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Evidence of resonant behavior has recently been discovered in p-p scattering, and possibly also in n-p
scattering. In particular, the p-p data indicate the existence of 'D„'F„and '64 resonances at energies of
approximately 2140, 2260, and 2430 MeV. The correlation between increasing l values and increasing
energies that is observed in these resonances suggests a form of rotational motion. Since a virtually boutid
nucleon-nucleon state represents the low-mass limit of a multinucleon (nuclear) system, we logically expect
the rotational behavior of this dinucleon state to follow the known systematics of nuclear physics. The
rotational motion is highly nonadiabatic for this very light dinucleon system, so that an l(l + 1) energy
interval rule is expected to apply, where l is the orbital angular momentum quantum number. In support of
this idea, we show experimental data plots which reveal that (1}rotational bands in very light nuclei and in
the dinucleon follow the expected l(l + 1) interval rule, and (2) the experimental moments of inertia of the
rotating bandheads exhibit the expected A '" behavior, where A is the atomic weight. We can extend these
concepts even farther by formally sorting the observed baryon and meson resonances into nonadiabatic
rotational bands. When we do this, we discover that the experimental moments of inertia of these hadron
rotational bands, plotted as a function of the bandhead masses, extrapolate smoothly into the moments of
inertia of the very light atomic nuclei. Applying the l(l + 1) energy interval rule to the observed 'D„'F„
and '64 p-p resonances, and then extrapolating to l = 0 to obtain the mass of the unobserved p-p
bandhead, we discover that it corresponds to a virtual ppm bound state, which is a characteristic hadronic
excitation. Hence the p-p resonances form a direct and unique experimental link between nuclear and
hadronic excitations: The p-p rotational levels, which are nuclear in origin, can be used to pinpoint the
mass of the p-p bandhead excitation, which is hadronic in origin The C.«, b.trc, and is,crt measurements
carried out at Argonne are crucial in the identification of these rather weak p-p resonances. Unfortunately,
the low-energy limit of these Argonne measurements falls above the predicted energy values of the.
(unobserved) l = 0 and I = 1 levels in the p-p rotational band. Thus the present results suggest the
usefulness of extending the C~, 50.L, and Acr~ experiments at Argonne from the present lower limit of 1.0
GeV/c down to at least 0.8 GeV/c.

I. INTRODUCTION

In a recent paper, ' Auer et aL have reported the
possible existence of 'D„'E„and 'Q4 proton-pro-
ton dibaryon resonances at energies of approxi-
mately 2140, 2260, and 2430 MeV. These reso-
nance energies correspond to the positions of dips
in the elastic C» spin-correlation data. ' Other
evidence for this p-p resonant structure is ob-
tained from cross-section differences between par-
allel and antiparallel longitudinal (Atrz) and trans-
verse (herr) total cross sections, and from
Legendre expansions of differential cross;section
and polarization data. The central dip in the C~~
data was first identified as a 'I, dibaryon reso-
nance by Hidaka et a/. ,

' who determined its mass
and width as M= 2260 MeV, I'= 200 MeV. Some
evidence of structure has also been observed in the
isotopic spin g = 0 amplitudes in neutron-proton
scattering, ' and it is supported by other data
anomalies' which suggest the existence of I = 0
dibaryon resonance behavior.

Experimentally, the discovery of this nucleon-
nucleon structure' was somewhat unexpected, be-
cause phase-shift analyses of lower-energy p-p

and pg-p elastic scattering data' failed to reveal
any evidence of dibaryon resonance behavior. This
suggests that the somewhat-higher-energy Argonne
p-p and pg-p experiments" are above some kind of
critical threshold for resonance formation. Hence
the challenging theoretical task is to determine the
exact nature of these p-p resonances, and thereby
ascertain the nature of the threshold which has
been crossed. As we will discover, this threshold
for p-p resonance formation is in fact just the pion-
production threshold itself. Specifically, the oc-
currence of orbital angular momentum /= 2, 3,
and 4 p-p resonances at successively increasing
energies indicates that w'e are observing a nuclear-
physics type of nonadiabatic rotational band', an
extrapolation to i= 0 shows that the (unobserved)
rotational bandhead is a mass-shell (zero binding
energy) ibptt virtual bound state.

