses rather
than the number of nucleons.

~Sr~ & N+Z

R@ r R@

Then with MH = j/Ic„=Ac„m~ we get

NX' y
' N N

y(H)/~(g ) 1 N 0 S( n Cu) I
ro Re GMe Mcu /R e

N

N , )
x (hc/G mp')(N„/Nc„— 1)

= 1 -NA, NS' x 1.2 x 10"
x (N„/N „-1)(r /R )

The difference (N„/Nc„) -1 is approximately the
same as the binding energy per nucleon in Cu
divided by the proton rest energy, since the two
samples are constrained to have the same total
mass. Therefore,

1 -10-2
c„

We conclude that
N- j.

Nla"l ' x10"s10 '
N

or, suppressing the absolute value sign on ~ here
and henceforth,

10 "(Rg)"' (2.6)

In Table I we show the limit for A,„' impl. ied by this
relation, using the value R/ro= 6 x 10'/10-"
=0.6 x10".

We see that an inverse first power potential is
ruled out by many orders of magnitude, as
originally pointed out by Lee and Yang, " and that
an inverse-square potential is also ruled out by
an immense factor. Because of the large ratio
R/ro, higher-power potentials would not con-

1. Eotvos-type experiments

Now consider the extent to which V„" might be
present. Experiments done by Eotvos and others"
compare the acceleration imparted by the Earth
to various substances containing different num-
bers and types of hadrons, but of the same mass.
A typical result is that the difference in accelera-
tion is less than one part in 10'. Later experi-
ments by Renner improve this to one part in 10'.
Let us compare the force on hydrogen and on

copper, two of the substances involved:

TABLE I. Limits on the strength XN of an inverse-
povrer spin-independent potential VN (&), defined by Eq.
(2.1) of text, inferred from Eotvos-type experiments and
Eq. (2.6~.

Limit on I &P I Limit on l4 l

10-45

10 23

]0 2

1P-4Z

10-20

10

Based on the results of Eotvos et g$. , Ref. 16.
b Based on the results of Braginsky and Panov, Ref. 18.

2. Cavendish-type experiments

We turn next to experiments measuring the
gravitational force between laboratory sized ob-
jects of a type originally done by Cavendish. Al-
though these experiments are not nearly so pre-
cise as the Eotvos type, they have two advantages
for our present purpose. One is that the distances
are much smaller, so they are much more sen-
sitive to potentials that fall off faster than r '.
Also, the Cavendish-type experiments in some
cases actually measure the power dependence of
the force and so are directly sensitive to extra
terms coming from VN, rather than only to a
variation of the force from one substance to
another.

A survey of the results of Cavendish-type ex-
periments has been given by I ong". who also,
in a later paper, reports on an experiment of his
own which appears to show an actu'al deviation
from a pure Newtonian potential. ' His results
are consistent with the conclusion that

(r'F) (r'E)d
dr r=l, p cm (2.7)

where I' is the total force between two objects
of laboratory size which are presumably shielded
from obvious external. electromagnetic forces.

tribute significantly to these experiments and so
are not ruled out.

Modified versions of Eotvos's experiment have
been performed by Roll, Krotkov, and Dicke" and
by Braginsky and Panov. " These experiments
measure the acceleration imparted to various sub-
stances of the same mass by the sun. For these
experiments, the difference in acceleration is
smaller, the limit being 10 ". However, the
factor corresponding to lN, /N, - ll is also smal-
ler, being perhaps 10 '. Furthermore, the ratio
R@ /r, is now much larger -10", so this experi-
ment, while more sensitive to an inverse-first-
power potential, is less sensitive to higher-
inverse-power potentials, as noted in Table I.
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We shall take this value as a limit rather than as
a real effect.

The numerator in the logarithmic derivative on
the left-hand side of (2.7) gets a contribution
from V~ and not from I'g„„. The denominator can
accurately be taken to be r'F„,„. Thus (2.3),
(2.4), and (2.7) imply that

A.„SIN(N-1)(r„/R)" '(3 x10 ")N,N,
2.4 x 10 NN2

and with R =10 cm we get

be an average excess nuclear spin occupation
along the direction of the Earth's field of about one
part in 10'. Suppose now that a potential such as
V„exists between the nucleons of the two objects.
This will lead to an additional force between the
objects, given by

j'sD (QN /N )2(sysn IVER)N N

3 x]0 17
—] Q t~N&sn(y /R)&+t

Vp

(2.12)
(10t~P-t

gSI g 1.2 x 104o N(N —1)
' (2.8) The contribution of this to the logarithmic deriva-

tive in Eq. (2.7) is
This limit is useless for N = 1, but becomes
stronger than the Eotvos limit for N =2, and
much stronger, indeed useful, for an inverse-
cube potential. Thus for N =3 we get

gSI g 10-12 (2.9)

No useful limit is obtained for higher inverse-
power potentials. A more qualitative version of
this argument has been given by Fuj ii and
Mima. '

3 x10 35
N(N-1)A, „(r,/R)" ' x

and, using (2.7), we infer that

] (]0~~)+

N(N 1) 10»

This leads to a limit.

~sD & 10-8
2

(2.13)

(2.14)

3. Sensitivity to spin-dependent interactions

Before leaving the realm of Cavendish ex-
periments, a comment is in order about the
sensitivity of such experiments to spin-dependent
long-range interactions. An experiment can
test such interactions only if the objects involved
have some average nuclear spin alignment. There
is reason to think that this is the case in many
Cavendish experiments. Consider a metal object
not shielded from the Earth's magnetic field of
about 1 G. Suppose that the nuclear spin is not
zero. Then the interactions of the Earth's field
with the nuclear magnetic moment will split the
nuclear I, levels. If the atom has no net elec-
tronic angular momentum, this splitting is given
directly by

&E= -10 " eV
eke

tBpC
(2.10)

and the fractional difference in nuclear spin oc-
cupation is

&E

N ABT
(2.11)

On the other hand, if there is a net electron
spin, the situation is more complicated. How-

ever, under normal conditions in a nonferro-
magnetic solid, the estimate given in Eil. (2.11)
still appears t:o be correct."

The results imply that for the two metal objects
used in a typical Cavendish experiment there may

and no useful result for higher-inverse-power
potentials.

'"
In summary, the Cavendish-type experiments

constrain inverse-square and inverse-cube spin-
independent potentials and inverse-square spin-
dependent potentials to be very small (if the
length parameter is chosen as 1 F), but do not
significantly constrain other inverse-power
potentials. The results are summarized in
Table II.

B. Experiments on hydrogen molecules

Because of the rapid decrease with distance
of the potentials with N&3, one may hope to do
better in detecting them with measurements on
hadrons that are separated by microscopic dis-
tances. In ordinary matter this means isolated
molecules or solid bodies. The problem that
arises in each of these cases is that it is not
easy to calculate the effects of ordinary electro-

Limit on ~Xz ( Limit on (A&

1P-26
10-i2

10
106

TABLE II. Limits on the strength &N of Vz(x) and on
the strength X~& of an inverse-power spin-spin potential
Vz (r), defined by Eq. (2.2) of text, inferred from
Cavendish-type experiments of Long (Ref. 20) and Eqs.
(2.8) and (2.12).
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magnetic interactions with sufficient precision
to enable one to separate out the effect of any new
interaction.

