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Generation of u- and d-quark masses by weak interactions
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The masses of the u and d quarks are calculated as finite contributions from one-loop diagrams in an

SUL(4) X SU~(4) )& U(1) gauge model of the weak and electromagnetic interactions. The parameters in our
model can be chosen in such a way that the low-energy phenomenology resembles closely that of the
Weinberg-Salam model.

I. INTRODUCTION

The advent of renormalizable gauge theories
of the weak and electromagnetic interactions
presents us with the possibility to understand the
long-standing problem of the proton-neutron mass
difference. It has been emphasized by Weinberg
and by Georgi and Glashow' that when masses are
subject to the zeroth-order mass relation for all
values of the parameters in the Lagrangian, cor-
rections to this relation can be calculated as finite
higher-order effects. Explicit calculations of the
proton-neutron mass difference were performed
along these lines by Freedman and Kummer and by
Duncan and Schattner' in a semirealistic model
based on the SU~(2) x SU„(2)x U(1) gauge group.
The actual value of m~ -m„obtained in this model,
however, was shown to have the wrong sign due
to the dominant photon contribution. In realistic
models, therefore, the contribution of the photon
must be suppressed. One way out of this difficulty
is to assume a zeroth-order mass relation m~
=m„=0, since the contribution of the photon is
proportional to the zeroth-order proton or neutron
mass in perturbation theory.

The assumption of this zeroth-order mass rela-
tion also offers a natural explanation of the chiral
SU(2) x SU(2) symmetry4 of the strong interactions,
if we accept quantum chromodynamics' as a model
of the strong interactions. The spontaneous break-
down of this hadronic symmetry gives a flavor-
independent mass of order m/3- 300 MeV to the

.constituent quarks. ' The bulk of the proton and
neutron masses is then attributed to this process.
In this scheme, the small P-n mass difference
would be introduced by the exchange of gauge
bosons other than the photon and in principle it
can have either sign.

In this paper, we will work with quarks instead
of p and n. We will then assume that the u- and
the d-quark masses satisfy the zeroth-order rela-
tion m„=m„=0.

We shall look for a realistic model of the weak
and electromagnetic interactions such that these

quarks acquire small masses as finite higher-
order effects of these interactions, rather than
from bare masses or vacuum expectation values
(VEV's) of sca, lar fields.

A straightforward extension of the model con-
sidered in Ref. 3 is a gauge model based on

SU~(3) x SUs(3) with a left-handed triplet (u, d, b)~
and a right-handed triplet (u, d, b)s, where b

denotes the newly discovered heavy quark with
charge -3. It turns out, however, that the u
quark remains massless while the d quark ac-
quires a finite mass from higher-order correc-
tions, whenwe require the zeroth-order mass
relations m„=m~=0 and m, c O. Therefore, in
this, paper, we introduce another heavy quark t
with charge -,'and enlarge the gauge group' to
SU~(4) x SU„(4)x U(1) in order to generate the u-
quark mass. A left-handed qua, rtet (u, d, b, t)~
couples to a right-handed quartet (u, d, bt) s
through a Higgs scalar field C. The VEV's of
4 are arranged in such a way that the b and t quark
acquire mass in the lowest order while the u and
d quark remain massless in this order. The
masses of the u and d quark are generated as
finite second-order effects. Since the photon does
not contribute to the masses of the u and the d
quark, it is possible to get the right sign for the
u-d mass difference. Although no reliable quark
masses are available at the present because of the
unknown renormalization effects of the strong
interactions, we try to compare our calculated
values with the standard values of the current
quark masses' obtained from the PCAC (partial
conservation of axial-vector current) relations
and baryon mass splittings.

There are quite a few parameters in our model.
However, low-energy weak-interaction phenomen-
ology sets severe constraints on them. Within
these limits, we find that reasonable u- and d-
quark masses (- a few MeV) can be obtained.

In Sec. II, we present details of our model based
on the SU+(4) x SU+(4) x U(1) group. In Sec. III,
finit'e expressions for the u- and d-quark masses
are given. In Sec. IV, some phenomenological
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aspects of our model are discussed briefly. In
particular, the weak interactions of the b quark
are analyzed. Section V is devoted to a discussion
of our results and a summary. A brief account of
this work has been published elsewhere. '

d d
q~ =A~ — - (4+, 1,—,'), q~=—A~ -(1,4+, —,'), (2.5)

[Tu TB ]
—

&yes Tr

[T,T~„)=ifnarTr~ (2.1)

[T;,T',] =[T', T;]=[T',T„]=0,

where f ~ are the totally antisymmetric structure
constants of SU(4). The representations of SU~(4)
x SU„(4)x U(1) are denoted by (n, m, h), N[m] being
the dimensionality under SU~(4) [SU+(4)] and the
U(1) charge h being defined by

(2.2)

II. GAUGE MODEL BASED ON SUL(4) XSUg (4) XU(1)

In this section, we shall establish the notation
and give a detailed description of our model. The
symmetry group SU~(4) x SU+(4) x U(1) has 31
generators T', T~, and Ts (n =1,2, ..., 15), and is
characterized by the commutation relations

where A~ =-,'(1 —y, ), A„=~(1+y,). The commuta-
tion relations are

[Tl, qr) =-izqz, [Tz qR) =-~Rqs

I, ~ qR) =[~B~ql.) = (2.6)

where t~—=A~ —,'X and t~=—A„—,'Pt are the fundamental
representations of generators Ti and Tz respec
tively, and X matrices being normalized according
to Tr(X X~) =26™8.

(b) Higgs scalars

4-(4*,4, 0),
D~~-(15, 1,0},
D„(1,15-,0),
:"~—(4*,1, -1),
:"„-(1,4*,-1) .

