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Baryon-baryon scattering in a one-boson-exchange-potential approach. III. A nucleon-nucleon
and hyperon-nucleon analysis including contributions of a nonet of scalar mesons
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The NN and YN results are presented from a one-boson-exchange-potential model. It consists of local
potentials due to exchanges of members of the pseudoscalar, vector, and scalar-meson nonets. SU(3)
relations are assumed for the axial-vector couplings of the pseudoscalar mesons, for the electric and magnetic
couplings of the vector mesons, for the direct couplings of the scalar mesons, and for the hard-core radii. In
the fit to NN the nonstrange-meson —nucleon couplings are determined. The simultaneous YN analysis

determines the F/D ratios and the SU(3) parameters of the scalar-meson nonet. The description of the NN
data is good (y'/data = 2.17), and also of the Ap, X+p, and X p data up to the pion production threshold.

Very close to the XN threshold we find a AN resonance, which is dominantly in the 'D, wave. The Ap cross
section is maximal just below the X+n threshold at E = 2128.918 MeV, in agreement with the experimental
results of Ap final state interactions. The pol'es belonging to the Ap resonance are located on the second
Riemann sheet at E = 2131.77+i 2,39 MeV.

I. INTRODUCTION

The present model F completes our series of
hard-core potential models, which can describe
simultaneously all experimentally studied baryon-
baryon (BB) systems. The formal aspects have
been described extensively in the papers I and II.'
Here we shall only spell out the differences in

physical input compared to the previous models
D (Ref 1) and E.' Model E differed from D in the
fact that contributions of a nonet of scalar mesons
were taken into account. The results were about
the same as from model D. The main improve-
ments over model D were a better value for g»~,
a smaller value for 0.„, and better values for the
AP scattering lengths. At the same time, however,
some ambiguities were encountered in the SU(3)
relations for the scalar-meson-nonet couplings,
since the signs are not determined in the NN analy-
sis. A further study of these ambiguities revealed
the rather small sensitivity of the NN calculations
to the values of the 5 and e' couplings. Varying
these coupling constants, however, has large con-
sequences for the YN analysis via the changes of
the SU(3) parameters.

A less favorable pointof mod-els D and E was that
the breaking of SU(3) was not only kinematical via
the physical masses of the particles but also slight-
ly dynamical via different hard cores in channels
which belong to the same irreducible representa-
tion of SU(3), e.g. , 'So(PP) and 'So(Z'p), which both
belong to a 27.

The need for determining the scalar-octet coup-
lings in FN without increasing the number of free
parameters leads to a different hard-core pre-
scription in this model: The hard cores are the

same within the same irreducible representation.
This leads to much stronger SU(3) constraints
between the NN and ~N analyses than previously.
For example, the 'S,(pp) hard core will be the
same as the 'S,(Z'P) hard core as well as for the
27 part of the 'S (AN, ZN; I= —,') states. In the fol-
lowing section we shall describe in detail how we
handle the hard-core problem. It turns out that to
describe the 8 waves in YN we are left with five
parameters, just as many as in the previous mod-
els: n~, o.~, g~», g,», g, ». The last three
coupling constants together with g,» fix then the
SU(3) parameters of the scalar-meson nonet.

One of the advantages of the present hard-core
treatment is that we cal| predict without any free
parameter the F= 0 and I= 1, 2 BB states
(:"N,AZ, ZZ). The I'=0 and f=0BB states
(AA, =N, ZZ) possibly require one S-wave free pa-
rameter. It is especially interesting to find out
whether there are also 3S,-3D„ I= 1 resonances
with 7 =0, thus completing the 10* BB 'S,-SD,
resonances and bound states, to which the deu-
teron and the AN resonances belong. This work is
in progress. 3

Next we discuss the differences in physical in-
put for the various nonets compared to the pre-
vious models.

(i) The pseudoscalar nonet. The most important
change is that we assume SU(3) relations for the
axial-vector type of coupling, characterized by
the interaction Hamiltonian density

This choice has been made instead of the pseudo-
scalar coupling earlier used for several rea-
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sons, "one of them being that it can reconcile
the large values for bothg» andg», in the lit-
erature with SU(3).' Furthermore, we have
changed the g-g' mixing angle to the value of the
linear Gell-Mann-Qkubo mass formula 0~ = -23'.
There are two reasons for this change. First, it
allows a somewhat larger physical qNN coupling,
giving a better NN fit. Second, it is clear now that
mesons and baryons are bound states of quarks
and antiquarks. Therefore the argument of writing
the mass operators a,s in the free-field Hamilton-
ians of elementary mesons or baryons becomes
dubious. The baryons definitely favor linear mass
relations. Mass formulas in models for the bary-
ons and mesons have the same form for baryons
and mesons, e.g. , in the bag model. ' Further-
more, a comparison of data in the backward hemi-
spheres of the reactions n p- fn and v p-&un,
assuming the validity of the Okubo-Zweig-Iisuka
rule, ' leads to a value for the mixing angle mhich
is close to the one from the linear mass formula. '

(ii) The vector-meson nonet. Here we assume
as before SU(3) relations for the electric coupling
at t=0 [for definiteness see Eq. (3.7) of II]

eg' zs =gas

with n'„= 1. The successes of SU(6) with respect
to the magnetic moments of the baryons suggest
that at t= 0 the magnetic couplings

g13 g13 f13

should obey, SU(3) relations rather than the deriva-
tive coupling constants f» as we have assumed be-
fore Although .we do not use the SU(6) prediction
for n~, we assume the magnetic couplings to satis-
fy SU(3) relations. nP is determined in the fit to
EV. For the P-u& mixing angle we take 8„=37.5'
from the linear mass formula.