One exception to this seems to be a series of
experiments by Ramsey and collaborators" on
spin-dependent interactions in the hydrogen
molecule. The result of their analysis is that any
anomalous spin-dependent interaction between two
protons in H, cannot be greater than 4&& 10 ' of
the interaction between the proton magnetic mo-
ments provided that the anomalous interaction
leads to a splitting of the E levels of orthohydro-
gen. This is not the case for Vsn of Eci. (2.2).
However, we can consider a tensor interaction

gT r N 1

V~(r) = —~ Skc,r (2.15)

where 8 = s, s, - 3 s, r s, r with s; the proton spin.
This does split the E levels. These experiments
can then be used to give information about X& for

4 22R

For N =3 the comparison can be made directly
because V, is proportional to the magnetic-dipole
interaction of the protons, H „,= (2.8ek/m~c)'Sr '.
It follows that the ratio of the corresponding level
shifts 6E, =(V, ) and 5E,;~ =(Hd;~) is given by

(5E,)/(6E; ) = (r,/& )'n '(2.8) 'A,

. TABLE III. Limits on the strength A~ of an inverse-
power tensor potential V~(r) defined by Eq. (2.15) of text,
inferred from measurement of hyperfine structure of
molecular hydrogen by H.amsey and coworkers (Ref.
22) and Eq. (2.18).

Limit on ~&P

1
2
3
4
5

10
10-11

10 6

10-1
104

range forces between hadrons is a hadronic atom
such as (w -nucleus), (K-nucleus), or (P-nucleus).
In such atoms the orbiting hadron is sufficiently
loosely bound that it can be accurately treated as
a hydrogenic Coulomb bound state, whose. proper-
ties are well understood. " Nevertheless, it is
close enough to a number of other hadrons so
that the long-range potentials we are considering
could contribute significantly to the atomic energy
levels.

An important figure of merit for a hadronic atom
is the average distance of the orbiting hadron from
the nucleus. This is given by the formula

400'.3 . (2.16)
200 m, 3n' —l(l+1)
Zm. 2

which is a significant restriction on an anomal-
ous, spin-dependent, inverse-cube potential.

We can also extract a better limit for other AN~

from these data. We obtain in general

&10 '(r, /R)' ", (2.18)

where R is the separation of the protons in
orthohydrogen, which is 0.74x 10 ' cm. For A2*

this gives

(2.19)

a better result than the Cavendish experiment.
For ~4 we get

(2.20)

No significant results are obtained for N& 4. The
results are summarized in Table III.

C. Hadronic atoms

A very convenient system. for studying l.ong-

According to Ref. 22, the measurement of the
hyperfine structure agrees with a calculation in
which only Hd;~ is included to within the experi-
mental error in measurement, which is four parts
in ten thousand. It follows that

(2.17)

where n and l are the usual quantum numbers of the
state and m„ is the reduced mass of the bound
hadron, which is approximately its physical mass
except for light atoms. This formula indicates
the advantage of using the heaviest orbiting had-
drons, the heaviest atoms, and of observing the
deeper-lying states, since these will have the
smaller r and so the greatest V~(r). Of course,
if the ha.drons get too close to the nucleus, the
effects of pion exchange and other hadron exchange
become large and complicate the analysis. Fur-
thermore, in hadronic atoms the most tightly
bound states of heavy atoms have high capture
probabilities and it is quite difficult to observe
transition x rays. As a result, no transitions
have been observed in which r is less than about
25 F for initial or final states. Whether it is
possible to improve on this value of r in future
experiments- is not known to us.

The existing experiments genera, lly involve the
observation of electric-dipole transitions between
two states, -both of which have l =n -1, so that
&l =1 and &n =1.'4 We must therefore estimate the
contribution to the energy shift of such states
coming from V~. To do this we need the expecta-
tion value of r™in such atomic states. A
straightforward calculation gives
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(r-")„„,=a "F.(n}, (2.21a)

where ( )„„,denotes the expectation value in a
state with quantum numbers n, I =n - 1, a = 8/
Zem„c, and

( )
)2n —m))

(m) (2.21b)

To get the energy shift of a transition x ray, we
use (2.22) to compute &E„(n)—&E~(n —1).

The factor of 4 in (2.22} arises because the
total potential acting at the position of the orbiting
hadron gets an approximately equal contribution
from all of the hadrons in the nucleus. This is

provided that 2n~ m. (If 2n(m, (r ) diverges and
the nucleus must be treated as an extended source. )
Equation (2.21) disagrees with a formula for a
similar quantity given by Fishbane and Grisaru, '
who have also studied the effect of V, and V, on

energy levels of hadronic atoms. Their formula
does not reduce to known cases correctly. For
r ', the case they consider, their result is too
small by a large factor, of order 30 to 100.

From Eq. (2.4) we find the shift due to V~s' in a
hadronic atom to be

&E„(n)= A,„"(r,/a)" (kc/r, )F„(n)A

= A,„"[Zmr, /(0/m~c)]" F„(n)A && 200 MeV .
(2.22)

under the assumption that the hadron-hadron po-
tential is isospin independent, which would be a
good approximation if t;his potential arises from
gluon exchange. An isovector hadron-hadron po-
tential would give a similar result for &E, but
with A replaced by N -Z.

In Table IV we list the experimental values for
the transition energies of various kaonic and anti-
protonic atom transitions. The experimental
values given are differences between observed
values and the results of a calculation of the QED
prediction of the transition energy. The differ-
ence can in many eases be explained as the result
of a residual known strong-interaction contribu-
tion." However, to get conservative limits on

~„', we have taken the total difference between
experiment and theory as an upper limit to the
contribution of long-range forces.

In the case of pionic atoms, the energies of
individual levels rather than transition energies
have been measured. These are also given in
Table IV. In the final column of that table, upper
limits for ~„" are given for various N and for the
interaction of the bound particle and the isoscalar
combination of nucleons. It can be seen that
spin-independent potentials down to x ' 'and a
length scale of 1 F are pretty much ruled out by
the data, while potentials such as y ' and y '
are not, unless the length parameter io is
several fermi.

TABLE IV. Limits on the strength X& «V~ (~) inferred from measurements of radiative transitions in exotic atoms
and Eq. (2.22) of the text. The column labeled ~~ shows the change in level splitting which would arise for ~& =1.