If we define B~ and f}„by

for any field $. Gauge fields corresponding to
T', T~, and T~ are represented bye„A~„and
4~„,respectively. Then the covariant derivative
for a field g is defined by

D =~ A. D~,

1 15

De=~2 Q ~ Ds~

(2.'I)

D„g—=s„g+ig,A„'[T',g]+ig A„[T,$].
+igsAs. [Tz &] (2 2)

the commutation relations for the Higgs scalars
are

and gauge-covariant curls for gauge fields are
given by [T~~,4] = -(—,'X~)C, [T~s,C] =4(2X"),

(2 4)

[Tg~ g] --(-a~ )-g, [TR R) (2~ )

The quarks and Higgs scalars are assigned to the
following representations of the gauge group:

(a) Quarks
With this notation, the Lagrangian density for

our model is

, (E~„„}—~ (Es„„)2——~ (E„„)2+ q zi y "D„q~+ q zi y "D„q@+Tr[(D„4)t(D "4)]+f(q~4qz+qs@tq~)

[(D":.~}t(D„:-~)+,' Zr(D„D~)~+(L—R)] -P(C, :"~,:"„,D~, B~) +(gauge-fixing terms}, (2.9}

where P stands for a general fourth-order poly-
nomial in the scalar fields, which is invariant
under our gauge group. We impose manifest left-

right symmetry by requiring the invariance of 2
under the following interchanges'.
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L, gv Rpv s

&L, &z~

H ~ lt
p

Di—Dz

4 4'.

(2.10)

m„=fa, m2 =fb,

m2=fC i m, =fd.
(2.16)

We assume that if the electromagnetic charge is
conserved, then the VEV for the other Higgs
scalar fields take the form

which gives the lowest-order mass to the quarks

Imposing this condition leads to the requirement
that the two SU(4) coupling constants are equal:

(2.11.)

'0

(="i&.=, (="g.=(L -R),
tL

Parity will be broken spontaneously, after the
scalar fields are given nonvanishing, and asym-
metric, vacuum expectation values. In addition,
we impose discrete symmetries

H ~~H

0

Q 0 0 8

(2.17)

Ri: Di Bi&-
other fields invariant,

Dz Dz

other fields invariant,

(2.12)

(Di), =R2
0 y s 0

v~0 0 r~

with

us, +xi+sL, +ra =0,

QR+&z +s z +ra

, (D„),=(I.—R),

I~ =- Ti, I2 =Ti, I3=-T
il/2

I R 3 I R

(2.13)

This weak isospin together with the weak hyper-
charge Y—= Q -I, form a subgroup SU(2) x U(1):

[I~, I~] =i&;~2I2, [I~, Y] =0. (2.14)

so that terms odd in Di, Dz, .i, and/or =s are
absent in P.

Corresponding to the assignment (2.5), the weak
isospin I, (i =1, 2, 3) and the electromagnetic charge
are identified as follows:

With this form of the VEV, the photon remains
massless and it is given by the expression

—
(
—'} (A" +A'„'), (2.18)

where the electromagnetic coupling constant is
given by

1 1 1
+

e2 g2 4g2 (2.19)

Higgs fields 4, :-i, ™~, and D~ with VEV of the
form (2.15) and (2.17), satisfying the additional
conditions

a=b =0 (2.20)
This fact is very important because it makes it
possible that, for appropriate VEV' s of the Higgs
scalar fields, the phenomenology of our model will
resemble very closely that of the Weinberg-Salam
(WS) model, ' at least in the low-energy region.

Now let us discuss the symmetry-breaking
scheme in more detail. Without loss of general-
ity, we can assume that (4 )0 is real and diagonal:

a 000

gi =0 (2.21)

will break SUi(4) x SU@(4) x U(1) down to SU(2)
x U(1). This SU(2) x U(1) is the symmetry group
defined in (2.14). If the group SUi(4) x SU~(4)
x U(1) is broken down to SU(2) x U(l) in this way,
then it is not hard to show that the Weinberg
angle is given by

05 00
00c0
000d

(2.15)
sin't =[4+(gj2g,)'] '.

It is easy to see that if

L,
—vL, -QL, —x~ Oq

(2.22)

(2.23)
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&R-&R

O' W4,

D~ WD~ W, DR DR, (2.24)

H ~ H

1A~„=~ A. A~„WAq„W,
0.=1

1

Ru ~ Ry +Ra r&2. ea
with

0 0 0

0 —1 0 0

0 Oi0
0001.

Since {4),is invariant under W, so are the quark
parts of the Lagrangian (2.9). This symmetry W
in the quark sector, which corresponds to the y,
transformation u-y, u, d-y, d, forbids the ap-
pearance of the u and d masses in the lowest
order. Since (D~), is not invariant under W,
neither is the mass matrix of the gauge bosons.
Therefore, the higher-order corrections to the
quark mass matrix due to the gauge boson ex-
change, which do not respect the W symmetry,
can generate the small masses of the u and d
quarks in principle. In the next section, we will
calculate these masses explicitly.

the SU(2) & U(1) symmetry rema, ins unbroken even
after introducing (B~),c0. In Appendix A, we give
a plausible argument to show that for at least a

, finite range of parameters in P(4, :"~,:"„,D~, D»)
it is possible to find a minimum of this potential
for VEV of the form (2.15) and (2.17) that also
satisfy Eq. (2.20). Hereafter, we always assume
PEV's of this form.

It is important to notice that our mode has an
approximate discrete symmetry W defined by

p. ' —C 'p~C

C '=C~ C* =C
(3.1)

where p' denotes a diagonal matrix with eigen. -
values p, '». Then the gauge fields A f' (i =0, I n,
or Rn with a =1,2, ..., 15) in the original basis
can be expressed in terms of the mass eigenfields

P for certain ranges of the parameters in P."
This is because divergences of the fermion self-
energies are absorbed in the redefinition of the
Yukawa coupling and the coefficients in P. But
our zeroth-order mass relation m„=m„=Owill
not be affected by this redefinition, if P is chosen
to be a general fourth-order polynomial invariant
under our gauge group and if (2.20) corresponds
to a minimum of the potential P.