It should be emphasized here that the theoretical
analysis of these dibaryon data anomalies' ' is a
difficult task. The experimental measurements
are in the energy region that is above the inelastic
pion-production threshold, and the presence of in-
elastic channels makes it difficult to carry out any
kind of a definitive phase-shift analysis, since
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assumptions must be made about the inelasticity.
In fact, this difficulty with the inelastic p-p and
z-p phase-shift analyses furnishes part of the mo-
tivation for the present paper: By interpreting
these p-p resonances as members of a rotational
band, we are in a sense circumventing the difficul-
ties that are inherent in carrying orat a nucleon-nu-
cl.eon phase-shift analysis when inelastic channels
are open. '

In Sec. II of the paper we examine the behavior
of nonadiabatic rotational bands in l.ight atomic nu-
clei, which is an important topic that has not been
sufficiently recognized, and we also study the bary-
on and meson resonances from this same phenom-
enological viewpoint. Then in Sec. III we discuss
the p-p and ~-p resonances, and demonstrate how

they accurately bridge the gap between the nuclear
and hadronic domains: As we will see, the ob-
served p-p resonances have the following proper-
ties: (1) They obey an accurate I(I+1) or j(j+1)
mass interval rule, (2} they have a moment of in-
ertia that is consistent with the moments of inertia
of neighboring nonadiabatic rotational bands, and
(3) the mass-shell ppw bandhead excitation is
closely analogous to the excitations that are ob-
served in other dibaryon systems. Our emphasis
in this discussion is on the systematics of the ex-
perimental data, and the main content of the pre-
sentation is contained in a series of graphical dis-
plays of the data.

II. NUCLEAR AND HADRONIC NONADIABATIC

ROTATIONAL BANDS

The concept of no~adiabatic rotational bands is
essential for a proper understanding of the phe-
nomenology of the p-p resonances. Theoretically,
we can determine the nature of nonadiabatic'"
rotations by studying the rotational Hamiltonian"

H = (h '/2I )L (1)

where L is the angular momentum operator and I
is the effective moment of inertia. It is custom-
ary" "to write

J=J-S, (2)

where J and 8 are the total angular momentum and
spin angular momentum operators. Thus the ro-
tational energy is given (schematically) by the ex-
pectation value of the operator

L'=(J'-S)'= J'+S' —2J S. (3)

The usefulness of this representation lies in the
fact that the "Coriolis term" J'S tends to vanish
if the rotating system satisfies the following condi-
tions:

(A) the system is markedly aspherical, so that

=-Z, +E,j(j+1), (4)

where E, is the bandhead energy and I is the effec-
tive moment of inertia. There are many nuclei that
satisfy these three conditions, and their associated
rotational spectra quite accurately follow the j(j+ 1)
energy interval rule. However, near closed shells,
where condition (A) fails, and for nuclei with S = —,',
where condition (C) fails, the simple j(j+1) inter-
val rule no longer obtains. "

In the case of hght atomic nuclei, where the
small masses lead to rapid rotations, condition
(B) is violated. Also, the broad widths of some
of the low-mass rotational levels indicate that these
levels last for very brief periods of time, "so that
the rotational motion [condition (A)] is not well de-
fined. Thus the J'8 Coriolis term does not vanish
for rotational levels in very light nuclei, which
means that the rotational energies of these nuclei
depend essentially just on the orbital angular mo-
mentum quantum number l, and are given by the
equation

E(I)= E,+ (a '/2I) I(I+ 1)

=E,+E ql(I+1). (5)

The 'D„'E„and '64 p-p resonances that have
been observed' are all /= j enhancements, so that
for this special case, Eqs. (4) and (5) reduce to
the same equation. However, in general, this spe-
cial. case does not occur in the neighboring nuclear
and hadronic excitations, and it is important that
we use Eq. (5) rather than Eg. (4) for the intercom-
parison of these low-mass rotational bands.