Bound particle Atom

Z=28, A = 59

Z=16, A = 32

Z=67, A =165

Transition

n=5 to n=4

n=5 to n=4

4f

+@th ++exp (eVj

-170 + 60

-60 +40

350~80" 3

5
6
7

&& (eV)

4.4 x105
2.4 x10
1.7 x10
1 6xlp

22

x1p'
1.8 x lp'
1 4x10
1 4x10

21

x]p'
1 8x10
7 8xlp

46

Limit on ~N'

5x1P 4

] p 2

10 '

2x10 4

3 x10
5 x10
0.5
3

7 x10-4
2 x1p-2
0.5
8

100

P. D. Barnes et al. , Ref. 24.
A. Bamberger et al. , Ref. 24.
P. Ebersold et al. , Ref. 24.
For the pionic atom the total energy rather than the transition energy is measured.
This number refers to the difference between the calculated and measured energy of the 4f state.
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III. THEORETICAL ASPECTS

A. Dispersion-theoretic approach

We review briefly the dispersion-theoretic
approach to the analysis of the asymptotic be-
havior of interparticle potentials. s'4 Apart from
the advantages mentioned in Sec. I, this approach
also avoids the need to deal with some of the di-
vergences which one may encounter in Feynman
diagrams, because one only needs the absorptive
part of Feynman amplitudes. " Consider the elas-
tic scattering of spinless particles A and B with
initial four-momenta P& and P~ and final four-
momentaP„' and Ps, respectively. Let E=E(s, t)
denote the invariant Feynman amplitude for the
scattering with

= (p„+ps), t = (p„-p„')' (3 1)

s ~s, =—(m„+ms)',

this region is given by

t,(s) ~t ~ 0,

(3.2)

(3.3)

where t,(s) =-4k'(s) with k the magnitude of the
c.m. momentum. Ignoring subtractions, one can
write

and let E~=E&(s, t) denote the contribution to E
arising from any set Q of Feynman diagrams each
of which is irreducible with respect to A. and B,
i.e., does not involve an intermediate state con-
taining only A. and B. We assume that E~ is an
analytic function of t with a nearest right-hand
branch point t~ and left-hand branch point t~,
both of which lie outside the physical region of t.
For s above the threshold for scattering

Note that E~ is uniquely defined for all t &0 by
(3.5a), so that the definition (3.7) of V~ is un-
ambiguous. On using (3.5a) in (3.7) and reversing
the order of integration one gets, with N»
=(16m'm„m~) ',

-~tre
V~(x) =N„s dt P~(s„ f),

which expresses V~(r) directly in terms of the
spectral function ~, given by

(3.8)

p" (s„t) —= —.
I E~(s„t +is) - E (s„t - i )ej (t - t~) .

(3.9)

One may similarly associate an exchange poten-
tial V~" with Iiz, corresponding to the I'q, part
of I"z, but this is not of interest here.

The main virtue of the representation (3.8}of
V~(r) is that it relates the asymptotic behavior
of V~ for large z to the behavior of p& for small
t -t~ and this latter behavior can often be estab-
lished on the basis of rather general considera-
tions."

It follows immediately from (3.8) that if t~ & 0,
V~(r) will decrease exponentially for large r,
whereas if tr, = 0, V~(r) will normally fall off like
an inverse power of z. For example, if tz4 0
and

(3.10)

(3.11a)

with P & 0 and Q(t~) C 0, one finds from (3.8) that"

Vg)(x) K~e "&"/y ",
where K~ =(2m&,}"P!Q(t~} and

E~(s, t) =E~(s, t)+ F~(s, t)

with

E (, t) = — ', dt'
g ] t-, t'

and a similar equation holding for E (s, f):

1 ('np&(s, t')dt'

(3.4)

(3.5a)

(3.5b)

Vr, (r) DJ /r",
where D~ = 2(2P I)+!Q(0) and

(3.12a)

(3.11b)

is the minimal mass of any intermediate state
contributing to Ez„as views, J from the t channel
A+A-B+B. In contrast, if f~=0 in (3.10}, use
of Eq. (3.8) yields

N =2P+3. (3.12b)

t~&0, t f) ~ to(s).

One can now associate a )0qgl potential with
I"~ by the definition

(3.6)

(3.7)

Here 2ipz and 2ip& are the discontinuities of Il~
across the branch cuts extending from t~ to + ~
and t~ to -~, respectively, and according to our
assumptions we have

B. Theoretical implications

Let us suppose that the potential describing the
low-energy scattering of hadrons A. and B has
a part V„=V„(r) with inverse-power behavior
for large x:

(3.13)

It follows from Eqs. (3.11}that in ordinary quan-
tum field theories, in which perturbation theory
is a reliable guide at least to the analyticity
properties of scattering amplitudes, there must
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Fg""(t)=const x d r e'~'V„(x). (3.14)

A short calculation then shows that Fg'""(t) is not
analytic in any neighborhood of t =0. To be pre-
cise, let us distinguish between two cases:

(I) N is an odd integer larger than unity.

(II) N is real and larger than unity but is not an
odd integer.

In case (I) one finds, for f &0,

(I): Fg""(t)=const && (-t) " ' ' Iog(-f)+A(t),

(3.15a)

where A(t) denotes a function analytic at t=0. In
case (II) one gets

(II): E~""(f)=constx (-f) " ' ++A(t). (3.15b)

Thus, in either case we get a function which has
a branch point at t =0. Note that the discontinuity
across the cut, taken along the positive real
axis, is proportional to t " ' ', regardless of
the value of ¹

From the above discussion we conclude that if
the effective potential describing the low-energy
scattering of A. and 8 has a long-range partV„r, then E(s, t) will be singular in f at t = 0,
with s fixed in the neighborhood of the threshold
so. The singularity will. be a brach point of
either a logarithmic or an algebraic type, de-
pending on whether N is an odd integer or not.
Ordinarily, when scattering amplitudes are cal-
culated from covariant Feynman diagrams, such
a singularity in E(s, t) arises because of the ex-
istence of physical zero-mass particles in the
theory. Obvious candidates for these zero-mass
particles are the color gluons of QCD. However,
these gluons are supposedly confined and so can-
not propagate from one hadron to another if the
hadrons are far apart. This would suggest that in

be one or more diagrams in S for which the
smallest value for a t singularity is zero, so that
we can have tz, =0. However, in such theories
a singularity of the physical-sheet amplitude at
t =0 is normally present only if a physical state
of zero rest mass is accessible in the t-channel
reaction A. +A'-B+ B', corresponding toa threshold
in an unphysical region. The existence of such
a physical state would imply, in turn, the existence
of zero-mass particles in the theory.

Alternatively and more directly, we may consid-
er the contribution E„""(f)to F(s, t) arising from
a potential V„(r) with asymptotic behavior de-
scribed in (3.14):.

I

the standard picture of QCD long-range forces
would not occur between hadrons. We shall see
below, in Sec. IV, that this conclusion may not
hold in that while massless gluons do not occur
as real particles, some of their effects as
virtual particles may still generate long-range
forces.

It should- be emphasized that the connection be-
tween long-range forces and zero-mass particles
is in fact stronger than any argument based only
on perturbation theory might imply. Consider
any quantum field theory, satisfying the usual
axioms, in which there is also a mass gap, i.e.,
in which in the physical spectrum of the mass-
squared operator P„P" there is a gap between
the zero eigenvalue associated with the vacuum
and the values for other physical states. Then
as shown long ago by Lehmann, "E(s, f) has the
following analyticity property:

Theorem. For s&s„E(s,t) is analytic in a
domain which includes the disk

Itl &2h'Icose. —Il,
where

(3.16)

(m~' —m~')(ms —m~') '"
h' [s -(m„-m, ) ]

Here m~ is the lowest mass of any physical state
IA') such that (A'I j„(0)lvac) o 0, with j„(x) the
source current for the local field associated with
particle A and m~ is similarly defined.