(iii) The scalar-meson nonet. The e meson is
treated the same as before. For the octet mem-
bers we have used the 5'(1255),' e'(1250), and
a(1245). After the lengthy and time-consuming cal-
culations had been completed, we would have
rather preferred to use the 5(970) and S*(993), as
these fit well. together with the e in a nonet of
cryptoexotic qqqq states. " The ~ of this nunet is
predicted to have a mass of 900 MeV. Homever,
the calculations are ra, ther insensitive to varia-
tions in the masses of the scalar-octet members.
Merely the values of the physical c couplings in
the presence of e,-e, mixing is the important ef-
fects. The main consequence of changing the mas-
ses of the octet members is a change of the sin-
glet-octet mixing angle without changing signifi-
cantly the physics (ef. Sec. DI).

A final change consists in the values of the AAm,

AAp, and A3. 5 coupling constants, which occur in

the Ap and An charge-symmetry-breaking poten-
tials. Ke have now from A -Z mixing using the
latest values of the baryon masses

few„= 0.0—27' z„ f~~p= 0.0-27fwzp,

af ~~ = -o.027g~zP.

This way we have 11 parameters in the NN model:
4 hard cores and the 7 coupling constants f„
f„,gp, g„,fp,f,g, . The other coupling constants
we encounter in NN (f„,f&,g3, g, ) are calculated
via SU(3) relations with E/(F+D) ratios from the
YÃ fit or are fitted directly in Y¹

In YN we have five parameters in the S waves
(np, nf,g,„„,g,33,g, r&), which are determined
in a fit to the low-energy Ap, Z'p, and Z p Z p,
Z'n, An total cross sections. The parameters in
the YN P waves (hard cores and a potential trun-
cation parameter) are fixed by fitting to Z.'p and
Z p Z P, An angular distributions, and AP total
cross sections above the ZN thresholds.

For NN me get a lower g' than in models D and
E, and better values for the coupling constants,
the low-energy parameters, and the deuteron pa-
rameters. - Owing to stronger constraints from
SU(3) on the I'N analysis we obtain a slightly worse
fit than before, but still a very good one. There
are improvements, especially in the values of n~
and the Ap scattering lengths. The singlet-octet
mixing angle for the scalar-meson nonet comes
out much larger than in models C (Ref. 12) and E
(Ref. 3); it is almost ideal. However, the most
interesting result is that we get AN-ZN '~, -'D,
resonances around the ZN thresholds. These are
the K= 1 members of a 10*, to which the deuteron
belongs.

The ylan of this paper is as follows. In Sec. EI
we discuss the SU(3) constraints for the hard
cores. The results for the coupling constants
emerging from the NN and KV fits form the topic
of See. III. The NN results are presented and dis-
cussed in Sec. IV and the EV results in Sec. V.

IL THE HARD%ORE TREATMENT IN CONNECTION
WITH SU(3)

The starting point is the assumption that SU(3)
symmetry is only broken kinematically, i.e., via
the physical masses of the mesons and baryons.
This implies that all BB states in the same ir-
reducible representation must have the same
hard core. The breaking of SU(3) manifests it-
self then essentially in different ranges of the po-
tentials and in the different reduced masses. When
SU(3) symmetry would not be broken, we would
calculate in the SU(3) eigenehannels. For the S
maves the hard cores in the 27and 10*, as well as
the complete interaction in these irreps, mould be
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fixed in the NN fit. YÃ would have to supply the
hard cores in the 8, 8, and 10. However, be-
cause of the breaking of SU(3) symmetry we are
forced to use the isospin basis (and later on even
the particle basis in order to account for breaking
of isospin symmetry). In Table I we give the
SU(3) content of the potentials in the isospin basis.
When we encounter in some isospin state more
SU(3) irreps requiring different hard cores as in
AN, ZN(I= —,'), we could choose the smaller core as
the hard core and truncate the potential in the other
irreducible representation at a larger value of r.

Because of SU(3) breaking we cannot simply pro-
ject out V», etc. , from V~~, V~~, and V»(I=-,').
Therefore we define the contributions from the
various SU(3) irreps to the potentials in the isospin
basis also in Table I, thereby keeping the kine-
matical breaking as much as possib1e.

A large reduction of the number of parameters
is achieved by the observation that in a region
where the potential is repulsive, the exact value
of the hard core almost does not matter. So one
can take as well in such a wave a convenient va1ue:
the hard core of one of the attractive components
in the isospin or particle basis.

Next we discuss for the various waves how we
handle the hard-core problem in practice.

(i) So. The potential in the 27 is attractive,
and its hard core x~ is fixed in the NN fit. The

same hard core applies to ZN(I= —,'), which is also
a pure 27 state. In AN and ZN(I=-,') we encounter
next to a component in the 2V also a component in
the 8, representation (Table I). The potential in
the 8, turns out to be repulsive everywhere, and
thus the value of its hard core is irrelevant.
Therefore we can use the hard core x, in all NN,
AN, and ZN channels for the '8,.

(ii) 'S, 'D, .-The potential in the 10* is attrac-
tive, and its hard core x, is fixed in fitting the
binding energy of the deuteron. The potential in
the 10 is repulsive everywhere. So we may as well
use x, for Z N(f = —,'), which is a pure 10 state
(Table I). In the AN and ZN(I=-,') states we have
next to an attractive potential in the 10*also an
attractive potential in the 8, representation. So
we have to determine in principle the hard core
in the 8, state. However, it turns out that both
8-wave hard cores x, and x~ in the 27 and 10* are
quite close to each other. We assume that the hard
core in the 8, also does not differ much from x~
and x~. It appears that the potential in the 8, is
rather dependent on n~. Therefore, if our assump-
tion of all S-wave cores lying closely to each other
is reasonable, we make only a small error in n~
when we take also for 8, the hard core x~ of the
10*. Ori the other hand, a different choice of the
hard core in the 8, implies the need of a truncation
parameter for the potential belonging to the repre-

TABLK I. SU(3) content of the various potentials in the isospin basis and definition of the
potentials in the SU(3) irreducible representations for broken SU(3).

Space-spin antisyrnmetric states Sp, P, D2, . . .

