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Harmonium and nonexotic hadron trajectories from a color-dependent potential
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A natural explanation is presented for the apparent increase in Regge slope with the number of quarks in
a bound state. The framework used is that of a nonrelativistic harmonic-osciBator potential with a color
dependence suggested by quantum chromodynamics. Ratios of modes of orbital excitations in baryonium,
baryon, and meson states which are in good agreement with experiment are derived, and the modes of
excitation within the baryonium states are discussed.

INTRODUCTION

The spectrum of the four-quark baryonium
states has been the subject of extensive investiga-
tion. ' From an analysis based on the diquark
structure, two different color "isomers" are pos-
sible: Either two quarks bind to form a diquark
in color 3 which binds with a similar antidiquark
in color 3, or a diquark in color 6 binds with an
antidiquark in color 6. The rich spectroscopy of
the S-wave baryonium states where the 3-3 and
6-6 states mix has been treated by Jaffe' by con-
sidering the effects of the color-magnetic spin-
spin interaction acting in an SU(6) color-spin
group. With orbital excitations between the di-
quark and antidiquark the 3-3 and 6-6 states no
longer mix and two separate series form. ' ' To
treat the' spectrum of the orbital excitations some
assumptions are needed about the slopes of the
trajectories. From bag- model consider'ations,
it has been argued that the slopes of trajectories
associated with an orbital excitation between an

aggregate of quarks and a quark or another aggre-
gate of quarks which together form a color singlet
is proportional to (C,) '~2 where C3 is the color
Casimir operator associated with the aggregate.
Thus the slopes of the 3-3 baryonium series,
baryons, and mesons should all be the same, as a
3-7 bond is involved in each case. The narrow
widths of the S(1.936), T(2.15), U(2.31), and V(2.48)
(Refs. 10,11) resonances in the Pp reactions which
lie on a reasonably straight trajectory suggest
that these states may be good candidates for bary-
onium states. The slope of this trajectory is
1.26 GeV 2, thus greater than the natural-parity
nucleon trajectory, X(0.939)-X(1.68)-. N(2. 22),"'

which in turn is greater than the p-A, -g trajec-
tory. ' This tendency for slopes to increase with
quark number'4 is illustrated in Fig. 1.

In this paper we provide a straightforward
treatment which unifies the slopes of these states,
and which provides an explanation of this phen-
omenon of increasing slopes. We proceed by
taking a harmonic-oscillator confining potential

and include a color dependence suggested by quan-
tum chromodynamics (@CD). The oscillator po-
tential has the advantage of giving analytic solu-
tions and has been extensively used in quark mo-
dels, for example, by Horgan and Dalitz'' and
Isgur and Karl" in baryon spectroscopy and by
Novikov et gl." and Jackson' in charmonium
spectroscopy. We assume then that the potential
associated with an N-quark system is given by a
sum of two-body terms and has the form

y= gg —,'(z', )-,'(V)g, 2f(m, , m, )(r, .r, ).'-. (l.l)
i&j a

The eight Gell-Mann SU(3) generators, —,'A, , are
the color charges associated with the ith quark.
For the antiquarks, the replacement A., —-A, ,* is
made. This form of color dependence, when it
can be factored from the radial and mass depen-
dence, leads to color singlets having the lowest
energy. " The strong coupling constant g, is as-
sumed to be flavor independent. The form of
f(m, , m&) in Eq. (1.1) determines the scaling pro-
perties of the Schrodinger equation. We have
assumed

2 3 4 5 6
(Gev'I

FIG. 1. Trajectories for the meson, baryon [ground
state N(0. 939 GeV) j, and baryonium resonances.
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Plj&l jf(m„m, ) =
Pl;+ Vl . (1.2)

with

By including the reduced mass we follow Novikov
et al." Two reasons suggest the inclusion of Eq.
(1.2) in Eq. (1.1): (1) It leads to modes having an
energy spacing independent of quark mass (at
least for states composed of the same type of
quark). Its exclusion leads to trajectory slopes
proportional to 4m, , in violation of experiment.
(2) The vector-meson e'e decay rates suggest
~g(0)

~

o. p,
'8 where g(0) is the wave function of the

q-q system at the origin, and p, the two-body re-
duced mass. ' The harmonic-oscillator potential
with the reduced mass present gives ~g(0)

~

rr. p,
'5

and without the reduced mass
~

$(0) 'cry '". In
the next section the color factors E,~A'r2A& are
evaluated for the cases of relevance. In the third
section solutions to the Schrodinger equation are
considered for two-, three-, and four-quark sys-
tems and the relativistic ansatz rn-rn introduced
and the slopes of these states tabulated. We con-
clude in the last section with a discussion.