Since k 4 0 for s & s„ the region of analytieity
described by (3.16) is an open disk which includes
the origin t =0. It follows that as l.ong as the
mass-gap condition is fulfilled, in a relativistic
quantum field theory satisfying the axioms of the
Wightman type long-range forces are excluded.

(3.17)

However, the usual axioms include the assump-
tion of a Hilbert space of physical states equipped
with a positive-definite metric and the existence
of a set of local. fields which have manifestly
Lorentz -covariant transformation properties and
which are complete, i.e., such that smeared
polynomials in the fields acting on the (unique)
vacuum generate a dense set. Since present
formulations of QCD have not, to our knowledge,
been shown to be equivalent to one in which such

in the physical spectrum of hadrons, the dis-
covery of a strong long-range force between
hadrons might have a significant bearing on the
field-theoretic foundations of QCD.

C. Color polarizability

Another handle on the long-range force question

axioms hold, we cannot draw a firm conclusion
regarding the incompatibility of long-range forces
with QCD. Since there apparently is a mass gap
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can be obtained from analogy with Eq. (1.5a) giving
the potential in QED arising from two-photon ex-
change between electrically neutral particles in
terms of their electric and magnetic polarizabil-
ities, a' and a . Suppose for the moment that
an analogous formula holds in QCD, with o. ' and
n replaced by "color polarizabilities" n' "',
n "'. Analogs of such polarizabilities might in
principle be definable in terms of Fourier trans-
forms of quantities such as

W'„' „(x-y) =(p'la(w'„(x)A'„(y)) I p&, (3.18)

where A'„(x) is an octet gluon field, in analogy
with the definition of the off-shell Compton ampli-
tude for y+A y'+A'.

However, if we adopt as a consequence of con-
finement the idea that all octet states are at in-
finite energy, then a heuristic argument suggests
that, on-shell and off-shell, the polarizabilities
would vanish. For if we consider a QCD analog
of the formula (1.4c) for (t. '„„with the bound
particle in an "external color-electric field, " the
intermediate states would have to be color-octet
states; such states would presumably be very
high up in energy, if confinement is only partial,
and so in the limit of perfect confinement would
have infinite energy: E„-~. Because of the en-
ergy denominator in (1.4c), it seems likely, on
the one hand, that n'„,"' vanishes in this limit.
On the other hand, it is conceivable that there is
an analog in QCD of the diamagnetic polarizabil-
ity n„, "in nonrelativistic quantum theory which
arises from a direct term in the Lagrangian
-e'(P (x)P(x)Ar'(x), where (P(x) is a charged
matter field, In the nonrelativistic picture there
are no "intermediate states" associated with this
part of n.„so that it will not vanish when the
intermediate-state energies go to infinity. Of
course, for an elementary spin-& particle, such
a term arises only as a nonrelativistic approxi-
mation to a contribution to a which does involve
intermediate states, namely those containing an
extra particle-antiparticle pair, which may have
infinite energy in the corresponding QCD case.
Thus, although the concept of color polarizability
may play a role in future investigations along
these lines, at present we are unable to use it to
reach any sharp conclusions concerning the ex-
istence of long-range forces in QCD.

It is also possible that the picture of confine-
ment used above is wrong and that gluons and
quarks are not observed because of different

mathematical properties of Green's functions. We
discuss one such alternative in the next section.

IV. MULTIGLUON EXCHANGE

We remarked earlier that in the usual treat-
ment of long-range forces in QED, higher-order
electromagnetic effects are neglected. This in-
cludes radiative corrections to the Compton
amplitude and to the photon propagator as well.
as the scattering of one photon by, another. Such
neglect is not obviously justified for the case of
gluon exchange in QCD. Therefore we present
a formalism that is appropriate for the analysis
of long-range forces arising from the exchange
of strongly interacting quanta. "

A. General considerations

We wish to analyze the effects of multigluon
exchange on hadron-hadron scattering amplitudes
at low-momenta transfer. We shall write

E(s, t) = E (s, t) + g F " (s, t), (4.1)

and similarly for the higher E ", e.g. ,

(4 2)

(4.3)

with D~ denoting the full or "dressed" gluon
propagator. " We concentrate on E ', the con-
tribution to E from two-gluon exchange. Some
examples of relevant Feynman diagrams are
shown in Fig. 1. Equation (4.2) may be written
more explicitly, with Q =P~ -P~, as

where El"l(s, t) denotes a part of E to be associat-
ed with the e'xchange of n gluons (n = 2, 3, . . . ) and

E ' is the remainder; E ' vanishes because the
hadrons are color singlets. To proceed, we must
define the E " more precisely. Let M~".„denote
the amplitude for the emission of n (off-shell)
gluons by A and M~"., denote the corresponding
absorption amplitude for S. To avoid double

counting, we also introduce the quantity M~".&',
which is the part of M'."„'which is irreducible
with respect to the exchange of any number of
gluons, i.e., is the sum of all those graphs which

contribute to M~".~ which are such that they cannot
be divided into two disjoint parts by cutting only
gluon-propagator lines. We now define the E "

by writing, ih an obvious symbolic notation and

with vector and color indices suppressed,

k ' (s, k) = cone) x IM~') (k', k; kk, )D(k, ')D(k, ')kl~'~„" (k„',k„;kk )k(Q —k, —k)d k d'k, (4.4)
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FIG. 1. Examples of Feynman diagrams contributing
to R( ) (s,t), the part of the scattering amplitude arising
from two-gluon exchange, as defined by Eq. (4.2) of the
text. The shaded boxes represent irreducible gluon-
emission amplitudes and the wavy lines denote gluon
propagators. The diagram obtained by interchange of
particles A and B in (a) also contributes to &(2) but the
one obtained from (b) by interchange does not.

and

(4.6)

M " '=(k ')'(k ')'M'""g.A

where the careted amplitudes are assumed to be
regular at k =0 (i =1, 2), with b&0, a~0, and

&, defined by

(4 7)

c—= a+5, (4.8)

If the gluon propagator D~(k') has a simple pole at
k'=0, i.e., if D~(k')-(k') ' for k'-0, then ordinar-
ily F ' would have a branch-point singularity at
Q' = f = 0, arising from the poles in D~(k, ') and

D,(k,'). However, one way of implementing the
confinement hypothesis, applied to gluons rather
than quarks, is to assume that gluon emission or
absorption amplitudes vanish when the gluons are
on their mass shell. If this vanishing is, on the
one hand, simply accomplished by the presence
of a factor k' for any external gluon line, e.g. , if

(4„5)

with M regular at kq' —-0, the integrand of (4.4)
will be analytic at k, '=O, k, '= 0. There will be no
singularity at t =0 arising from this mechanism
and hence no lang-range force. Similar remarks
hold for the contributions from the exchange of
three or more gluons.