We mill nom discuss the generation of quark
masses in the one-loop approximation. The one-
loop fermion mass corrections may be grouped
into three categories": (1) tadpole, (2) scalar-
meson exchange, and (3) vector-meson exchange.
The computation will be done in the R& gauge. The
g dependence drops out after combining graphs
in the three categories. At this point, we note
that the Yukawa coupling f is very small compared
to the gauge coupling g, so me can neglect the
scalar-meson exchange. We will further assume
that the Higgs mesons which couple to s7~uR+uRu~
or d~dR+dRd~ are very heavy. Since the tadpole
contributions are proportional to MH, where M„
denotes the mass of the corresponding Higgs
scalar, we may neglect the tadpole contribution
under this assumption. As a consequence, we
need only to compute the vector-meson-exchange
diagram as in Fig. j. with the gauge-boson propa-
gator in the Landau ga.uge. (In the notation of
Ref. 10, we are calculating Z'""+Z'""+Z'"r' )

It is convenient to introduce the eigenfields of
the vector-meson mass ynatrix p, '. Since p, ' is
a real, symmetric matrix, it can be diagonalized
by an orthogonal transformation C:

III. COMPUTATION OF THE LIGHT-QUARK MASSES

A,"= Q C»)W»—= Q (N~i)W"„.
N

(3.2)

As we stated in the previous section, the u and
d quarks are massless in the lowest order. Since
various vector bosons are mixed through the non-
vanishing VEV' s which are not invariant under
the discrete symmetry W, they will generate
masses of the light quarks in higher orders. It
should be noted that these light-quark masses
are finite to all orders if the zeroth-order mass
relation rn„=m„=Ois natural, i.e. , if the forms
of the VEV' s given by Eqs. (2.15), (2.17), and
(2.20) correspond to a minimum of the potential

Now the interaction Lagrangian between quarks
and gauge bosons reads

WN

R

FIG. 1. Contribution to u-quark mass from vector-me-
son exchange.
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where

- a goqy [Top qIA —gqy [T g q1A g „

-gqy'[ Ts, q]A s„
= g qy. f,.qA,„, (3.3)

By introducing

i „=—g C„;i, —= P (Nl i)t;,

we can express 2,„,in terms of W~:

(3.5)

l

—2' for i =0 (h=-,')

i; =( —,gA~A™for i =I.o, ,

&gA A, for i =Ra.
(3 4)

&„,= Q qy"t „qW„„. (3.6)

It is also convenient to introduce the following
notation for the gauge bosons in the original basis:

(A)~—=~ A. A~„=
e=l

N2 N3

vY v 6 v'12

X

Y

Np, Ng N3
vY &6 v'12

0Y N2 +412

(A) „=(1.—z). (3.V)

p
2 $2 ggv p2 (3.8)

where Z(P) is related to the quark mass correc-
tion I5m by

6m =z(p) l, (3.9)

In Eq. (3.8), the (p -p) part of the quark propaga-
tor gives a contribution proportional to P after
integration. Since we are interested in the u and
d masses, we put/ =0 in (3.9), so that the (P —jf)
part does not contribute to these masses. Because
m is of the form

0 0 0 0

The contribution of Fig. 1, where q denotes any
member of the quark quartet, is represented by

d'k „m+ (f —P)

the vertices t„areproportional to (1/vY)gC«,
withe. ,". being Y~ ~ or U~ „.In the computation,
the numerator of the vector-meson propagatorg„„-k„k„/k'can be replaced by fg„„,as can be
easily verified. The contribution of 5'„then
becomes

A' 1 Cora Car&
12 x4' 2 P2 2 P2 I

7f) Z Vly g P~

where, for instance, C«C» =(YzlN)(Nl Yz) in the
case of the b-quark contribution to the u-quark
mass. After making a Wick rotation, the integral
is evaluated without difficulty. The divergent
parts cancel after summing up with respect to N
because of the orthogonality of C: Z~C„,C» =0
for i tj. The remaining convergent results are

0 0 0 0

Oom, 0

0 0 0 T

qR

f~ in Eq. (3.8) should connect between u(d) and b,
or u(d) and i for the u(d)-quark mass. In particu-
-lar, this means that the photon y does not con-
tribute. From (3.5) we see that the couplings at

FIG. 2. Contribution ton- (d-) quark mass that, if
present, would necessitate an infinite counterterm in
Lagrangian density.
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m' p, '& m2m„=-, m,(r~ igyr~ r'„)lily, g'+ g ', ln ", ~+my(t70~ N)(N Fg) in/, g'+, ', ln "3
32~ e I

(3.11)
m2 p. m2 2

m, (l';
~
&)(+~ &', ) inp, „'+,', ln ~", +m, (tr-,

~
X)Qr~ V-, ) in' „'+

p~ -mt m]

When the gauge bosons are much heavier than
quarks, we can neglect the term [m'/(p, „'—m')] ln
x ln(p, „'/m') . Since the photon y does not contribute
to the u or d mass, it is possible to get the right
sign for the u-d mass difference, as we have
discussed in the Introduciton. What we have shown
so far is that, within our framework, it is indeed
possible to generate finite, calculable masses for
the u and d quarks. The crucial ingredients in
this calculation are the existence of the right-
handed currents and the existence of at least two
heavy quarks.

At this point, it is important to note that in our
model we do not have a contribution to the u- (d-)
quark mass of the form represented by Fig. 2.
The tadpoles in this diagram represent the VEV
of the Higgs scalar fi.elds. The absence of such
diagrams is very important because they would
cause the Higgs scalar coupled to the u (d) quark
to develop a zeroth-order VEV." This would
necessitate an infinite u- (d-) quark-mass coun-
terterm and it would make the u- (d-) quark mass
a free parameter. In our model, contributions to
the u- (d-) quark mass come from diagrams such
as Fig. 3, which represents the charged contri-
bution to the u-quark mass. Again, such dia-
grams give rise to a VEV for the Higgs scalar
coupled to the u and d quark. However, this time
the contribution is finite and calculable and does
not necessitate an infinite counterterm. It is this
finite contribution that was obtained in this sec-
tion.

The u- and d-quark masses in Eq. ,(3.11) are of
the order n& compared with m~ or m„where &

depends on the specific VEV's. This dependence
and

c =3.6 x 10', d =1.6 x10',

(~ = 2.7 x 10', $~ =1.0 x 10,

g~ =3.2 x 1.03, g~ =~.3 x 102,

u„=6.2 x 10~, u~ =-6.0,
+z =-1.3 x 103,

s~=2.5x103, s~ =V.6 x102,

x~ = -7.5 x 10', ~~ = -8.0 x 10',

e~ =-3.9 x 10', n~ =-1.2 x 10',

y~=8.9 x10, y~ =2.1 x10,

g =0.63, g, =0.55, f=1.4 x 10 ~.