Let us now investigate the nonadiabatic nature of
the rotations in light atomic nuclei. There are two
steps to this process: (a) We first determine the
manner in which the moment of inertia J of a nu-
cleus varies systematically as a function of the
angular momentum of the nucleus, (2) We then use

the rotational axes are clearly delineated;
(B}the rotational velocity is "slow" (the adia-

batic' "approximation), so that the rotation does
not appreciably affect the intrinsic structure; and

(C) the intrinsic spin S does not have the value —,'.
Conditions (A) and (B), which are not independent
of one another, combine to make it a valid approx-
imation to write the wave function as a product of
total angular momentum and intrinsic spin compo-
nents. " Once conditions (A) and (B) are satisfied,
a direct calculation using- the product wave function
shows" that the Coriolis coupling vanishes unless
8= 2. If the Coriolis term vanishes, then the ro-
tational energies will, from Eg. (3), follow a
j(j+1) interval relationship:

E(j)= E,+ (a 2/2I) j(q+1)
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FIG. 1. The moments of inertia of the yrast levels in
Er (Ref. 18). For small E values, the moment of in-

ertia increases with increasing l. This same behavior
can be observed in the somewhat-more-rigid light nuc-
lei of Figs. 2—9, and it is essential for the delineation of
the nonadiabatic nature of the rotations in these light
nuclei, as is shown in Figs. 6, 7, and 9.

moments of inertia of the yrast levels for one of
the best-studied rare-earth nuclei, "'Er. As can
be seen in Fig. 1, the experimental moments of
inertia increase steadily with increasing / values,
then exhibit a sudden large increase in the "back-
bending" region near l= 14 and finally level off at
just about the rigid-body value near I = 32. Our
interest in the '"Er nucleus centers on the mono-
tonically increasing 1(l) behavior for small / val-
ues. This moment-of -inertia behavior indicates
that heavy atomic nuclei are somewhat "spongy, "
at least for small l values, so that their shapes
become more oblate as the angular momentum is
increased, "

Figure 2 shows the experimental" yrast bands

35
I

this moment of inertia versus angular momentum
criterion to deduce whether Eq. (4) or Eq. (5) is
correct in a particular case. It turns out that Eq.
(5), the nonadiabatic equation, is the correct one
to use for all nuclei with A ~ 20.

In order to determine the manner in which the
moment of inertia of a nucleus varies with angular
momentum, we initially restrict ourselves to even-
even nuclei that have l= j, so that we avoid the Eq.
(4) versus Eq. (5) controversy. In these even-even
nuclei, the "yrast" levels are defined as the low-
est-energy levels at which given spin values are
observed, and the l = 0, 2, 4, . . . sequence of low-
spin yrast levels constitutes the ground-state ro-
tational band. Figure 1 shows the experimental"
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FIG. 2. Rotational excitation energies for the ground-
state yrast bands of a series of light even-even nuclei
(Ref. 20). As can be seen, the slopes of these yrast
curves initially decrease slightly, showing that the
moments of inertia initially increase, in agreement with
the results of Fig. 1. The numerical value that is asso-
ciated with each yrast band in Fig. 2 is the experimental
value for E~~ in keV [Eq. (5)], as obtained by taking an
l {l+1)-weighted average over the levels in the band.

Linear I{(0+ 'I } axis

FIG. 3. "Excited-state" yrast rotational bands in He4

and ~80. The "doubly magic" nuclei He and 0 are~ 4 ie

spherical in shape, and hence do not have ground-state
yrast rotational bands. However, they each have a de-
formed J+= 0' excited-state level that serves as a rota-
tional bandhead and combines with the usual 2', 4','. yrast levels to form an "excited-state yrast rota-
tional band. " The E~t values for these two excited-
state yrast bands accurately match the A ~~ scaling
law of Eq. (6), as is demonstrated in Fig. 11. This in-
dicates that the excited-state J+= 0' bandheads in 4He

and '60 have similarly deformed geometries.
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clei He and "O. These nuclei are spherical in

shape and thus do not have ground-state rotation-
al bands [condition (A) above]. However, they both
have "excited-state" yrast bands, in which the 4
= 0' bandhead is an excited state (which is evidently
deformed), and the J~= 2' and higher states are
the usual yrast levels.