On the other hand, it is possible for there to be
a long-range force even if the M&".~ vanish on the
gluon-mass shell. As an example, let us suppose
that the two-gluon amplitudes entering (4.4) have
the form

is not an integer. " Then, as we shall show below,
F ' will have a singularity at t = 0 despite the
fact that M~'. ~ vanishes for k =0 and even if D~

has no pole at k'=0. Note that behavior such as
(4, 6) for the M~"~, in contrast to the simple zeros
in (4.5), would not be at all unexpected within the
framework of QCD. One possible origin of such
fractional powers of k' or of other functions of
k' which have a branch point at k'= 0 but vanish
there, e.g. , k'"ink', is in the behavior of the
vertex function I'~'l(k') describing the emission
of a virtual. gluon by a quark. 3' This function cer-
tainly has a branch point at k'=0, in any order of
perturbation theory beyond the first, and so the
exact ~ ' is l.ikely to have such a singularity also.
If, for example, I" l'l(k')~(k')' near k' =0, with
0&5&1, then with our definition of gluon irre-
ducibility one would expect that b =5 and a = 0 so
that ~ =6.

B. Analysis

To see the implications for long-range forces
of implementing gluon confinement through a be-
havior such as (4.6} for the hadron-gluon ampli-
tudes, we first write the propagator in the form

D (k2) —d (k2)/k2 (4.9)

and leave d~(k') unspecified for the moment. We
substitute (4.6), (4.V), and (4.9) into (4.4) and use
the spectral representation

e23'~(l-6)
g

1+6

(k'}' ' 2mi 0 & —k'' (4.10)

valid for 0&a&1. We may then rewrite (4.4} in
the form

where g(g„f,} is a weight factor defined by

z(&1 &2) =dr(&1)dz(&2)/&1' '4' ' (4.12)
A,

and the careted amplitude F ' is defined by

F ' =const x d'k, d~k25 -k, —k,

with

x Msl2~g Dg(k~'; &)D~(k2'; g)M~~'. ~„'

(4.13)

4(k')/4(&) (4.14)

The quantity E ' may be interpreted as the am-
plitude which would arise if quanta 1 and 2 of
mass v&, and Wg, w th propagator D, (k', f,) snd

F =const x d~jd~2g ~l ~2 + s t ~l ~2
0 0

(4.11)
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Dd(k'; 0,), respectively, were exchanged between
A. and B and with, e.g. , M~.~ representing the
amplitudes for absorption of these two quanta by
B. From the viewpoint of the t channel, the pro-
cess giving rise to F ' is A. +X'- 1+2- B+B' so
that F ' will have a branch point at t = 7', the
threshold for "production" of the quanta 1 and 2:

T = 7(4„4)= (~4+ ~&, )' (4.15)

According to (4.11), F '] is a superposition of the
E['](s, t; f„f,) in which the range of (f„g,) ex-
tends to (0, 0}. Since r(0, 0) =0, E"' itself will
get contributions from the exchange of quanta of
effective mass zero and will therefore ordinarily
be singular at t =0. This will lead to a long--
range part in the corresponding potential V ~~(r)

To find the large-x dependence of V„"~'(r) we
need to compute the discontinuity [F ']] of F ']
across the cut starting at t = 0. This is given,
near t =0, by

[d"] = S s f f de, de, d(e„)e[ d'],
0 0

(4.16)

where [E[']]is the discontinuity of E ' across
the cut starting at t =T(f» g, ). To find the latter
discontinuity we may apply the techniques of
generalized unitarity to E(I. (4.13). We assume
for the moment that dd(k') is regular in the neigh-
borhood of k' =0, so that the absorptive part of
Dd(k'; r) is just -2wi5(k' —P) for small enough f
On replacing D,(k; r;) by -2]]i6(k —f;)8(ko)
(i = 1, 2) in (4.14) and replacing also Md)„"' by
the full amplitude M~2. „we then get

[E ]=const x ddkzM ~ M + ~ ~ ~

(4.17)

where k and W' are the c.m. momentum and energy,

(f r ))/2(]s r )1/2

1/22t
(4.20a)

and

(4.20b)

with T, coinciding with 7, defined by (4.15). It
follows from (4.17) and (4.19) that the integral
in (4.17) may be written in the form

[E[']]~= const x C, (t; r„„&,}f(t;f„f,), (4.21)

where-

(M "M '„')„- cosnt xt'
1

(4.23)

for t- 0. Because the gluons are vector quanta
like the photons, a similar behavior might be
expected for f (t; f„g,) when r„, and g, are small,
of order t. That is, if we set

~l ~1& (4.24)

(4.22)

is the average of the indicated product over the
direction of the three-momentum k of, say,
the pseudogluon 1 in the c.m. system of 1 and 2.

We only need the function f (i; f„g,),for small
values of its arguments. In the case of QED one
encounters, instead of (4.22}, the angular average
of M~'. „M„'.z where, e.g. , M, '.

& is the amplitude
for emission of two photons by an electrically neu-
tral particle A. . We note that because the photons
are spin-1 or vector particles, My g is a tensor
amplitude of the form F~T~"+F„T„"",where the
T's are covariant tensors constructed from the
available four-momenta. Current conservation
and the neutrality of A. then imply that these
tensors egch involve two powers of the momentum
components, which behave like vt for t-0. As
a consequence it turns out that'

where

d@, =d4k, d~k 6(k,' —&,)8(k, )

x 6(k,' —f,) 0(k, ')6(Q —k, —k, ) (4.18)

in f and le't t- 0 with the y; fixed in (4.22), the
resulting function will have a behavior in t similar
to (4.23). To be safe, we shall write

( („(S,)-=sf fdd, =(sk/W)e(t s.), (4.19)

is the Lorentz-invariant volume element in the
phase space of the pseudogtuons 1 and 2. The dots
in (4.17) include the contributions to [E ']] from
processes involving the virtual emission of three
or more gluons. " The total phase-space volume

42 is givenby

f (f; ty„ ty, )
- t'k(y„y, ) (4.25)

C, (i; ty„ ty. ) =@.(I;y„y.),
the result

(4.26)

for t- 0 and assume only that s ~0. If we now
introduce the variables y, and y, in (4.16), we

get, on using (4.10), (4.21), and the fact that
4,(t; ty„ty, } is independent of i, viz. ,

[de' ] sons(x t ff, ,''",'., (ty.) ( dy)( d:, e„S), ((„e,e).See
0 0 ~1 ~2

(4.27}
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Allowing for a zero of integer order c in d~(k'),
i.e., d~(k2}-(k')" we get finally

[E ' ] -const xt"' " (t-0).
Since [E]~t implies V ~r o" for large r,

we conclude that if the assumptions made in ar-
riving at (4.28) are valid there will be a long-
range potential arising from two-gluon exchange
given by

(4.28)

V„ms const xr, N= 4(e+c)+2s +3. (4.29)

N =7+4m. (4.30)

If D~ is regular and nonzero at k' = 0 so that c =1,
we get instead

N =11+4~, (4.81)

a high-powered result indeed.
The exchange of more than two gluons will of

course also give rise to a long-range force if the
mechanism considered in this section is opera-
tive, but the associated potential will fall off more
rapidly than that from two-gluon exchange. The
phase-space integral now gives a factor of t" ' so
that one finds, ~ from the n-gluon analog of
(4.2V},

t
~(ft) ] const x gn(6+c)+sn+n-2 (4.32)

where s„ is the analog of the power s entering

We note that a long-range force occurs even if
c =1, that is, even if there is no pole in the gluon
propagator D~ =&~/k'. This force arises from the
singularities in M~'. ~ that are imposed by Eq.
(4.6). Thus the very ansatz that confines the
gluons acts to generate the long-range force.