NN NN

AN- AN

AN ZN

ZN ZN

ZN ZN

I=—12

I=—32

Vg~ (I=1)=V27

V~~ (I= 2)= (9V27+ Vss)/10

VpE (I= 2)= (-3V27+ 3Vss)/10

VEE (I= 2)= (V» t 9Vss)/10
3V«(I=-, )= V»

AA

Vss = V~~+3V~EAA

Space-spin

V27 VEE (I= P) —3VgEEE

VL, = VEE (I= &)+ V&+/3EE

V„E=-,' (V,", + VE,E)

symmetric states 38~, J'~, D,

NN NN

AN AV

AN» ZN

ZN~ ZN

ZN~ ZN

I=0

I-—1
2

I-—3
2

Vz& (I= 0)= V~p

V~~ (I= 2)= (Vgp+ Vs, )/2

VzE (I= 2)= (Vgp+ —Vs, )/2

(I= 2) = (Vgp+ + Vs )/2
3

VEE {I=2)= Vgp

Vgpg= V~+ VgE
A.A

AA

Vf pg= g (Vj pg + Vgpg)
AE 1 AA

VAE j (VAA+ VEE)

V,p+= VEE (I=-,') + V~E
EE

Vsg = VEE {I=2)—V~E
EE
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sentation with the larger core from the 10*and
the 8, . In fact many pairs of Q. ~ and this trunca-
tion parameter are possible. Therefore we buy a
possible error in the determination of n~ at the
cost of not having to introduce a truncation para-
meter here. So we end up with one hard core xT
in all S„-'D, waves.

(iii) 'P, . The potentials in both the 10* and 8,
representations are strongly repulsive. Hence
the results in these irreps are insensitive to hard-
core variations. The potential in the 10, however,
is strongly attractive. We can determine the
hard-core radius of the 10 in a fit to the low-ener-

gy Z+p angular distribution, since the 'P waves,
being pure 27 states, are fixed via the hard core
x, », determined in NN. The forward-backward
asymmetry in the Z'P differential cross section is
apart from the Coulomb contribution essentially
determined by the 'So-'P, interference. We use
the hard core xlP of the 10 also for the 10*and
8„because the small variations in the 'P, phase
shifts in NN due to hard-core variations have al-
most no repercussion on the X' in view of the poor
status of this wave in the NN phase-shift analyses.

(iv) 'P~ ». From the NN analysis we know the

behavior of the potentials in the 27 states. The
. 'Po potential is very repulsive at short distances,

the Py potential is everywhere repulsive, and the
'P2 potential is attractive. So we can use the same
hard core x3» in all three P waves of the 27,
which is essentially fixed by the 'P, wave of N¹
This is the hard-core prescription we use in NN,
Z'P, and Z n, which are pure 27 states.

The potentials in the 8„which appear in FN,
I=—,

' states, are quite different. The 'Po potential
in the 8, is strongly attractive, producing even
bound states for the hard core x~ 0.46 fm. There-
fore the assumption of no bound states or reson-
ances in the 'Po states puts a lower limit on the
value of the hard core x3 8 in the 8,. For larger
values of x the sPO(AN, ZN) cross sections become
very much independent of the hard-core radius,
which is essentially due to the strong repulsion in

the 27.
The 8, component of the 'P, potential is repul-

sive for r~ 0.54 fm and attractive for r& 0.54 fm.
It appears that the angular distribution of the reac-
tion Z n-An. at low energies is strongly depen-
dent on the 'P, -'D, interference term. A forward-
backward ratio &1 as in the experiment' can only
be reached for values of x, , & 0.50 fm. Some can3PSs
determine x, , in principle via fitting to the ex-
perimental Z P- Z P, An angular distributions at
p&-= 160 MeV/c. '

The 'P, potential is attractive in the 8„and even
quite stronger than in the 27. However, for

x3» no bound states or resonances appear.p s 3p87

TABLE II. Hard-core prescription in this model.
Values are given in fm.

NN, Z+p, Z ~

Sp
3 3S, D,
i~
3 3&o. &~
3 3

I ~2

xg = 0,52972
xT = 0.52433

xg = 0.430 14
= 0.292 78

3p27
&1,~2 = 0.683 71

Xg

XT

+P
x3 8 =0.52991

3p27
xI-N

The 8, components are multiplied with the cutoff func-
tion ( (~) defined in the text.

We want to use the same hard-core radius x3p83PSs
for all three 8, 'P potentials, . which are combina-
tions of the 8, potentials V, + V„V» V,pp VQ.

However, when using the isospin basis, we en-
counter for I=—,

' linear combinations of potentials
in the 8, and 27 which have different hard cores.
A similar problem arises using the particle basis,
in which we actually perform the calculations.
This problem is handled in practice in the follow-
ing way: Since the 'Po and 'P, potentials in the
27 are strongly repulsive at short distances, it
almost makes no difference when we use in these
waves the larger hard core x3p8 also for the 27
potentials. In the 'P, -'F, states we use as hard
core x»» and we truncate the potentia. ls in the 8,
at x3 8 by mul tip lying thes e potentials with the
function

](r) =1 —exp[-(r —x, „)"/(x, , -x, 27)"j,

where n is some high exponent (we have used
n= 100). When trying to determine the value of

x3p8 in a, X' fit to the Z P- Z P and Z P-An dif-
ferential cross sections, it appeared that for
values of x3p8 0 54 fm the g'is averyslowlyde-
creasing function of xs, . At the same time, how-SP8s
ever, the Ap- AP and AP Z p total cross sections
above the ZN thresholds decrease as a function of
x3 8 thereby reducing the agree men t w ith the ex-

3PSs &

perimental data. Therefore we have fitted x3ps3P8s
to a combined set of Z P-Z P andX P-An differ-
ential cross sections, and of AP- AP and AP- Z~P

total cross sections above the ZN thresholds.
For all L~ 2 states we use the same hard-core

radius xl. „which is fitted in NN.
In Table II we summarize the hard-core pre-

scription and the values of the hard cores, which
have emerged from the fits. In Table II and also
elsewhere in this paper we have given enough
figures such that when using the given numbers our
numerical results can be reproduced accurately.