Figure 4 shows the ground-state yrast band for
Mg (which was also shown in Fig. 2), and it shows

in addition a "molecular" rotational band" that is
formed in "C+"C collisions. " The moment of in-
ertia that is associated with the molecular rota-
tional band is about twice that of the ground-state
yrast band, and it "corresponds closely with a
classical estimate for two peripherally touching,
but rigidly .rotating, carbon nuclei. "" The yrast
band and the molecular band in Mg are of inter-
est here in that they constitute the limiting cases
of a compact geometry (with a small moment of in-
ertia) and an extended geometry (with a much

for a series of light even-even nuclei, where the
rotational energies of the levels are plotted against
a linear l(l+ 1) axis. As can be seen in Fig. 2, the
slopes of these curves initially decrease slightly,
which indicates that the moments of inertia are in-
creasing slightly. Thus we see the same tendency
towards oblateness in these light nuclei as was
seen in the heavy "'Er nucleus of Fig. 1, although
the light nuclei are somewhat "stiffer" than "'Er,
since they contain fewer nucleons. Hence we have
as a general (and very plausible) result that the
moment of inertia of a rotating nucleus initially
increases with increasing angular momentum.
This is the criterion, that we need in order to de-
termine whether or not a given nuclear rotational
motion is nonadiabatic.

Before investigating the adiabatic question, we
first give two examples of specialized types of
nuclear rotational bands, and we write down a
scaling law for rotational energies. Figure 3
shows rotational bands in the "doubly magic" nu-
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FIG. 5. Four separate rotational bands that have been

identified in Ne (Ref. 25). The ground-state 0', 2',
~ yrast band is also shown in Fig. 2, and the excited-
state 0', 2', rotational band is similar to the 4He

and 0 rotational bands shown in Fig. 3. The 1, 3,
5, 7 and 2, 3, 4", 5, 6, 7, 8 rotational bands
are of special interest here in that they have l & J and
hence can be used to test the nonadiabatic nature of the
rotational motion in Ne. This test is carried out in
Figs. 6 and 7. The experimental E~t values for these
four rotational bands vary by more than a factor of 2,
but they all fit in with the A ~~ scaling law of Eq. (6),
as is shown in Fig. 11.

FIG. 4. The ground-state yrast rotational band in
Mg (Ref. 20), shown together with a ~ C+ C "mole-

cular" rotational band in 24Mg (Refs. 17 and 22). The
molecular band is formed in heavy-ion collisions, and
it appears in the form of a broad envelope of excita-
tions. The moment of inertia I=82/2E~& for the 24Mg

molecular band is about twice as large as that of the
corresponding 24Mg ground-state yrast band. The lower
A scaling curve that is shown in Fig. 11 corresponds
to molecular-type rotational motion in the "alpha-par-
ticle" nuclei Mg Ne, 0 Be, and He.
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E...= I'/2f -~1/I ~1/MR'~A '~'. (6)

Examples of this A '~' scaling law are exhibited
by the He, "0, and ' Mg rotational bands of Figs.
3 and 4. The ratio of the experimental E„,values
for the 'He and "Q nuclei of Fig. 3 is 10.5, which
is in good agreement with their A ' ' ratio of 10.1.
Also, the ratio of the experimental E„,values for"0 (Fig. 3) and "molecular" "Mg (Fig. 4) is 2.1,
which is in good agreement with their A ' ' ratio

16—

14—

larger moment of inertia). As we will see, the
moments of inertia of the light nuclei all fall with-
in these two limits.

In comparing nuclei with different atomic weights
A, there is a simple scaling law that can be de-
duced for the rotational energies. These nuclei
have masses M O-A, and if they have similar shapes
they have effective radii 8 o-A' '. Thus the rota-
.tional energy parameter E„~ of Eqs. (4) and (5)
scales as

of 2.0. The fact that these 'He, "0, and Mg nu-
clei follow the A ' ' scaling law of Eq. (6) indi-
cates that all three of these nuclei have similar
(molecular-type) geometries. By way of contrast,
the ratio of the experimental E, values for "C
(«g. 2) and "0 (Fig. 3) is 3.5, which is not in

agreement with their A"' ' ratio of 1.6. This dis-
agreement is due to the fact that the "C nucleus,
in contrast to the expanded molecular geometry of
the "0nucleus, has a compact prolate shape"~"
with respect to rotations.