COLOR DEPENDENCE

The color factor can be readily evaluated once
the color wave function is known. ' For mesons,
the use of the color-singlet wave function gives

~ 1 a 1 az 2~j2~j —-3 ='Og
4

(i,j) =(1,2) and (3,4)
(2.7)

1 1 5 I—:&a~~ =6 =a~
4

(i,j) = (1,3), (1,4), (2,3), (2,4) .
(2 6)

TRAJECTORY SLOPES

(a) Mesons. The potential in the two-body case
has the form

V= + g (rr r2)q~f PB2
(3 1)

Introducing a relative coordinate,

i/2
x= ' ' (r -r)

(m, + m, )a' (3 2)

(3.3)

the Schrodinger equation separates into center-of-
mass motion and relative motion. Defining P
= p7]~g A ~ we hav'e

a1 a 4
~ A ~ A.— = —= g~ .

3
a

(2.1)
The energy is given by

E~ r
= 2P(2k+ I+ ~), (3.4)

For baryons in a color singlet

a
(2.2)

for all q-q pairs. The color wave functi. on for the
3-3 baryonium states (labeled T4) has the form

1

2&3 Z ~re ~r~» I «&r&«)
GfeP

(2.3)

al a
4

(i,j) = (1,2) and (3,4)
(2.4)

al a—~~Xj ~X~
4a (2.6)

(i,j) = (1,3), (1,4), (2,3), (2,4) .
I

With the 6-8 baryonium states (labeled by M4) the
color wave function is

2~~ +(6ra~rr+6rr~rd ~ri;WgP r& (2.6)

If we label the quarks by 1 and 2, and the antiquarks
by 3 and 4, then

The most general situation in a flavor group of
SU(3) (with m„= m~) can be described with m,
=m3. The potential then becomes

v p 2(p)2+p 2(y)2 (3.7)
with

where k is the radial and l the orbital quantum
number. The analysis can be carried out with a
relativistic extension of the Schrodinger equation
(see, for example, Feynman ei al. 2r or Muller-
Kirsten"), the essence of which leads to the re-
placement of E with (m +const) in Eq. (3.4). Im-
plied in this replacement is a family of trajector-
ies of slope P '. One can alternatively start with
the Bethe-Salpeter equation with an oscillator po-
tential and obtain all [m', (2k+ l)] relationship di-
rectly with a trajectory slope proportional to P

'
where P is defined above. '3 Note that the slope is
proportional to (r) ) '~'.

(fr) Baryons Consider .a, set of relative coordin-
ates, '4

2m, m, 1/2
P

] ( + )@'r ( ) (3.5)

2m, (m, + m, ) l,
' ' m, r, + m, r,

(m, +m, +m, )n ) m, +m,
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m2 + 2mi
+m'Mi m2

mf + 2m2
~gs ~B mi m2 ]

and the solutions yielding a spectrum

M' = 2P, (2k, + f, + —,') + 2P, (2k„+ l~ + —,') + const .

(3.8)

p = g'g

with a spectrum

M'= 2P, (2k„+ l„+ —,') + 2P, (2k„+ f„+~)

+2P,(2k, + l, + ~) + const .

(3.15)

(3.18)

(3.17)

i /2

( 2mgmg

((m, + m, )k'

1/22m3m4

( + )k-~ (r4 r3}

2(m, + mp) (m, + m, )z—
2(m)+ m)+ m3+ m4)k

m, r, + m2r2 m3r, + m4r4
mi+ &22 my+ m4

(3.10)

(3.11)

(3.12)

To achieve a separation of the potential we need
to make the restriction m, =m„m3=m4. The po-
tential then takes the form

V= p„'(x)'+ p, '(y)'+ p;(z)', (3.13)

(3.14)

TABLE I. Trajectory slopes (m') using the equations
of Sec. III with the color factors of Sec. II.