III. COUPLING CONSTANTS

The NN coupling constants a,re given in Table
III. The g„» value has improved as compared to
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m (MeV)

(14.014)
(7.596)
(8.835)
0.627
0.960

12.462
0.877
0.252

25.580

7.752 x ].0-~

4.202 x 10
4.887 x 10

27.343
5.871
5.339

138.041
548.8
957.5

(6.6O2) 77O r =146
(-2.473) 1019.5

(O.655) 783.9
1255
1250

76o r=64o

TABLE III. Nucleon-nucleon-meson coupling constants
in this model. Figures between parentheses give infor-
mation equivalent to those of neighboring columns. m
denotes the mass.

0 (deg)

P
V8
Vm

S

0.278 43
0.79199
6.02105
0.936 49

0.283 59
3.397 11
3.755 25
4.308 81

0.409 11
1
0.588 06
1.496 40

-23
37.5
37.5
37.6964

TABLE IV. Parameters to be used in the SU(3) rela-
tions for the meson-baryon coupling constants: the octet
coupling g8, the sirglet couplimg g~, the I'/I + D ratio 0. ,
and the singlet-octet mixing argle 0. The parameters
are given for the axial-vector coupling of the pseudo-
scalar- (P) meson nonet, the electric (V') and magnetic
(V ) couplings of the vector-meson nonet, and the direct
coupling of the scalar- (S) meson nonet.

paper I.' The g„.„„coupling is now considerably
lower than in I (there called gro»). This is mainly
due to the change of the mixing angle. The value
for gpgp is now excellent. This improvement over
paper I can be viewed as an effect of the inclusion
of the 6 meson. Note that the (f/g)„value is larger
than, for example, the estimate (f/g)„~0.2 of
Hohler et al. ' We shall not give an elaborate
discussion of the NN coupling constants here and

refer to paper I for more details on this matter.
In Table IV we give the SU(3) parameters g„g„

n, and 8 for the pseudoscalar-, vector-, and
scalar-meson nonets. The parameters for the
scalar-meson nonet have been calculated from the
searched values for g,», g,», g,AA, andg&.
Furthermore, we used SU(3) for the axial-vector
coupling of the pseudoscalar mesons. We get the
nice result that o.~ is almost the SU(6) value 0.4.
For n~ we have a larger va, lue than in the compila-
tion of coupling constants. 5 In Sec. II we discussed
that we allowed for a possible error in a~ in order
to avoid the introduction of a new short-distance
parameter in our model. For the scalar mesons
we have determined g,» in NN, g,« in Z'P, and

g,~~ in AN. In terms of the SU(3) parameters g„
gs~ 8s~ and o's we have

1
g,„„=cos8~g, +sin8~ ~ (4u~ —1)g, ,

2
g, ~= cos8z g, —sin8z ~ (1 —nz )g8,

2
g, ~= cos8zg~+sin8& ~ (1 —o. ~)g8.

and g, ». Therefore o.s is well determined by
the YN data. Evidently this holds also for the
product sin8~, . Because of the high mass of the
e' the results of the calculations are very insen-
sitive to variations in e' eouplings. Therefore the
product cososg, occurring in the e' couplings is
poorly determined. So the mixing angle ean be
determined only from the product sinosg„when
g, =gz is given. Now g, depends on m ~. We have
taken here m& = 1255 MeV. Another choice might
have been m z

= g70 MeV; this would have led to a
lower value for g, and so a larger value for 0, .

IV. RESULTS FOR NN

The values of the 11 free parameters to be de-
termined in the NN ana, lysis are searched in a fit
to the NN data, using the X' second-deriva, tive ma-
trices of the Livermore phase-shift analysis" up
to 330 MeV, the 'S,(pp) and 'S,(np) scattering
lengths, and the deuteron parameters. The fit is
very satisfactory, yielding y'/data= 2.17, com-
pared to the 1128 da, ta used in the Livermore analy-
sis up to 330 MeV.

In Table V we have listed the resulting nuclear
bar phase shifts. The scattering lengths and ef-
fective ranges of S and P waves [cf. Eqs. (30) and

(32) of Ref. 1] are given in Table VI.
The hard-core radius x~ in the 'S, -'D, waves

has been fixed such that the experimental value for
the binding energy of the deuteron is produced,

g = 2.22464 MeV.

From these relations we get

1 20.s+1
(g&AA ANN /(gEzE gcNN) 3 s

So ns determines the correlation between g,AA

Table VI displays also the deuteron parameters:
the D-state probability PD, the electric quadrupole
moment Q, the deuteron effective range p( B, -B), —
the asymptotic normalization N, ', and the S-D
admixture A. .
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TABLE V. Nuclear bar PP and np phase shifts in degrees.