We now come to the question of determining how
small the atomic weight A must be for a nuclear
rotational band to be regarded as nonadiabatic.
We can answer this question by studying the "Ne
nucleus, which has four identified rotational
bands. " These rotational bands are shown in Fig.
5. In addition to its ground-state 0', 2', 4', 6', 8'
yrast band (which is also shown in Fig. 2), "Ne
has an excited-state 0', 2', 4', 6', 8' rotational band
that is closely analogous to the rotational bands
shown in Fig. 3. Both of these rotational bands,
which contain It= j excitations, show the initially
decreasing slopes (initially increasing moments of
inertia) that we expect to find on the basis of the
results displayed in Figs. 1 and 2. The other two
rotational bands in "Ne contain levels that are not
l =j excitations, so that these two rotational bands
can be used to investigate the nonadiabaticity of
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FIG. 6. The J =1, 3, 5, 7, rotational band in
Ne, plotted against both j(j+1) and l(l+1) axes. The

l(7+1) plot is linear, but the j(j+1) plot shows an ini-
tially increasing slope with increasing spin value,
which is just the opposite of the behavior that is demon-
strated in the l =J curves of Figs. 1 and 2. Hence the
l(l+1) plot is singled out experimentally as being
physically significant. This indicates that the rotational
motion is nonadiabatic, and is governed by Eq. (5).
Figures 7 and 9 substantiate this result. Thus we can
conclude that for atomic nuclei withA &20, the rota-
tional motion is nonadiabatic, so that the rotational
energies depend just on the orbital angular momentum
l, and not on the total angular momentum J.
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FIG. 7. The J =2, 3, 4, 5, 6, 7, 8 rotational
band in 2 Ne, plotted against both j(j+1) and l(l +1)
axes. The l (l +1) plot shows an initially decreasing
slope, in agreement with Figs. 1 and 2, but the j(j+1)
plot shows an initially inc~easing slope. Hence the
l (l+1) plot is singled out experimentally as being phy-
sically significant, which indicates that the rotational
motion is nonadiabatic, in line with the results of Fig.
6,
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of 1167 and 1152 keV for these two rotational bands fit
in with the A" ~ scaling law of Eq. (6), as is demon-
strated in Fig. 11.

FIG. 10. Frag mentary and highly nonadiabatic rotational
5

bands in very light atomic nuclei. The J =2, 2 rota-
tional bands in Li and ~He are similar to the 8 and
Be rotational bands shown in Fig. 8. However, the J

rotational levels in Li and He represent rotations
in which the orbital angular momentum vector is oriented
in the opposite direction to that of the spin vector; three
reasons are given in the text for believing that these
are in fact rotational excitations. The evidence for the
existence of the J = ~' level in He is controversial, but
it does exist {Hefs. 27—30). As is shown in Fig. Il,
the E~t values for these rotational bands follow the
A scaling law established by the heavier nuclei, and
they serve to delineate the value of E~t that is antici-
pated for the even lighter p-p dibaryon rotational band
(see Fig. 20).

the rotational motion. Figure 6 shows the 1,3",
5", '7 rotational band in "Ne plotted against both
an l(l+ 1) and a j(j+ 1) abscissa. As can be seen in
Fig. 6, the l(l+ 1) plot has the correct shape (an
initially decreasing slope), but the j(j+1) plot does
not. Thus the l(l+1) plot is singled out experimen-
tally as being correct. Figure 7 shows similar
plots for the 2, 3",4, 5,6,7, 8" rotational band
in "Ne, and again the l(l+ 1) plot is singled out ex-
perimentally as being correct. Thus we have the
empirical result that the nuclear rotational bands
in "Ne are nonadiabatic.

Figure 8 shows matching rotational bands in 'B

and 'Be that feature half-integral spins. The very
large value for the rotational energy parameter in
each of these light nuclei, E,&1 MeV, indicates
directly that the rotations are highly nonadiabatic.
This result is confirmed in Fig. 9, which shows
the 'B and 'Be rotational bands of Fig. 8 plotted
against both l(l+1) and j(j+1) abscissas. As can
be seen in Fig. 9, the l(l+ 1) plots exhibit the cor-
rect behavior (initially decreasing slopes), where-
as the j(j+ 1) plots are physically incorrect.