(3.12)

With these VEV' s, b and t acquire zeroth-order
masses

is nonlinear and complicated, and u Priori there
is no guarantee that there is a realistic solution.
By "realistic&' we mean a solution such that the
low-energy behavior of our model conforms to the
WS model, that the u- and d-quark masses are
of the order of a few MeV (given that m~-5 GeV),
and that the ratio m„/m„is -1.8.' To study this
problem we use a computer search, with arbitrary
VEV' s as input. Then we diagonalize the vector-
meson mass matrix p. ' numerically, obtaining both
the coefficients C„&and eigenvalues p.2„.We re-
quire that there is one light charged boson W,
and, apart from the photon (y =Z,), one light
neutral boson Z„which may be identified with
the W and Z bosons in the WS model, except that
the heavier bosons W„... and Z„... will make
small corrections in the low.-energy domain.
Details of our computer search are given in Ap-
pendix B. We have found some sets of parameters
that satisfy these criteria. One of the satisfactory
choices of parameters is the following (in GeV):

m~ =fc =5 GeV, m, =fd =23 GeV, (3.13)

UL bL bR UR

whereas u and d remain massless to zeroth order.
Equation (3.11) gives u and d masses to the
second order

FIG. 3. Finite charged contribution to u-quark mass. m„=1.1 MeV, m~ =2.0 MeV, (3.14)
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with the ratio m~/m„-1.8. Thus, in our model, it
is possible to get a reasonable order of magnitude
for the u- and d-quark masses.

So far, we have neglected the effects of the
strong interactions. The quark masses calculated
in this work come entirely from the weak interac-
tions. Although there is no reliable method to
include the effects of the strong interactions, we
can include at least part of them by using the re-
normalization-group equations. When we turn on
the strong interactions, the (bare) quark masses
are renormalized by the effects of the strong
interactions. These renormalized quark masses
depend on the renormalization point, where the
renormalized parameters of the theory are
defined. ' Now, the standard values of the light-
quark masses have been obtained by using the
PCAC relation. "' This means that these stan-
dard values are renormalized around m, /2. On
the other hand, in our computation, we have used
the b-quark mass at about 5 GeV, which may be
interpreted as renormalized around m T/2. There-
fore, the quark masses rn„and nz„which we have
calculated may be regarded as renormalized
around mT/2. If we denote the quark masses, re-
normalized at m, /2, by m*„a,nd mf, they are re
lated to our quark masses m„and m„,multipli-
catively, "i.e. ,

m+, =Z„(n„m,/mT)m„, , (3.15)

where Z„(n„m,/mT) is a finite renormalization
factor. If we apply perturbation theory and im-
prove the result by using a renormalization-group
equation, Z is obtained in Appendix C:

-12f(33-2' )
Z (m„m,/m )=(I+ In, ln

6
(3.16)

where n, is the strength of the strong interaction,
renormalized at mT/2, and n& is the effective
number of flavors. By choosing nz =3 and n, (mT/
2) =0.15 (0.16),~4 we obtain Z„-3(5), and cor-
respondingly,

similar to the predictions obtained from an SU~(2)
x U(1) model, as we discussed in Sec. II. In
Tables I and II we list the masses of the vector
mesons as well as the expansion of these vector
mesons in the original basis for the values in

(3.12). If we identify W, and Z, with the W and Z
bosons of the WS model (Z, =r =photon), the mass
ratio p~/p. ~ =0.89 is in conformity with the WS
model with sin26}~ =0.24. Corrections due to W. ,
W3 .. and Z„Z4,~ ~ ~ ar e discus sed in this section.

In order to derive the effective Lagrangian of
the weak interactions, we tentatively assign lep-
tons to the following representation:

e
1L

p.
l2L =—

&3L
=-

VT

-(4+, 1, -1)

EO
L L

TO

(4.1)

e
s- - I 2~= I 3~=- - (I *~ —1)~

where E, E', M, M, T, and T' denote heavy
leptons. The interaction Lagrangian between fer-
mions and gauge bosons is obtained from (3.6):

&(.) = Q (er "t no+ Q «r "4«)&~ ~ (4.2)

where t„aredefined by Egs. (3.4) and (3.5). In
Etl. (3.4), h = —,

' for quarks and h =-1 for leptons.
For notational simplicity, we represent quarks
and leptons by g. Then the second-order interac-
tions of (4.2) are described by the following effec-
tive Lagrangians.

Charged currents:
charged

].

N I N

where
~*„=3.3 (5.5) Mev

mf =6.0 (10) MeV.
(3.1V)

IV. EFFECTIVE LAGRANGIAN OF THE WEAK
INTERACTIONS

Though these numbers are in good agreement with
standard values, one should not take these too
seriously, since Eg. (3.16) may not be applicable
in this region of very small masses.

with

charged

charged

(4 4)

(4.5)

Since we have chosen small values for
~
v~

~ I

yil I a"d I"s ~el and &~ in (3.12), the predic-
tions of our model in the low-energy region are

gg(ab) —= Q (NIBn)(X ),~, (Q, —@~=1).

Neutral currents:
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TABLE I. Neutral vector bosons (mass-matrix eigenstates): mass in GeV/c, coefficients of the expansion in the or-
iginal bas is.

Neutral
vector
boson

Zi
Z2

Z3
Z4
Z5
Z6
Zv

Z8
Ze
+10
Z11
Z12

Z13
Z14

Z15

0
8.5 x10
1.6 x 10
2.3 x102
3.1xlp'
5.5 xlp
5.5 x 10
8.7 xlp
8.9 x 10
1.2 x 10
4.0 xlp
9.9 x 10
g. g X1P
1.2 x104
1.2 x 104

Ni

4 8xlp 1

-8.4 xlp
6.6 x 10

—9.8xlp 2

-8.8 xlp 3

0
-2.3xlp '

4.9xlp 2

0
-6.6 xlp
-6.9xlp 6

0
2.9 xlp" i

0
4.6 xlp

4.8xlp '
2.7 xlp 1

-2.4xlp 1

6 Vx10
5.5 X10
0
2.8 xlp-

-1.5xlp 3

0
-2.8xlp 2

1.9 xlp 1

0
-2.4 xlp 1

0
-4.9 xlp-'