{s~'gp} '

Meson

Baryon
p mode

A, mode

Baryonium (T4)
~ mode

(& )
i/2

m, +2m,

mg+2m2

i m, +2m3

(3 8)
The associated trajectory slopes are given in
Table I.

(c) Baryonium. In this case a. set of coordin-
ates ' ' which exhibits the diquark structure is
given by

There are now three possible modes of excitation
all of which may be different if m, differs from m3.
The values of the color factors are given in Sec.
II above. Table I contains the slopes for the T4
and M4 baryonium series.

As a comparison with experiment let us com-
pare the ratios of the slopes of the trajectories
in Table I for states composed of the same type
of quark. For the ratio of T baryonium to meson
slopes, and the ratio of baryon to meson slopes
we obtain

(3.18)

The experimental values give o. r' /o. „'=1.42 and

ns/o~ = 1.13. The experimental uncertainty in
both cases is in the order of +0.08. These values
are in good agreement with the theoretical pre-
dictions, especially considering the naivety of our
model. For the ratio of the slope of the T bary-
onium to M baryonium we predict (—,'}'~~, thus the
same result as the bag model, ' but we predict
n&, ——(-, )'~~n~ =0.79; thus we are led to a higher-
lying M baryonium trajectory than predicted by
the bag model. The status of the M baryonium
series is unclear at present; however, it is in-
teresting to note that if we take the tentative
assignment by Chan and H{t{gaasen4 of 3.05, 2.85,
and 2.62 as the L= 4, 3, and 2 resonances of M
baryonium, then a slope of 0.81 is obtained. For
T baryoniums composed of the same type of quark
the slope associated with the z mode is (-,'}'~'
times that associated with either the x or y mode.
The difficulty of lack of exchange degeneracy for
the baryon trajectories and the determination of
the different X and p series and their slopes pre-
vents any clear comparison with experiment.

y mode

z mode

Baryonium (~4)
g mode

y mode

z mode

(Z) 1/2

- i/24m3- m(
mi+ms

4 i/2

DISCUSSION

We have shown that a harmonic-oscillator po-
tential with a color dependence suggested by
QCD allows us to separate the Schrodinger equa-
tion for the baryonium, baryon, and meson states
(provided certain constraints are placed on the
masses of the constituent quarks) and to obtain
the ratios of Eq. (3.18). These ratios are in good
agreement with the current experimental statis-
tics; a crucial test will be the slope of the M
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baryonium trajectory. We expect that the effect
of the color factors of Sec. II in more realistic
potentials will follow the patterns exhibited by the
harmonic-oscillator potential. " In one sense our
analysis is limited in that the relationships such
as n„'„-„„-&e„'„~which follow from duality argu-
ments 7' cannot be obtained. It is of significance
that the q-q terms in the baryonium contribute to
the x and y modes. This is especially important
for the M baryoniums, for while the q q(an-d q q)-
potentials are repulsive, the large q-q contribu-
tions make the x and y modes attractive. It is
this contribution of various two-body terms to the
different modes which is responsible for the slope
increase with quark number. For the M bary-
oniums, certain mass conditions are required for
stability, viz. ,

4m| —rn3 &0, 4m3 —mi &0 .
If we make the assignment m„=336 Me&, m,

= 540 MeV, and m, = 1.65 MeV, '~ then these condi-
tions are satisf ied if m, = m„and m3 = m„but not
if one of the diquarks is composed of charmed
quarks and the other of u-type quarks. Finally we
note that if the color terms are absent from thy
potential (i.e., all the q factors in Sec. II are
equal) the slopes decrease with the number of
quarks per state, nr4/n„'= (s)'i2, and o.s/o. „'

=(-',)'i'. Thus in the framework of our analysis,
the result of Eq. (3.18) and the phenomenon il-
lustrated in Fig. 1 is an implicit manifestation of
color.
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