From the results that are displayed in Figs. 6,
V, and 9, we can conclude that all nuclei with A,
& 20 have nonadiabatic rotational modes, so that
their rotational energies depend just on the orbital
angular momentum l. Hence Erl. (5) is the correct
rotational energy equation to use for all nuclei with
atomic weight A ~ 20. Furthermore, since baryon
and meson resonances" are quantized in the same
multiples of j5 or /jg as are light atomic nuclei,
and since they have masses that are comparable
to A= 1-3, they must also correspond to highly
nonadiabatic rotations.

The final examples of nonadiabatic rotational
bands in light nuclei are shown in Fig. 10. These
include two rotational bands each in 'Li and 'He,
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decreasing slopes, whereas the j(j+1) plots show ini-
tially increasing (and therefore physically incorrect)
slopes. Thus, just as in Figs. 6 and 7, the l(l+1)
plots are singled out experimentally as being correct,
which is a consequence of the nonadiabatic nature of the
rotations.
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and one somewhat speculative rotational band in
'He. Due to the highly nonadiabatic nature of the
rotations for these very light nuclei, only two lev-
els exist in each rotational band. The J~= ~", —,

"
rotational bands in 'Li and 'He are straightforward
extensions of examples we have studied above.
However, the J =-,', —,

' rotational bands in 'Li and
'He represent l = 0 and l = 1 states, respectively,
of a spin S= —,

' nucleus, with the orbital. angular
momentum /= 1 in the J= 2 levels being oriented
opposite to the spin direction. We have three rea-
sons for identifying the J= —,

' levels in 'Li and 'He
as rotational excitations: (1) The very broad
widths of these resonances correspond to the broad
widths of the other rotational levels in very light
nuclei. (2) The experimental values of E„(for
these rotational bands. follow the A ' ' scaling law
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have an E~& value of 6 to about 18 MeV. The experi-
mental p-p values, as obtained from Fig. 20, is 20.6
MeV, which indicates that the rotating p-p bandhead
has a very compact geometry. This is perhaps in line
with the fact that the p-p dibaryon excitation energy
of about 140 MeV (Fig. 20) represents a characteristic
hadronic (strong) excitation (see Fig. 21), rather than
a relatively weak nuclear-type excitation

FIG. 12. The identified ~ resonances (Ref. 26),
grouped into nonadiabatic rotational bands (Refs. 31—33)
and plotted against an E(1+1) abscissa. The spacing of
the E= 0 bandheads is roughly comparable to the r 140
MeV excitation energy that is observed in the p-p rota-
tional band (Fig. 20). The experimental rotational en-
ergies E~& = 27.3 MeV for these A 'rotational bands are
somewhat larger than the E~& values shown in Fig. 11.

of Eq. (6) (see Fig. 11). (3) The values of E„„are
in agreement with estimates based on the classical
& «(((ave (l= 1) rotation of ((., p ('Li) and r((, n ('He)
dumbbells. "

The J~= ~", &' rotational band in 'He shown in
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FIG. 13. The identified Z resonances (Ref. 26),
grouped into nonadiabatic rotational bands (Refs 31-33).
These Z rotational bands are similar to the A rotational
bands of Fig. 12, although they are not as complete. Two
very broad 6 and H (l=4 and 5) Z resonances may re-
flect contributions from more than one rotational band,
as is indicated by the dotted lines in the figure.