Although in our derivation we have assumed that
d~(k') is regular at k'=0, this restriction is
easily removed. For example, if d, (k') has an
algebraic singularity, i.e., d~(k') ~ (k')' near
k' =0 with c not an integer, (4.29} continues to
hold because the fractional part of c can be ab-
sorbed by a redefinition of &. Similarly, the re-
striction 0& e &1 made in order to avoid the ap-
pearance of subtraction terms in the spectral
representation (4.10) for (k') "' is also ines-
sential. If E =n'+ e' with n' a positive integer and
0& e' &1, the factor (k')" can be absorbed in
d~(k') and the discussion proceeds as before. Of
course, if, e.g. , g is an integer and n'+c&0, so
that there are no poles at k~' =0, there is no
long-range force in the limit e-0 (or e- 1}. This
is because the factor 1 —e"'I' '~ entering (4.10),
which has been absorbed in the symbol "const" in

Eq. (4.11), vanishes in this limit.
As examples of the use of the result (4.29) note

that if s =2 as in the case of QED and D~ has a
simple pole at k' =0, so that c =0, one gets

(4.25). Then

V„"~(r)-constxr "",
where

N„=2n(e+ c}+2(s„+n) - 1.

(4.33)

(4.34)

For the case of QED, a preliminary investigation
indicates that s„=n. If we use this value for QCD
we get N„= 2n(e +c +2) —1, which would imply, for
example, that even if c is zero, N, is at least
as large as eleven. This result is in disagree-
ment with that of Fujii and Mima, ' who obtain
N, =7 and N4=7. It appears to us that their re-
sults do not come from the three- and four-gluon
exchange graphs.

W„-(r)= n, /r (r «1 F) . (4.36)

Here X' =-A. * is the conjugate of the SU(3) matrix-
vector X and n, (=0.2) is the running coupling con-
stant of QCD. If one assumes that the potential
at large y can be obtained by dressing the free
gluon propagator D 0 (q') =(q') ' then the form
(4.35) is unchanged for large r—the function W«
is simply no longer given by the Coulomb poten-

I

C. Interquark potentials and long-range forces

Some authors have adopted a potential-model
approach to long-range forces between composite
systems; they have taken the same potentials
which are introduced to describe the interaction
between the constituents of a bound system, e.g.,
the quarks and/or antiquarks within a hadron, and
used them in higher order to discuss the nature
of the potential. between two such systems. ""
As already noted, this approach is inadequate
even for the case of two atoms when distances
large compared to inverse excitation energies are
considered. For the case of hadrons, if the quark-
quark potentials arise from more fundamental
interactions, then iterations of these potentials
may not adequately represent the full effect of
these interactions. One encounters also a more
exquisite danger: If the potential V„(r)between-
a quark and an antiquark or the potential V«(r)
between two quarks has a eol.or-independent part,
then the effective potential describing the inter-
action between two ordinary hadrons is likely to be
either confining or strongly repulsive at large
distances.

'Ne first recall that the asymptotic-freedom
property of QCD has been used to argue that at
short distances (r«1 F) the one-gluon exchange
approximation is valid. In this approximation

V„(r)=X, X' W-„(r)- (4.35)

with
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tial (4.36). For example, if the dressed gluon
propagator D, (q') behaves like (q') ' for q'- 0
one will get

On the other hand, if V„- is to be confining in a
color-singlet state, where X, ~ X,'- ——,', then at
least one of the two terms in

W„-(r) (4.3 t) V- =U-- —S'-sing 16
ae ee 3 ec (4.40)

V,~ (r„)= U„-(rj2)+X, ~ X, W„-(y„),

(+34) (+34) 3 4 W (+34)

(4.38)

where U« is the color-independent part of V«
and rqz = lr, —r&l; any Dirac matrices entering
U or W' are suppressed. Similarly, the general
form of an interaction potential between the quarks
q, and q, and the antiquarks q, and q, is

V„(~„)=U„(~„)+7, X,W.,(r„),
(4.39)

for large r, as in the linear-potential model used
in the description of the psions as cc bound states.
Now this picture also implies that the Dirac char-
acter of the potential V„-(x) is that associated
with exchange of a spin-1 quantum, corresponding
to a factor y, y, [suppressed in Eq. (4.35)j. This
leads to spin-dependent forces of a type which, it
has been argued, are not well suited for the in-
terpretation of details of the spectrum of the
pslons.

There is, however, no convincing demonstra-
tion that the confining potential does in fact arise
from the exchange of a single dressed gluon.
Indeed, an alternative point of view is that at
large distances the exchange of many gluons or
of more complicated field configurations such as
those described by instantons are important; this
allows V„(r}t-o have an appreciable "scalar" part
(independent of Dirac matrices), which is ad-
vantageous for the phenomenology. 34 If multigluon
exchange is important in determining the large-r
limit of the quark-quark potential it is possible
that this potential has a color-independent part,
just as the multipion exchange potential has an
isospin-independent part. We can easily see that
this possibility is in gross disagreement with
hadron physics.

Consider the interaction between a meson A,
composed of a quark q, and antiquark q„and a
meson B, composed of a quark q, and antiquark
q4, within the framework of the nonrelativistic
quark model and potential theory. The most gen-
eral form of the binding potential for A and B is

must be confining. Taken together, these state-
ments suggest that if, say,

,' W—„(r-} k„-r ~

with P & 0, then also

Uqq (x) k„x

and for confinement we need

k„+k &0.

(4.41a)

(4.41b)

(4.41c)

Vga(R) = g»41V Ilgwu), (4.43)

where g„=Q„(r„)g» $3 =ps(r, 4)Xs with the Q's

the spatial wave functions of the bound states and
the g's singlet wave functions in color space.
Here H is the separation of the c.m. coordinate
of A. and that of B, so that, e.g., r,~

= ( r»/2)
+R+(r„/2). Since, e.g., (g„lA,, ly„) =0, the W-

type terms in V;,& make no contribution and

V '"(R) =(e~es I U„(~„)+ U-„-(~..)
+ U„(r„)+ U;; (r,4) I yAAB}

(4.44)

The contribution to V„~(R}from the U« terms has
the form

(4.45)
I

which is confining if k„&0. The inequality (4.41c)
allows for a negative k„ if k„&0, but then (4.45)
corresponds to a long-range repulsion, which is
also unacceptable.