2.8 x10
1.5xlp 1

3.6xlP '
7 lxlp

-2.2 x lp-'
0
4.7xlp 1

3.2 x1p-2
0
1,3 x10

-4.8xlp 4

0
-7.5 xlp

0
-2.1xlp 4

NA

2.8 xlQ
1.6 xlP 1

4.8xl.p 2

5.2xlp 2

3 3 xlP-1
0

-2.0 xlp
g.8 x 10
0
3.8 x lp

-2 2xlp '
0
] 4x]p-1
0
8.5xlp 1

N

-3.9 xlp 1

-1.8xlp 1

1 6 x 1P-'
2 6xlP
4.4 x lp 1

0
7.2xlp 4

-7.7 x lp 3

0
-7.3xlp '

9 8x10
0
3.2 x10
0
7.2 x 10

-3.9
-1.9

1.6
2 0 3
4.0
0

—9.6
7,8
0
6.1
2.0
0

-4.0
0
4.1

xlp 1

x10
x] Q-1

x lp-1
x]p

X]0
x]0

x]p
x 10-1

xlP

xlp-4

Neutral
vector
boson yOI yOB UOL

Zi
Z2

Z3
Z4

Z5
Z6
Zv

Z8
Zg

Z10

Zii
Z12
Z13
Z14

Z15

0
2.0 x lp '

-1.1 x 10-'
X 10-1

1.1 xlp 1

V.l xlp 1

6.Q xlp 1

4 9xlp 4

0
7.0 x 10
5.7 x 10
0
0
0

-9.3 x 10-8

0
1.5 xlp

-5.5 xlp
-2.6 xlp
-3.0 xlp-'

0
1 2 Xlp-2

—5.2X10 '
0

-4.7 xlP
3.2x10 '
0

-3.8 xlp 5

-7.1 xlp 1

1 Gxlp

0
-2.Q X10-1
-1.1 x 10

2.6 x10
1.1 xlp 1

7.1 x10
6.0 x10 1

4 gxlp
0
7.0 xlp 4

5.7xlp 5

0
0
0

-9.3 x lp

0
-1.5 x 10

5.5 xlP
-2.6xlp '
-3.0 x 10

0
1 2xlp

-5.2 x 10
0

-4.7xlp '
3 2xlp
0
3.8xlP '
7.1 xlp '
1.5xlp 1

0
3.7 x 1P
l, 9x 10
3.4 x1P

-2.3xlp 2

0
2.5 x 10
7.0 x 10

-7.1 xlp 1

4.7 x] p

-2.8 xlp
0
1.4 x10
0
0

0
-1.0xlp 2

-8.4 x 10
. 8.1 xlp
-2.7 xlp 1

0
1.1 x 10

-2.5xlP '
0
] g X1P-1

—3.0 x 10
V.l xlp

-6.2xlp 1

0
1.3 xlp 6

0
3.7 x 10 2

l, 9x1P
3 4xlp

-2.3 x] P

0
-2.5 x10 3

V.OX10 '
7.1 xlp

-4.7 x 10
-2.8 xlp

0
1.4xlp '
0
0

0
-1.0xlP '

8.4xlp 3

8.1xlp '
2 Vxlp 1

0
1.1xlp '
2 5xlp
0

-1.9 x10
-3.0 x 10
-7.1xlp 1

-6;2 xlp 1

0
1.3xlp 6

2.8 xl 0
1.6xlp 1

3.6 x10
2.6xlp '
1.4 x10 1

0
-1.9X10 '

] 5xlp 2

0
-1.3xlp '

8.2xlp '
0

-9.6 x lp-'
0
2.1xlp '

TABLE IL Charged vector bosons (mass-matrix eigenstatesj: mass in GeV/c, coefficients of the expansion in the
or iginal basis.

Charged
vector
boson Mass U+L y+L

1.1 xlp-2 1.9 Xlp 39.7xlp 1 -6.6 xlp 4 X]0 1Wi 7.5 xlp

W+2

-4.8 xlp

-2.0 xlp 2

-8.2xlp 2

4.4 x 10,

1.0xlp 2

-2.3 x 10

4.9xlp 2

-7.4 xlp 1

-8 5 xlp

-9.2xlp 2 -4,0xlp 25.4 X] p2 2.4 x 10-1 1.3 x 10-2 9.7 X 10 1

7.6 x 10-2 1.6 x 10-16.9 X 10 9.7 x 10"3

8.8 x 102 4.8 x 10 2

1.4X10 ' 6.0xlp '-2.0xlp '

-2.1xlp 2 2.0xlp 2 9.6xlp 1 -2.4 xlp 1 6.8»0 '

-6.9 xlp

-2.0 x 10 '

1.6 xlp

-7.1 x10

8.3xlp 22.2xlp 2 1.8xlp 21.3 x103 -2.6 x 10

7.5xlP '

-6.1xlp 1

2.0 xlp 1

2.5 xlp 9.1 x 10 9.6 X10

—1.6xlp '

-2.0xlp 1

2.5 x103 3.7 x10 6.1 x 10-1 1.9 x 1Q

9 9x]Q3 —7,6x] Q
'8 7.5 xlp-1 4.2x] p

9.9 x10

-3.8 xlp

3.8 xlp

-7.8 xlp

-1.9xlp 61.2 X104 1.6 x 10—1.8 xlp -1.0 Xlp 6.1xlp -1.3X1Q 7.5xlp
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neutral
1-~sf'f =-. 2~Z„~.Z ~N

whel e

Jz~=~g [gN(eb)g, y"(1 —y~)gy
a

(4.6)
2g k

neutral

gN(ab) = '
(N~0) + Q (N~I o.)(XJ,~,

La

2goh
neutral

g„(ab)-=' (NiO)+ Q (NiRn)(X )„.
Re

In the remaining part of this section, we will
look at some specific examples.

(4.8)

with

+g"(eb)F.y"(1+y,)(,], (4 7) A. P decay of d quark and muon

From Eqs. (4.3), (4.4), and (4.5), we get the
effective Lagrangian for P decay:

ZIPS-'~ = ~ ([e y" (1 —y ) v,][uy„(1—y5)d]+e~s[e y" (1 —y, ) v~][uy„(1+y, )d]

+&sz[e y~(l +y5) v ][uy (1 —y5)d] +Ess[e y~(1 +ys) v ][uy„(1+y5)d]

+(e p, ) +(u v„,d p ))+H.c.,
where

(4.9)

c, =—g, ((x; [N) [',
charged

LR ~RL 2 N XL N XR

charged

(4.10)

(4.11)

(4.12)

with

~, f(x;fN)['. (4.13)

Using the parameters we have chosen in (3.12), we have

q» -q» —-6.5x 10 4 &» -9.1x 10~ (4.14)

which means that the charged-current interactions of the ordinary quarks and leptons are almost purely
V-A at low energies. In particular, neutrinos produced in J3 decay of ordinary hadrons are almost purely
left-handed.