Tj~ (MeV) 50 142 210 330

l$
3$

Ei
3P()
3P
ip
3P
E'2

3Di

iD
3D3

E'3

3Q

1+
3Q

f4
3G3

1G

3G5

E'5

3H4

3H5

iH5

'H,
E'6

49.07
79.23
2.02
9.04

-5,03
-6.09

2.32
-0.82
-2.94

3.92
0.67
0.07
0.57
0.10

-0.23
-0.43

0.02
-0.05
-0.05

0.18
0.04

-0.01
0.04
0.01

-0.01
-0.03

0.00
-0.00

39.11
60.66
2.58

12.33
-8.49
-8.74

5.57
-1.79
-6.80

9.72
1.65
0.42
1.68
0.34

-0.70
-1.16

0.11
-0.19
-0.27

0.75
0.15

-0.05
0.21
0.03

-0.08
-0.17

0.01
-0.03

25.70
41.64
3.38

10.72
-12.94
-11.51

10.43
-2.86

-12.51
18.82
3.60
1.82

, 3.51
0.77

-1.52
-2.18

0.41
-0.52
-0.92

2.13
0.39

-0.16
0.70
0.10

-0.28
-0.52

0.04
-0.11

15.01
28.58
4.35
5.95

-16.69
-14.01

13.74
-3.26

-17.00
25.35
5.74
3.80
4.95
1.13

-2.21
-2.85

0.88
-0.84
-1.76

3.64
0.64

-0.24
1.25
0.20

-0.52
. -0.87

0.09
-0.22

2.69
14.90
6.05

-1.92
-21.45
-17.76

16.39
-3.08

-21.65
30.16
8.53
6.61
6.33
1.40

-2.98
-3.43

1.75
-1.25
-3.06

5.75
1.03

-0.25
1,99
0.37

-0.85
-1.29

0.21
-0.38

-14.19
-2.09

9.77
-15.10
-28.80
-24.55

18.15
-1.85

-26.22
30.96
11.41
9.65
7.51
1.01

-4.03
-4.16

3.41
-1.77
-5.12

9.07
1.89

-0.11
3.09
0.64

-1.33
-1.78

0.51
-0.65

V. RESULTS FOR YN

The values for the five free parameters to be de-
termined in the YN analysis are searched in a
fit to a selected set of 35 best low-energy FÃ data
[Table VII (data are from Refs. 13, 16-18)], The
obtained y'/data= 0.89 is quite satisfactory. In

Table VII we compare our calculated values with
the experimental ones.

Next we shall present the results for the two-
partieles channels in concise form. For single
bvo-particles channels we give the nuclear bar
phase shifts. The T-matrix amplitudes for the

coupled two-particles channels are ava, ilable on
request.

A. Z+p, Z n scattering

The Z'lj "total" cross sections (for definition
see Ref. 19) are compared with the experimental
values in Table VII. It appears that most of the
calculated values are larger than the experimen-
tal results, which is a, consequence of the rather
strong SU(3) constraints in the model. The same
applies 5o the angular distribution at p~+= 170
MeV/c, where we obtain g'= 5.3 for seven data

TABLE VI. S- and P-wave effective-range parameters and deuteron parameters in units of
fm.

'So 3P 3p 3P) ip i

PD

6.36/o

-7.827
2.710

5.459
1.806

0.2840

-3.150
3.393

v (-&, -&)

1.810

1.921
-7.345

Ng
2

0.7970

-0.267
4.089

2.764
-6.406

A

0.0261
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TABLE VII. Comparison of the calculated and experi-
mental values for the selected set of 35 best FN data
(Hef. 19). The superscripts RH and M indicate the
Rehovoth-Heidelberg (Ref. 16) and Maryland (Ref. 17) Ap
data. The laboratory momenta are given in MeV/e and
the total cross sections in mb.

1$ 3$ Sp Sp 3p ip

TABLE VIII. &'p and & n $- and P-wave effective-
range parameters in units of fm. The superscript C de-
notes the presence of the Coulomb interaction.

Ap Ap X2= 3,5
RH

+exp 0th

145
185
210
230
250
290

180+ 22
130+ 17
118+16
101+12
83~ 9
57+ 9

210.2
145.0
114.5
94.6
78.1
53.0,

145 123 + 62
155 104 + 30
165 92 + 18
175 81 + 12

119.9
112.0
105.1
98.8

~ p Eon y2=6.2
+exp 0th

110 396 + 91
120 159 + 43
130 157 + 34
140 125 + 25
150 111+ 19
160 115+ 16

= 0.468 + 0.010

178.2
158.1
142.1
129.0
118.2
109.3

Z+p Z'p X2 = 2.8
pg+ +exp +th

PA,

Ap Ap X2=2 1
M+ exp 0th

135
165
195
225
255
300

209 +58
177 +38
153+27
111+18

87 +13
46+ 11

230.1
174.9
132.0
99.2
74.4
48.1

Z p Z p X2=1.8
pp +eip 0th

142.5
147.5
152.5
157.5
162.5
167.5

152+ 38
146 ~30
142 ~25
164 ~ 32
138 + 19
113+ 16

147.0
142.9
137.0
132.4
128.1
123.9

pp

~P-An X'=5.4
+exp 0th

110 174 + 47 241.5
120 178 + 39 209.3
130 140 + 28 183.7
140 164 + 25 162.9
150 147 + 19 145.8
160 124 + 14 131.6
rR =0.445 X'= 5.3

a
c

-3.20
3.87

0.70
-2.11

-2.80
3.80

1.84
-7.09

-0.093 -1.96
36.2 3.62

-3.84
4.03

0.62
-1.91

-2.29
4.33

1.49 -0.084 -1.65
-8.67 81.4 3.70

points. The singlet Coulomb interference is almost
opposite to the triplet contribution. The shape of
the angular, distribution is thus essentially deter-
mined, apart from the Coulomb forward peak, by
the 'S,-'P, interference, which is large.

The scattering lengths and effective ranges in

the S and P waves are given in Table VIII for the
expansions Eqs. (30) and (32) of Ref. 1. The values
for the '80 and 'P low-energy parameters are, as
expected, of the same order as those of PP (cf.
Table VI), both being in the same 2'I representation
of SU(3). In Table IX the nuclear bar phase shifts
for Z'p are listed. The same qualitative behavior
of the '8„'P, 'D„. . . phase shifts is encountered
as in pp (cf. Table V). We notice that the 'P,
phase shiftgrows up to 69.58' at about pz+= 730
MeV/c. This wave is also mainly responsible for
the second maximum in the Z'p nuclear total cross
section around P ~+= 470 MeV/c (Fig. I).