Consideration of the contribution from the last
two terms in (4.44) does not improve matters.
If we assume that

We note further that the nominal interaction
between the constituents of A and those of B is

V, =V„-(r„)+ V„(r„)+-V„(r„)+V;;(r„).
(4.42)

To lowest order in V,„„the effective potential
describing the scattering of A and B is then
given by

V;; (r„)=U;;(r„)+X,'X', W;;(x„), U„(r) k„'r (4.46)

where U„(r) =U;~ (x) and W„(r) =W;;-(r) by C
invariance. The main point now is that if the
large-r behavior of V„(r) is determ-ined by
multigluon exchange, then, on the one hand, U„-
may wel. l be as important as 8'„- at large r and,
in particular, have similar asymptotic behavior.

for r ~, the contribution from these terms to
V~s(R) is

2k„'a' (4.4V)

at large R. This will cancel the leading contribu-
tion (4.45) from the first two terms if and only if
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V' (R) —C /R

where

P'(P2 —2P + 3)k„'a~b'
P 72&E

(4.50a)

(4.50b)

with k„=16k/3 the quantity introduced in (4.41a),
a'=(4AI+A IAQ&, &'=(4BI+B 14B), and && a mean
excitation energy for octet states. " For a linear
potential we set P =1 and get

V„"s(R) const/R'. (4.51)

From the analysis of Sec. IVB, it is easy
to see how these results must be modified to
take into account retardation. To simulate an
interquark potential which goes as r we put
d~(k') - (k')' with

c= —(p+1)/2, (4.52)

corresponding to a propagator D, (k') jvhich be-
haves as (k') " for k'-0. With s =2 and &=0
in (4.29) this gives, for two-gluon exchange,
V-R "with

N =5-2P (4.53)

rather than N=4-2P as found above from the
potential exchange approach. Thus there is an
extra power of R ' coming from retardation, as
one expects on intuitive grounds, regardless
of the precise value of p. In particular, for

(4.48)

-However, there seems to be no reason that the
equality (4.48) should hold. Moreover, even if
there were some hidden property of @CD which
leads to (4.48), one would. be in trouble. Let us
repeat our calculation of the effective potential
for the case of the scattering of two baryons C
and D. Only V«(x;&) is of interest now, and with a
baryon composed of three quarks in a color-
singlet state the W'-type terms again make no
contribution. We then get V c~(R) - 9k„'R~ at large
R, which is again unacceptable.

For completeness let us see what the effective
potential V„"sf(R) would be if the U's the color-
independent parts of the interquark potenti'als
(4.38) and (4.39), were zero. Then the right-
hand side of (4.43) vanishes and V„'s is obtained
by using V;„, in higher order. With W«(r) =W«(x)
=km the leading contributing term in V;„, for
large separation R is

V;„', = PkR '-A„~ AsI r„~ rs+(P -2)r„'R ra ~ R],
(4.49)
I

where, e.g., A„=(m,X, —m, 7.,')/(m, +m, ) and
r„=r, —r, . Second-order perturbation theory
then gives

P =1 we get, instead of (4.50),

V „2s(r) const/R', (4.54)

V. COMMENTS AND CONCLUSIONS

A. Interpretation of experimental limits

We have seen, on the one hand, that various
experiments constrain the existence of strong
long-range forces between hadrons and, on the
other hand, that the occurrence of such forces is
made difficult, although perhaps not impossible,
by the apparent nonexistence of massless hadrons
as observabl. e physical states. In this final sec-
tion, we summarize our conclusions about both
experiments and theory, and deal with the ques-
tion of what possibilities remain for long-range
forces between hadrons from both standpoints.

We note first that the most plausible mechan-
isms for generating long-range forces, multi-
gluon exchange, give potentials that behaves as
z "with N greater than or equal to seven. How-
ever, the experiments described in Sec. II at
present give interesting constraints on the po-
tential only when N is six or less. This state-

in agreement with the result of Fujii and Mima, "
who used dimensional regularization. However,
our results for the exchange of more than two
gluons do not reduce to those of Ref. 10 for the
case considered there, P =1, corresponding to a
(k') ' propagator. For example, (4.34) gives,
with & = 0 and c = -1, N„= 2s„—1 which is inde-
pendent of n only if s„ is independent of n —a
circumstance which seems highly unlikely, since
this is not the case even in @ED.

In concluding this section, we stress that the
difficulties encountered in the potential exchange
picture if the confining qq potential has a color-
independent part may also occur in the multi-
gluon-exchange p'icture of long-range forces be-
tween hadrons. This is because a major contribu-
tion to the n-gluon emission amplitude M~".„pre-
sumably comes from processes in which the had-
ron A. decomposes into a q,q, pair, the quark q,
emits n gluons, and then rejoins the antiquark to
reconstitute A. . These gluons can be absorbed,
in a similar process, by an antiquark q, in hadron
8 and there arises a contribution to the hadron-
hadron amplitude F(s, t) involving integration over
a piece of the off-shell (q„q,) scattering ampli-
tude coming from n-gluon exchange. If this piece
is required to have a confining part in the sense
of dispersion theory, i.e., to have spectral func-
tion which is highly singular at t =0,"then it
may also have a confining color-independent part
which will show up as a potential tending to con-
fine two hadrons.
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8' &o /~q ~ (5.2a)

where g is the quark-gluon coupling constant and

m, a quark mass, whereas the "electric" color
polarizability n'„ is given by

cf„=g'r '/&E, (5.2b)

where &E represents some average color-octet
excitation energy. These estimates suggest, but
hardly prove, that the magnetic color polarizabil-
ity of hadrons could be greater than the electric
polarizability, unlike the case of ordinary atoms.
If g'/hc is of order one, the numerical value for
A,," suggested by Eq. (5.2a) is also of order, one,
indicating that a modest improvement in the
analysis of exotic-atom transition energies could
show the effects predicted by the naive theory.

In Sec. IV we have shown that if the multigluon-
emission amplitudes have mass-shell singulari-
ties, there can be a long-range force even if the
gluon propagators do not have poles (or branch
points) at k' =0. In particular, the two-gluon-
exchange potential [Eq. (4.29)] was found to fall
off more rapidly than r ', as long as E+c&0 and,
as analogy with QED suggests, s =2 [see Eqs'.
(4.30) and (4.31)]. The experiments we have
analyzed are insensitive to such rapidly decreas-
ing forces, unless the length scale is significantly
greater than 1 F. This length scale and the
strength of these forces now depends on the mass
scale of the zeros in the gluon emission ampli-
tude as well as on the color polarizabilities for
gluon emission. Conceivably, there is a low mass

ment is based on the assumption that the length
scale relevant to the hypothetical long-range
interactions of hadrons is 1 F. If the length scale
is significantly smaller than this, then experi-
ments are correspondingly less sensitive even to
inverse powers lower than six. Alternatively, if
the length scale is greater than 1 F, existing ex-
periments could be sensitive to long-range forces
of the type given by "naive" two-gluon exchange,
i.e., to an r ' potential.

An estimate of the length scale for hadronie
long-range forces requires a more detailed theory
of hadrons then we can discuss here. If the gluons
are treated l.ike photons —we shall refer to this as
the "naive theory" —and only two-gluon exchange
is taken into account, the coefficient of r"' in

Eq. (2.1) is determined in analogy with Eq. (1.5),
by the effective color polarizabilities a& and n~
of the two hadrons via

(5.1)

From the discussion of Sec. III C, me might ex-
pect that the "magnetic" color polarizability will
be given roughly by

scale for these zeros, which may involve infrared
singularities arising from gluon-gluon interac-
tions. It would be worth keeping this possibility
in mind if more precise analyses of radiative
transitions in exotic atoms become available.