B. Elastic v„e scattering

The effective Lagrangian that describes v„e—v, e and the neutral-current contribution to v,e - v,e is
obtained from Eqs. (4.6), (4.7), and (4.8):

where

off y]611[v~y(1 —y, )v„][ey~(1—y, )e]+&zs[v„y(1—ys)v][ey~(1+y5)e]v'2

+ esz, [v~y (1 +y,) v„][ey~(l —y, )e ]+ess[v„y (1 +y, )v„][ey~(l +y, )e ]+(v„—v,)), (4.15)

1 p~2
&LL =

2o pz

1 P. gr

0 Pz

, g„(v)g„(e),
=2 WZ

p.
2 gN(V)gN(e )

=2 ZN

1 p
2 ' 1

p
2

2 gz(v) gz(e ) ~2g pz 2 pz

1 p
2 15 2

-=2 " "' g-"g-20 Wz N=2 I"zN

(4.16)

with
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g„(v)=- o(N 0)+(N 3L)+~ (N 8L)+~(N 15L), g~(v) =(L R), (4.1V)

g„'(e) =- '(N 0) -(Ni 3I &+ ~(N 8L) + ~(Ni15L), g„'(e) =(L-Z).

Equation (3.12) gives

(4.18)&z,I, --2.0X 10~, &I.z =2.9X 10, &~I, =6.5x 10~
p fop 3 Sx 10" .

Experimentally, the initial neutrinos are almost purely left-handed because they are decay products of
ordinary hadrons. Therefore, we can discard the term v„y (1+y,)v„in Eq. (4.15). Then (4.15) reduces
to

[v.y'(1 y.)-v. +(v. —v.)][e y.(rv r, s-~)e 1, (4.19)

where

gV ~LL +~LR p gA ~LL ~LR ~

The Ws model gives
I e 1

gv g+2slQ 8w p gA

whereas the predictions of our model are obtained from (4.18)

gy =0.09, gg = -0.48.
These are consistent with the axial-vector dominant solution

gy =0.0+0.1, gg =-0.5+0.1,

(4.20)

(4.21)

(4.22)

which is obtained by combining the Aachen-Padova and Gargamelle (PS) data with those from the reactor
experiment. "

C. Neutral currents in neutrino reactions

The effective Lagrangian for these processes are obtained from Eqs. (4.6}, (4.V), and (4.8):

(u) [v.y'(1 -y.) v. ][uy.(1 —y, )u]+e (u) [v.y"(1 —y.) v. ][uy. (1+y.)u]

+~sz(u) [v„y (1+y,)v„][uy„(l-y, )u]+&zz(u)[v„y (1+y,)v„][uy~(1+y,)u]+(u —d)]', (4.23)

where e»(u) [sI~(d)]. ezz(u) [ezs(d)], etc. are obtained from Eg. (4.16) by replacing gP'"(e ) with g„'"(u)
[gz' (d)]. gz'"(u) and gz~' (d) are defined by

2go 1 1
gN~(u) = '(N 0)+(N 3L)+ ~ (N 8L)+ ~(N 15L), gN"(u) =(L R),

(4.24)

g~(d) = 0(N 0) -(NI3L)+ ~(N~8L)+ ~(N 15L), g~(d) =(L R).

If we drop the terms including the right-handed neutrino by the same arguments as in the preceding exam-
ple, the effective Lagrangian (4.23) reduces to

EG ff ~ [v„y"(1—y, )v„](e»(u)[uy~(1 —y, )u] +&I,„(u)[uy~(1+y,)u]
2

+e»(d) [dy~ (1 —y,)d]+c~„(d)[dy, (1 +y,)d] J.
These chiral couplings were determined as""

&I,z, (u) =0 32+0 03 &is(u) =-0 1V+0.05 qiz, (d) =-0 43+0.04 eI,s(d) =0.0+0 12 ~

In our model, they are calculated to be

(u) =0.35, e „(u)=-0.18, e (u) =-0.04, e„„(u)=+0.01,

(4.25)

(4.26)

(4.2V}
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&LL(d) =-0.44, eLR(d) =0.05, ERL(d) =-0.03, eRR(d) =-0.06,

in good agreement with the experimental values (4.26). They are consistent with the WS model with
szn20& = 0 21,

D. Parity violation of neutral currents in electron s"attering

The effective Lagrangian 2',« for electron scatterings off the ordinary quarks is also given by (4.23) with
the replacement v, - e . The chiral couplings eLL(eu) [eLL(ed)], eLR(eu) [&LR(ed)], etc. in this case are
obtained from (4.16) by replacing g„'"(v)andgR' (e ) byg„' (e ) andg„' (u) [g„'"(d)],respectively. The
parity-violating parts of this Lagrangian are"

ff ~ [E«A(eu)(ey" e) (uy„y,u) +CA«(eu)(ey" y,e)(uy~ u)
2

+c «A (ed) (ey' e) (dy„y,d) +e„«(ed)(ey"y, e) (dy„d)], (4.28)

where

&«A(~) &LL(eu) +&LR(eu) eRL(eu) +~RR(eu)

which is consistent with the WS model and with
the results from the Novosibirsk experiments":

(4.29)
Q„=-120 + 40, (4.36)

eAv(eu) =-eLL(~u) —KLR(eu) +KRL(~u)+tRR(eu)

e«A(ed) and eA«(ed) are obtained by replacing
u-d. Using the parameters in (3.12), we have

g «„(eu)=0.01, eA«(eu) =0.16,
(4.30)

&vA(ed) =-0.06, &Av(ed) = —0.35.