TABLE IX. Z'p nuclear bar phase shifts in degrees.

p~ (MeV/c)
T» (MeV)

i$
3$

3+
igi
3+
3+
6'2

SDi
iD
3D
3D

3

SF
iF
SF
SF4

E4
SG

3G

SG)

200
16.7

33.85
-13.50
-2.08

5.52
6.15

-3.42
0.52

-0.41
0.34
0.32

-0.50
0.04

-0.07
0.04
0.06

-0.09
0.01

-0.02
0.00
0.01

-0.02
0.00

400
65.5

22.96
-28.14
-5.49
10.30
39.62

-10.73
2.46

-2.06
1.65
1.92

-2.74
0.63

-0.72
0.44
0.54

-0.91
0.15

-0.27
0.13
0.20

-0.34
. 0.04

600
142.8

7.07
-43.28
-7.06
3.91

66.40
-18.46

3.18
~3 o37

1.83
4.62

-5.47
1.61

-1.61
0.98
1.39

-2.14
0.65

-0.77
0.43
0.57

-0.98
0.21

800
244.0

-8.63
-57.76
-7.15
-7.30
69.13

-26.41
1.97

-3.73
-0.53

7.51
8.67
1.77
2,33
1.06
2.77

-3.41
1.50

-1.31
0.77
1.08

-1.67
0.56

1000
364.5

-23.27
-71.02
-6.54

-19.61
64.14

-34.21
-0.12

3 e21
—.5.20

8.91
-12.58

0.27
-2.76

0.14
4.70

-4.78
2.42

-1.78
0.92
1.85

-2.30
1.13
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B. AN scattering

The fit to the low-energy Ap data is of the same
quality as the one of model D (Ref. 1) in spite of
the much stronger theoretical constraints in this
model (Table VII). However, three features are
quite different from the previous model D: the
S-waves low-energy parameters, the presence of
the 'D, resonance, and the repulsive potentials in
some of the I' waves.

The low-energy parameters of the S waves are
given in Table X. Contrary to the results of mod-
el D, in this model the requirement of I~, I

& l~„l,
needed because of the spin assignment of ~II, . ls
well satisfied for the charge-symmetric AN .poten-
tial.

The second more pronounced difference is the
occurrence of .the 'D, AN resonances in this model.
We notice that the 'D, AP nuclear bar phase shift
goes through 90'below the Z'n threshold (Table
XI). In order to find out where the pole correspond-
ing to this resonance is located we have made
an effective-range expansion at the Z'p threshold.
Thereby we have suppressed the 'D, ZN waves
as explained extensively in Ref. 19. In Table XII
we give the parameters for the effective-range ex-
pansion

pL+1/ 2(J7J )-1pL+1/ 2

g-1 p & (p2 p &)1/ &Z (p2 p 2)1/ &

Here E is the mutilated K matrix where the 'D,
ZN channels have been cut out, A ' is the inverse-
scattering-length matrix, A is the effective-range
matrix, p " ' and (p'- p ')'/' are diagonal ma-
trices with elements P,

"~' and (P, '-PD, ')'/2,
where p~ denotes the momentum at the Zap thresh-
old energy. Using this effective-range expansion
we search the pole corresponding to the reson-
ances. For @=1 the poles are located on the sec-
ond Riemann sheet (for the center-of-mass momen-
ta we have ImP„& 0, ImPz+& 0, and ImPzo & 0) at the
positions

a [mbj

150

100

1.0

p +[Gev/c]

FIG. 1. Z'p total nuclear cross sections as predicted
by the model.

E = 2131.77~ i2.39 MeV.

We notice that ReE is 0.98 MeV larger than the
Z p threshold energy. For Q= 0 the situation is
more complicated because of the presence of the
Coulomb interaction in the Z p channel. When
we switch off the Coulomb interaction it appears
from the effective-range parameters (Table Xii)
that the poles are on the second Riemann sheet at
the positions

E = 2137.27~ i2. 56 Me V,

again about 1.6 MeV above the Z P threshold. An

analysis with the Coulomb effective-range pa-
rameters (see, e.g. , Ref. 19)

c(q)P""'(&')-'P'""c(q)+ 2' a(q)

g -1+ 1 (p2 p 2)1/ 2ft (p2 p 2)1/ 2

is also possible using the values of Table XII.
However, we have not done this.

When we compare our pole values of the AP
resonance with determinations from AP final-state
interactions; we must keep in mind that a)l analy-
ses parametrize the resonance as being a pure

TABLE X. Ap, AN, and An S- and P-wave effective-range parameters in units of fm.

1
Sp

3$
iPi
3Pp

3Pi
3P

-2.18
-1.93

0.064
-0.065
-0.015
-0.189

3.19
3.35

-28.0
32.1

1555.0
8.75

-2.29
-1.88

0.047
-0.114

0.020
-0.188

3.17
3.36

18.6
41.0

186.0
8.85

-2.40
-1.84

0.029
-0.164

0.055
-0.187

3.15
3.37

230.0
34.6

-69.8
8.37
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- TABLE XI. Ap nuclear bar phase shifts in degrees below the ZN thresholds.

P~ (MeV/c)
T,~ (Mev)

iS
Si

E'i

3P
iP
Pi

3P

3Di
i D2
D
D3

fs
3+

3+
3Q

~„, (mb)

100
4.5

22.93
20.75
0.02
0.04

-0.04
0.00
0.13'