B. Does the missing-mass spectrum in

hadron interactions extend to zero?

The model. for gluon confinement discussed in
Sec. IV avoids the emission of physical gluon
pairs by hadrons. If extended to multigluon ampli-
tudes in an obvious way, it mill also avoid the
emission of any number of gluons. This means
that gluons do not give rise to zero-mass poles
in physical amplitudes. Nevertheless, this
model is not sufficient to avoid all trace of mass-
less gluons in physical states. " The same dis-
continuities at k' =0, arising from the gluon
mass-shell branch points in gluon-emission am-
plitudes, that give the long-range forces between
hadrons will. also generate discontinuities in in-
elastic hadron scattering and in hadronic decay
amplitudes arising from graphs involving virtual
gluon pairs. These discontinuities, by unitarity,
may require interpretation as the production of
some type of state from the hadrons. If so, since
the spectrum of total mass of the two gluons ex-
tends domn to zero, the state in question is not
composed of the known hadrons. Furthermore,
if we analyze the state in terms of the mass of
two individual "components, "which might be pos-
sible through a missing-mass setup, we will
find that the mass distribution of these components
also extends down to zero. Nevertheless, there
will be no pole in k' as would occur for physical
gluon emission. That is, the missing mass cannot
be understood in terms of a state containing some
definite number of zero-mass particles. Instead,
it would correspond to a superposition of such
states, without a 5-function contribution at zero
mass. "

Such a situation does not seem to contradict
any general principles of field theory. One picture
of what is happening is that the individual gluons,
through their nonlinear self-interaction, couple
to multigluon states, eventually containing an
infinite number of gluons. The effect of this
coupling is to induce the factor (k')' that we have
introduced in Eq. (4.5). This would be somewhat
analogous to what happens in QED, where the
effects of soft photons is, in some gauges, to
eliminate the electron-propagator pole, replacing
it by a branch cut. However, there we know that
the result is in most circumstances insensibly
different from what is obtained by neglecting the
soft photons and keeping the electron pole. In the
@CD case, that is surely wrong and it is likely
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that the infrared effects of gluon self-interactions
greatly modify the physical effects of the theory.

It would be interesting to analyze experimental
data on hadron collisions to see whether the
spectrum of missing matter does extend to zero:, .

in a way that cannot be accounted for by photons.
Some data on this exist in an earlier search for
negative mass-squared particles, emerging from
E P and PP collisions. " The data have not been
analyzed with this new possibility in mind, how-
ever. A determination of the spectrum of missing
mass in the neighborhood of M' =0 would shed
light on the question of whether a naive picture
of confinement such as the one presented above
is plausible or not.

C. Some comments on other treatments

of strong van der Waals forces

As noted in the Introduction, there have been a
number of other discussions of strong van der
Waals forces in the past three years. We record
here a few comments on some of these other
treatments.

We already remarked many years ago that a
sharp division of van der Waals forces into re-
tarded and unretarded regions, as occurs in

atomic physics, is unlikely to occur elsewhere. "'
Since hadrons do not possess excited states with
very low excitation energy (« I F ), it is al-
ready necessary to use the retarded expressions
for the forces when the separation of two hadrons
is greater than a few fermis, that is, whenever
there is a significant distinction between van der
Waals forces and ordinary hadron-exchange
forces. This is unlike the atomic case where
the unretarded London force can be used over a
very wide range beyond that of the chemical
forces. This implies that some treatments that
rely on nonretarded expressions for strong van
der Waals forces are unreliable quantitatively.
This conclusion does not depend on the mechanism
by which the forces arise but rather on the energy
scale over which the hadronic amplitude vary.
This is unlikely to be less than a few hundred MeV
which implies that retarded forces must be used
beyond a few fermis.

These remarks apply also to the ingenious ap-
proach of Matsuyama and Miyazawa" and of
Gavela et al." These authors have attempted to
treat van der Waals forces in the context of quark .

confinement and potential exchange. They take
into account the large long-range interaction
between the intermediate color-octet states, which
are linked to a hadron ground state by octet po-
tential exchange, by including it in the energy
denominator in the sum over intermediate states.

The effect of this is to increase the inverse
power in the potential. by P, where x describes
the behavior of the quark-quark potential. So
for P =1, they bbtain an r ' hadron-hadron
potential.

Their work is done for instantaneous, non-
retarded potentials. Its extension to retardation
appears nontrivial. If actual gluons are exchanged,
the finite time required for them to travel from
one hadron to another means that the two hadrons
need not both be in octet states at the same time.
Instead, an overall color singlet is obtained by
combining gtuons with quarks. Therefore, the
quark-gluon interaction as well as the quark-
quark interaction must be included in the inter-
mediate state. This immediately goes beyond
the context of potential exchange, and it is not
clear how to proceed with it.

The authors in Refs. 11 and 12 conclude that
the nonretarded potential they obtain is too large
to agree with experiments on nulceon-nucleon
scattering. We agree with their conclusion.
Furthermore, from our analysis in Sec. II, we
can set a limit on a P-P force of the types they
obtain. For example, if the quark-quark poten-
tial is taken to be linear, the authors of Ref. 12
get an inverse-cube potential V„;(R}= r,'/VR'
which, in our notation, implies that A., '(P, P}= —,.
Comparing this with the limits in Table IV, we
see that a P-P potential of this magnitude wouM be
a thousand times larger than allowed by experi-
ment. Moreover, it is al.so larger by a factor of
10" than the limit implied by the Cavendish ex-
periment (Table II). A similar conclusion is also
reached in Ref. 11. It will be interesting to see if
the inclusion of retardation can change these con-
clus ions.

Pawada has proposed in several papers"'~ that
an analysis of m-P and P-P scattering data reveals
the existence of an 8 ' potential between these
hadrons, with values, expressed in our notation,
of A., (w, p}-25 and A,,"(pp)-100. While these re-
sults do not directly contradict the results we
give in Table IV, they do seem uncomfortably
large compared with the limits obtained for
X~s'(P, P). Therefore we must be somewhat skep-
tical of the conclusions drawn by Sawada from
scattering data. Proposals to detect B ' van der
Waals potential through scattering experiments
have also been made by Fishbane and Grisaru. '

In this paper we have concentrated on models
which may generate kong-range forces between
hadrons. Nevertheless, it should be mentioned
that in some other models of quarks and gluons
such forces appear to be absent. For example,
in the (semiphenomenological) bag models, gluons
are confined to the inside of a hadron bag and
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cannot propagate to another distant hadron.
Therefore no long-range forces between hadrons
arise from gluon exchange. Another model of
hadrons withoug long-&ange forces has recently
been proposed by Greenberg and Hietarinta. ~
We do not know if such models are consistent
with quantum field theory in general or with QCD
in particular. However, models in which strong
long-range forces between hadrons are completely
absent must be given due consideration, especially
if future experiments fail to show any indication
of such forces.

In summary, the situation with regard to strong
long-range forces between hadrons has interesting
theoretical and experimental questions associated

with it and some surprises may yet result from a
more detailed study of these questions.
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emission amplitudes or in the propagators is some-
what arbitrary. A resolution of this ambiguity might
be possible if processes involving the emission of real
gluons could be studied.
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