The asymmetryA in electron-deuteron scatter-
ing is given by"

A /Q' =-3G«(10~2ffn) ' ( [2&A«(eu) —&A«(dd)]

+f( y) [2e «A(eu) —e v„(ed)]},
(4.31)

where

1 —(1-y)f(y) =
1 +(1 p

From Eqs. (4.30) and (4.31), we get

A/Q' = -7.4 x 10 ' (GeV/c)~ at y =0.21, (4.32)

which is consistent with the SLAG-Yale experi-
ment" on the deep-inelastic scattering of longi-
tudinally polarized electrons on deuterium:

A/Q' =(-9.5~1.6) && 10~ (GeV/c)~ at y =0.21.

(4.33)

The bismuth experiments of the optical rota-
tion"" give information on

but disagrees with the smaller values obtained
from the Washington" and Oxford" experiments.

E. Decay width of the b quark

The results of our model discussed in parts
A-D are very close to the WS model because we
have chosen small values for

~

vL ~, ~
yL ~, and

~uL —xL in (3.12). The decay of the b quark in
our model, however, can be different from that
in the usual SU(2) && U(1) model. This is because
in our SUL (4) x SUR(4) x U(1) model the b quark
belongs to a singlet with respect to the subgroup
SU(2) x U(1), as is easily seen from (2.5). This
means that the b quark is stable in the SU(2) && U(1)
limit. The b quark decays mainly into the u or d
quark via the heavy gauge bosons. However, the
c and s quarks, which have not been discussed
so far, also participate in the decay. To include
them we will now introduce new quartets (c,s,g,
h)L, R with the sa,me assignments as in Eq. (2.5).
We discuss the contributions from the charged
and neutral currents separately.

Charged currents

The effective Lagrangians for the processes

b-( uv v,

Q =584&A«(eu) +670aA«(eu) .
Equation (4.30) gives

Q = -146,

(4.34)

(4.35)

~QS C

are defined by
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-8,« = ~(e~z, [e y" (1 —y,)v,][uy„(1—y,)b]

+~~B[e y" (I -y )5v.][uy, (l+y, )bl

+e [e y" (1+y,)v, ][uy (I —y )b]

+e [e y" (I+y,) v.][uy (I+y,)bl],
(4.37)

for example, for b -ue v, . En our model we obtain

~» =-2.4x10-', ~» =4.3X10~,
(4.38)

I"(b-dll) =2.9&& 10~ MeV.

(c) For the processes

we get

&LL =6.9X 10~, &LR —-3.6X 10

qRL =-4.1x 10~, ERR =-1.0x 10 ',
which give

(4.43)

&, =2.5 x 10~, & =2.6 x 10-'.

Taking the color factor into account, we get

G'm'r(b- )=9',„',
=3.6x 10 s MeV. (4.39)

I'(b-duu) +I"(b-dcc) =3.4&& 10~ MeV. (4.45)

(d) Similarly, for the processes

I
ddd

i
dss

we have

qLL =-1.2x 10, &LR =-4.2x 10~,
for the charged-current contribution.

2. Neutral currents

qRL =1.1 X 1Q, ERR — 5.3X 1Q

which give

(4.46)

&LL =1.2X 10 qLR =5.9x 10~,

RL =5.7X 10, &RR =8.4X 10

for the processes

(4.40)

(a) The chiral couplings defined in the effective
Lagrangians similar to (4.37) are

I'(b -ddd) +I'(b -dss ) =8.3 && 10~. (4.47)

linet

p

I'~,q(b) =5.6 && 10 MeV,
(

(4.48)

Therefore, the total width of the b quark is
estimated to be

dVgVg

dVgV~

de Vg

r(b) =1.2 x 10 '4 sec.

V. SUMMARY AND DISCUSSION

(4.49)

Therefore, we have

G 2m
r(b dvqv =3 I'92

=5.4 x 10 Mev.

(b) For the processes

d88

the chiral couplings are

&LL =-7.5X 10~
p ELR 5.2X 10~,

~RL =5-«10
p ~RR =4 2 x 1o '

y

which give

(4.41)

(4.42)

%e have investigated the possibility of calcu-
lating the u- and d-quark masses in a unified
gauge theory of the weak and electromagnetic in-
teractions based on the SU&, (4) && SUs(4) && U(1) gauge
group. Starting from the zeroth-order mass rela-
tions m„=m&=0, we have generated finite masses
for these light quarks of order o.m& in second-
order perturbation theory. Because we started
with m„=m„=0,the photon exchange does not
contribute to the u-d mass difference. Thus, it is
possible to overcome the wrong-sign problem
which has plagued earlier calculations of the
P-n mass difference. The actual values of the
light-quark masses depend on quite a few param-
eters. - At the same time, there are also a large
number of constraints. As we have seen, it is
indeed possible to choose these parameters so as
to obtain both satisfactory agreement with neutral-
current data and good agreement with the standard
values of the light-quark masses.

Some improvements are necessary to make this
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model more realistic. First of all, we have so
far neglected the computation of the masses of the
leptons and- the strange, charm, etc. quarks in
order to make our model as simple as possible.
If we assign them to quartets as we did in Sec. IV,
we would have to introduce more Higgs scalars
belonging to the (4~, 4, 0) representation. This
would make our model rather complicated indeed.
Nevertheless, with the introduction of these new
parameters, we expect that it is possible to have
m„=0 and reasonable values for m, and m, .
Second, our minimum model has the Adler-Bell-
Jackiw type anomaly. However, introduction of
new leptons and, ~or quarks could cancel these
anomalies. In this paper, again for simplicity,
we have not treated this problem in detail. Our
calculation of masses, of course, is independent

of such considerations.
In conclusion, our model shows that it is con-

sistent to regard the u- and d-quark masses as
due entirely to radiative corrections. This would
seem to be a natural scheme to understand the
very small values of m„and nz„. To generalize
our considerations to other leptons and quarks,
however

„

the model will become very complicated
unless we have a new symmetry principle linking
the various fundamental fermions. So far, we are
unable to find such a scheme.
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APPENDIX A: THE HIGGS POTENTIAL

The general fourth-order polynomial I' constructed from the scalar fields is of the form

P(4, :-~,=s,D~, Ds) =a, Tr(4 4)+a, Tr(444 C)+a, [Tr(4 4)]'+5,:J:~:-s~-+b, Tr(D~D~)Tr(D+z)

+(c~ J g +c2( I j) +c~ T. l (Dj DI ) +C~ TI (DgDgDIDI ) +cs[Tr(DLDI )] +c6 IDIDI

+c,=&44'=z, +c,=+=~ Tr(4 C) +c,=~=~ Tr(DIDI) +c„=l,:.q Tr(DsD~)

+c» Tr(D~D&) Tr(4 4) +c»Tr(44 DID~) +(L-A)],

where terms odd in D& and D& are absent due to
the assumed discrete symmetries Bz, and Rs (2.12).
The polynomial I' is symmetric under the exchange
L -A by construction. As was pointed out earlier,
this does not mean that the VEV' s have to be left-
right symmetric.