0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.00
0.00
0.00

310.3

200
17.8

I

28.97
26.95
0.03
0.24

-0.33
-0.05

0.89
-0.00

0.07
0.04
0.07
0.04
0.00
0.00

-0.00
0.00
0.00

125.9

300
39.6

26.02
24.69
-0.16

0.24
-1.06
-0.38

2.43
-0.05

0.53
0.28
0.38
0.24
0.01
0.01

-0.00
0.02
0.01

48.2

400
69.5-

19.74
19.13
-0.72
-0.65
-2.42
-1.12

4.35
-0.16

2.22
0.89
1.10
0.75
0.04
0.07
0.00
0.05
0.07

18.2

500
106.9

12.38
12.49
-1.82
-2.82

4 44
2.19
6.14

-0.28
7.39
1.95
2.28
1.60
0.10
0.24
0.01
0.10
0.20

8.4

600
151.1

4.95
5.65

-3.09
-6.14
-7.00
-2.90

7.53
-0.22
30.03
3.35
3.76
2.68
0.19
0.66
0.03
0.18
0.44

17.5

633.4
167.3

2.88
0.50

-1.48
-7.39
-7.91
-2.39
7.93

-0.07
93.83
3.85
4.29
3.06
0.23
1.01
0.03
0.22
0.55

51.2

'S,-wave resonance. From Breit-Wigner mass fits
Tan obtains tyro resonances at M = 2128+ 0,2
MeV, F= 7.0~0.6 MeV, and M=2138~0.7 MeV,
7=9.1~2.4 MeV; Braun et al."find in a high-
statistics experiment M = 2129.0~ 0.4 MeV and F
= 5.9+ 1.6 MeV. The cross section reaches its
maximum in our ealeulations at 8 = 2128.918 Me V,
which is 0.025 MeV below the Z+p threshold. This
maximum agrees well with the maximum in the

AP invariant mass in the two experiments. How-

ever, the pole positions may differ, because these
depend strongly on the parametrization used in the
analyses.

The AN P-waves scattering lengths and effective
ranges are given in Table X. Comparing these
values and the P-wave phase shifts (Table XI)
with the ones of the previous mosel D, we notice
that the potentials are less attractive in the present
model or even repulsive. The Po and P2
phases show less attraction, whereas the 'P, and
'P, potentials are repulsive now. Calculations of
the A well depth in nuclear matter with this poten-
tial give better results than with the one of model
D, . mainly owing to the changes in the P-waves
contributions: about 34 MeV now, and about 40
Me V previous Jy.

TABLE XII. Inverse-scattering-length and effective-range matrices at the Z P and Z p
thresholds. The order of the states reads Ap( Si), Ap( Di), Z+n( Si), Z'p('Sf) and ~( Si),
An(Di), Z n( Si), Z p(Dij, respectively. The dimensions of the matrix elements ofA are
fm i ~ ~ and of R fmi ~ ~ . The subscript C denotes the presence of the Coulomb inter-
action in the Z p channel.

Ap- zop

A-i

An Zp z P)c Ap- z'P
R

An ZP (An- z p)c

11
12
13
14
22
23
24
33
34
44

-15.08
10.88
-1.69
1.25
9.49

-1.64
1.17
0.86
0.54
1.25

-20.18
14.98
-1.65

2.57
7.74

-0.86
1.21
1.22
0.62
0.78

-19.93
14.68
-1.67

2.58
7.87

-0.89
1.27
1.21
0.64
0.92

65.03
-50.24

10.12
-7.50
20.58
-3.26

2.57
1.34

-1.82
0.18

111.23
-83.51

11.69
-17.66

47.20
-5.49
9.25
0.79

-2.31
2.81

107.93
-81.35

11.75
-17.60

44.56
-5.45

8.98
0.85

-2.35
2.84
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400
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Maryland

Ap ~Ap Berkeley 71

Berkeley 77

30—

200— 20—
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,
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0.6 0.7 0.8 0.9 1.0

Pz [GeY/c)

FIG. 2.. Calculated Ap elastic total cross sections compared with the Hehovoth-Heidelberg (Ref. 16), Maryland (Ref.
17), and Berkeley (Refs. 23, 24) data.

The calculated angular distributions in the region
200-300 MeV/c have forward-backward ratios
from 1.06 to 1.16 in agreement with experiment. "

The Ap elastic total cross sections up to pA = 1
GeV/c are drawn and compared to experiinent in
Fig. 2. In the low-energy region (pA ~ 330 MeV/c)
the fit is very good with X'= 3, 5 for the six Reho-
voth-Heidelberg data and g'= 2.1 for the six Mary-
land data. In the momentum region above 0.3
GeV/c we see a reasonable agreement with the
Berkeley data. "'" The calculated elastic total
cross section in the region 0.6-0.7 GeV/c is at
about 1.5 standard deviations higher than the ex-
perimental point of Berkeley 71 (Ref. 23) and about
3 standard deviations above the 'point of Berkeley
77 (Ref. 24). We have g'= 16 for the seven Berke-

ley 71 data and g'= 19 for the seven Berkeley 77
data.

The total cross sections for AP-Ap, Z'n, Z p
above the ZX thresh&olds are given in Table XIII.
The calculated total cross sections for the reac-
tions Ap- Z'n, 3'p are a little higher than in the
previous model D. However, the same remarks
apply a,s before' as to the coinparison (Fig. 3) of
the AP- Z p data of the Berkeley groups.

C. Z p scattering

1. Zp~Zp
The fit to the total" cross sections of the Heidel-

berg group" is given in Table VII. The data are

TABLE XIIl. &p Ap, Z'n, Z p total cross sections in mb above the &N thresholds.

p~ (MeVle) Ap- zap

650
700
750
800
850
900
950

1000

175.5
201.4
228.7
257.2
286.9
317.8
349.7
382.6

16.62
11.26
11.54
12.66
13.98
15.35.
16.65
17.86

8.68
9.85

10.69
10.86
10.68
10.33
9.88
9.-40

3.01
4.46
5.03

' 5.20
5.17
5.03
4.84
4.62
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a /mb]

15—

AP~Z'p

Berkeley 71

100—

[mb]

ZP~E p

Pp- =160 MeV/c

10—
Berkeley 71

c

80—

0.6 0.7 0.9

I

1.0

p„[Gev/c]

20—

I I I I I I I I I I I I I I I e

FIG. 3. Calculated Ap- Z p total cross sections com-
pared with the data of beefs. 23, 24.

-1.0 -0.6 -0.2 0.6 1.0
C0Se

FIG. 4. Calculated Z p elastic differential cross sec-
tion compared with the data (Ref. 18).

described well with g'= 1.8 for dix data points.
In Fig. 4 we compare the calculated angular dis-
tribution at pz- = 160 MeV/c with the results of the
Heidelberg group. " Although the g'= 4.8 is reason-
able for the six data points, the shape of the cal-
culated differential cross sections seems too flat
in the nonforward directions. The nuclear contri-
butions to the differential cross sections, having a
forward-backward ratio of 1.05, are flattened
further by the destructive Coulomb interference
terms.