To verify the choices made in Eqs. (2.15), (2.17),
and (2.20), we substitute the VEV' s into P and
differentiate with respect to a, b, ...

The necessary conditions for the potential I' to
reach a minimum value are aP/aa =0, sP/eb =0,
etc. These equations are too complex to be re-
corded here. However, one may verify that the
special case a =b =0 is a solution. We should also
note that, because of the presence of the term
(:-J.44:-~ +=„44:-~), the choice c& d is possible.

APPENDIX B:

For the search of a .realistic" solution of our
model, we used a numerical computer program
that, with the VEV of the Higgs scalar fields
and the coupling constants as input, calculates the
most relevant phenomenological aspects of the
model. The program calculates the mass matrix
of the vector bosons, diagonalizes it, and finds its

eigenvalues and the corresponding eigenvectors.
Then it calculates the masses of the u and d quark
using the formulas derived in Sec. III. Finally,
using the formulas of Sec. IV, it computes the
most relevant phenomenological quantities that can
be compared with experimental data.

In our search we were led by two considerations.
First, the phenomenology at low energies must
resemble that of the %S model because of the
excellent agreement of this model with experirnen-
tal data. The second consideration was that the
calculated masses of the u and d quarks should
have the right order of magnitude (a few MeV)
and the ratio m~/m„should be approximately 1.8.
To ensure the resemblance with the AVS model,
we made sure that the SU(2) x U(1) symmetry de-
fined in (2.14) was broken to a much smaller de-
gree than the rest of the SUI, (4) x SU+(4) x U(1)
symmetry. This was accomplished by giving
(D~), and $1. values that were approximately one
order of magnitude smaller than the other VEV's.
This requirement proves to be a severe constraint
since it means that, except for (Dl,)„mostof the
other parameters are used to push the masses of
the gauge bosons (except W and Z) to large values.
It turns out to be very difficult to find a set of
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VEV' s which give reasonable results. In addition,
the complexity and nonlinearity of the problem
make it hard to find a systematic method of looking
for appropriate VEV' s. We therefore resorted to
a random-number generator for generating the
VEV's. The only limitations we imposed on the
randomness of the VEV' s was that the values for
(Dl)o and $1, were generally an order of magnitude
smaller than the rest of the VEV' s and that 2 & d/
c&5. This last condition ensures that the mass of
the not yet discovered t quark falls within the
range 10 to 25 GeV. From approximately 10000
trials we picked a dozen cases that gave rise to a
low-energy phenomenology similar to that of the
WS model and that gave approximately the right
ratio for me/m„. Starting from these cases, we
improved the phenomenology by changing the
VEV''s by small amounts around the initial values.
After repeating this process many times we found
five cases that gave satisfactory agreement with
the experimental data. The VEV's that give the
"best" agreement with the experimental data are
given in Sec. III. All the numerical predictions of
the model that are obtained in Secs. III and IV are
based on this set of VEV's.

APPENDIX C: SOLUTION OF THE RENORM-
ALIZATION-GROUP EQUATION

dt mR(ty gL mR) mR(ty gB) ms)

x &d lnZ~ g„,—
-=m, (t; gR, mR)r (gz(t, gs)),

with the boundary conditions

gz(0y gz) =gR
y

m„(0;gR,mR) =m,'. (G5)

E(luations (C3) and (C4) give the trajectories of
the renormalized coupling and mass that pass
(go+, mos) at p =p„wheng„,m„,and A are kept
fixed. Solutions of these equations have been
given by

m„,and A/p, o are kept fixed. These finite renor-
malization functions z~ and z can be obtained by
solving the renormalization-group equations that
follow from (Cl):

d—g~(t; gR) =g~(t; g')& »—Z, g. , —
Ipj ) =ceo,

tt( g-z(t; gs)) (CS)

and

In this appendix, we discuss the dependence of
the renormalized mass m~ on the renormalization
point p, in the framework of the zero-mass-re-
normalization (ZMR) scheme of 't Hooft and Wein-
berg. " Renormalized and unrenormalized quan-
tities are specified by the subscripts R and u,
respectively. In the ZMR scheme, the coupling
constant and mass are renormalized multiplica-
tively:

rg (&tr/ )

t = dx p-'(x}

where

r (t) r(gz(t=-; gR))

(c6)

(C7)

gs =g@e(g. , A/t ),
ms =m„Z (g„,A/(L(, ),

(cl)

gs =g~s~e(gLy &/&o) y

ms ™R~m( gR y &/p o) y

where

~e(gRe P /Po) =Ze(g)e, A, /t")/Ze(g)e, A/P, o),
z (gR, t(/t) o) =Z„(g„,A/t()/Z„(g„,A, /t()o,

(C2)

are independent of A because they must be finite
when A- . Thus, g& and m& may be regarded
as functions of go„,mR, and t=—in'/p„when g„,

where the renormalization constants Z~ and Z
depend only on g„and A/p, , A and p, being the
cutoff and renormalization point, respectively.
Let g)(.(gR) and m)(, (mR) be renormalized at t(, (t), o).
Then (g„,ms) are related to (g'„,mo~) by

In the perturbation theory, P and r„read
P(ga) =-2ags +' ' '

r (g ) =-cg '+'''
(C8)

(c9)

1
a = (~ —n~)12W2 2 (C11)

1
27|2

~ (C12)

Substitution of (Cll) and (C12) into E(l. (C10)
gives Eq. (8.16).

On substitution of E(ls. (C8) and (C9) to E(ls. (C6)
and (O'I), we obtain

ms(t;gR, mR) =mRll+a(gR)'tj ' (Clo)

In quantum chromodynamics the coefficients a and
c are given by
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