In Table XIV we give the total nuclear cross sec-
tions for Z p elastic scattering up to pz-=600
Me V/c. The scattering is strongly dominated by
the 'S,- 'S, amplitude for pz- 6 250 MeV/c. At the
higher energies the P-waves contributions are of
comparable magnitude as the 8 waves and for
pz-~ 450 MeV/c, these are a little larger. The

contributions of the D waves are less than 5% in

the whole energy region.

Z p~ZOpg

The calculated total cross sections are compared
with the experimental values of the Heidelberg
group" in Table VII. The agreement is excellent.
From the total y'= 6.2 from the six data points 92/0
is due to the data point at pz- = 110 MeV/c. The
calculated angular distribution at pz- = 160 MeV/c
shows a forward-backward ratio of 1.6V mainly
due to 'S,-'P, and 'So Py interference. Unfor-
tunately this angular distribution could not be mea-
sured.

In Table XIV we give the total cross sections for
Z p-Z'n up toPz-=600 MeV/c. The scattering
is strongly dominated by the '8, and '~, waves for

TABLE XIV,. Z p- Z p, Z n, An total nuclear cross sections in mb.

P~- (MeV/~) T1~ (MeV) Zp-Z p Z-p- Z0~

50
100
150
200
250
300
350
400
450
500
550
600

1.0
4.2
9.4

16.6
25.8
37.0
50.1
65.0
81.8

100.2
120.3
141.9

513.5
241.9
152.7
107.8
82.4
67.3
58.4
53.0
49.1
45.8
42.8
39.9

572,2
203.7-

118.4
85.7
70.5
62.7
58.0
53.8
49.2
44,4
39.8
35.7

882.1
282.7
146.1
94.2
69.1
54.7
45.2
38.3
33.1
28.9
25-.5
22.7
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pz- ~ 250 MeV/c. At higher momenta the P-waves
contributions are of comparable magnitude to those
from the 8 waves and gradually these are larger.
The contributions of the D waves to the total cross
sections grow from about 4% at p z- = 400 MeV/c to
about 10% at p z- = 600 MeV/c.

120—

100-

Kp hn

p = 160 MeV/c
E

3. Z p~An

In Table VII we compare the calculated total
cross sections with the measured values of the
Beidelberg group. " Although the g'= 5.4 for six
data points is reasonable, our values seem a little
higher than the experimental ones.

In Fig. 5 we compare the calculated angular dis-
tribution with the data of the Heidelberg group. "
The calculated differential crass sections, yielding

X
= 12.6 fpr 10 data ppints, seem top isptrppic.

This fact is also expressed by the forward-back-
ward ratio F/B= 1.12 at pz- = 160 MeV/c compared
to the measured value F/B=1.40~0.24." The iso-
tropic shape of the angular distribution is mainly
determined by the 'S,- 'D, transition and the strong
canceling of the large interference terms of the

amplitude with the 'P, and the 'P,- 'E,
amplitudes. The value of the average polarization
of the A at p z- = 150 Me V/c ( P n) = -0.42 agrees
well with the Heidelberg result" (P n) = -0.6
+ 0.4 in the region 100-170 Me V/c.

In Table XIV we give the total cross sections for
Z p-An up to pz-=600 MeV/c Below p.z-~ 200
MeV/c the total cross section is for more than

75/0 due to the 'S,- 'D, transition. For pz-~ 250
MeV/c this contribution constitutes about half of
the total cross section. The other half is provided
largely by the P waves.

In Table XV we present our predictions for the
experimentally best accessible measurable quan-
tities: the forward-backward ratio F/B and the
polar-equatorial ratio P/B in the angular distri-

20-

-1.0 -0.6 -0.2 0.2 0,6 1.0
C0Se

FIG. 5. Calculated differential cross section for the
reaction Z p An compared with the experimental angu-
lar distribution (Ref. 13).

I

bution, the left-right asymmetry (L -R)/(L+R)
PyZ in the cas e of in ciden t Z po lar iz ation P'„

the average polarization along the normal (P n),
the average depolarization (5), the average asym-
metry of the component of the final polarization
in the direction perpendicular to the normal and the
incident momentum (6'), and the average asym-
metry of the component of the final polarization
along the incident momentum (8 ), both with re-
spect to the plane perpendicular to the initial po-
larization. Thereby we have included the ampli-
tudes of the S and P waves and of the '8,—'D, and

P2 I"
~ transitions.

Finally we mention that the value &~= 0.4450 for
the inelastic Z capture ratio at rest is more than
2 standard deviations lower than the averaged ex-
perimental value (Table VII).

TABLE XV. Calculated measurable quantities for Z p An at various laboratory momenta
in MeV/c.

E/B P/E

50
100
150
200
250
300
350
400
450
500
550
600

1.04
1.08
1.11
1.12
1.14
1.16
1.18
1.18
1.15
1.10
1.03
0.95

1.00
1.01
1.02
1.04
1.07
1.12
1.17
1.23
1.31
1.38
1.46
1.54

0.07
0.16
0.23
0.28
0.29
0.28
0.25
0.21
0.18
0.15
0.12
0.10

-0,13
-0.29
-0.42
-0.47
-0.46
-0.41
-0.35
-0.30
-0.25
-0.21
-0.18
-0.16

-0.28
-0.28
-0.28
-0.27
-0.26
-0.25
-0.'23

-0.22
-0.20
-0.19
-0.18
-0.17

0.29
0.26
0.22
0,16
0.11
0.04
0.03
0.00

-0.01
-0.02
-0.02
-0.02

0.02
-0.00
-0.06
-0.13
-0.19
-0.25
-0.26
-0.27
-0.28
-0.30
-0.31
-0.33
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