p-p RESONANCES: A LINK BET%EEN NUCLEAR AND. . . 1623

2.6—

2.4—

2.2—

2.0—
r:

g 1.8—
8
C
C0I 1.6—
tt:

onance behavior, others do not. "' However, a
number of experiments""" give indications of a
resonance somewhere between 14 and 23 MeV, and
a phase-shift analysis indicates that this enhance-
ment corresponds to a J= & P wave. " Thus we
have shown this state in Fig. 10 at an energy half-
way bebveen 14 and 23 MeV and with an experimen-
tal error of +4.5 MeV in the position of the reso-
nance. As we will see in Fig. 11, this assignment
yields a value E
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FIG. 14. The identified N resonances (Ref. 26),
grouped into nonadiabatic rotational bands (Refs. 31—33).
Open circles denote unobserved S-state bandheads. How-
ever, the open circle enclosed in a square denotes a
bandhead that was predicted many years ago (Ref. 31)
and which has just recently been discovered (Ref. 34).
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Fig. 10 is the lightest of the nuclear rotational
bands. The experimental evidence with respect
to the J = &' state in 'He is somewhat unclear.
Whereas some experiments show evidence of res-
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FIG. 15. The identified 4 resonances (Ref. 26),
grouped into nonadiabatic rotational bands (Ref. 31-33).
Open circles denote unobserved S-state bandheads. It
should be noted here that j(j+1)plots rather than l(l+1)
plots do not yield phenomenologically useful baryon ro-
tational bands; this result is sufficient to indicate the
nonadiabatic nature of these baryon rotations.

FIG. 16. The identified broad-width (I & 50 MeV)
meson and kaon resonances (Ref. 26), grouped into non-
adiabatic rotational bands (Refs. 32 and 33). The band-
head locations correspond to narrow-width ( I'& 50 MeV)
resonances, and they characteristically appear at 140
MeV intervals. Since the meson baridheads are lighter
than the baryon bandheads of Figs. 12—15, the meson
Spat value s are correspondingly large r (see Fig. 17) .
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matches theA ' ' scaling of the E„,values for
the other light nuclei. This 'He E„,value also
matches an estimate based on a configuration ana-
logous to that of the "C nucleus. " The nuclear
levels shown in Fig. 10 plus the 'He levels shown

in Fig. 3 represent the lightest and therefore the
most nonadiabatic of the nuclear rotational bands;
hence they are of decisive importance in helping
us to interpret the rotational motion that is ob-
served' in the even lighter p-p dibaryon system.

Having discussed these nuclear rotational bands
separately, it is important that we now combine
them together to see how they intercompare. This
is accomplished in Fig. 11, which displays the E„,
values for all of the rotational bands shown in Figs.
2-5, 8, and 10 plotted as a function of the atomic
weight A. [The E„,value that is quoted for each
rotational band in these figures is an l(l+ 1)-
weighted average over the experimental E„,values
for the individual levels in the band. ] Also shown
in Fig. 11 are two A ' ' curves that are based on

Eq. (6). The lower A ' ' curve corresponds to the
"molecular-type" rotational bands, and, as can be
seen in Fig. 11, the Mg, "0, 'Be and 'He mo-
lecular bands have E„,values that lie right along
this curve. The upper A ' ' curve corresponds,
roughly speaking, to very compact and in some
cases prolate nuclear configurations. As is shown

FIG. 18. Experimental values of E~t for the hadronic
rotational bands of Fig. 17 and the nuclear rotationalbands
of Fig. 11, plotted together as a function of the mass of the
bandhead. Also shown is the value of E~t for the p-p ro-
tational band of Fig. 20. As can be seen in Fig. 18, the

E~t values for these radically different systems com-
bine together to form a uniform curve that varies as a
monotonic function of the bandhead mass. However,
theA ~ scaling law IKq. (6)] that is obeyed by the nuc-
lear rotational bands (see Fig. 11) is not continued into
the hadronic rotational bands; the hadronic values of

E~t show a much weaker dependence on the mass of the
bandhead, which indicates that the hadronic bandhead
"geometries" do not vary as the cube root of the mass.

in Fig. 11, these two A ' ' curves serve as an en-
velope that encompasses the E„tvalues for all of
the nonadiabatic rotational bands in very light
atomic nuclei.

By extrapolating the two A ' ' curves in Fig. 11
to the value A= 2, we can estimate the the p-p
dinucleon system must have a rotational energy
parameter E„,that lies somewhere between 6 and
about 18 MeV. As we will see in Sec. III, the upper
value of 18 MeV is approximately correct (which
shows that the hadronically bound p-p dinucleon
state has a very compact geometry). However,
before discussing the dinucleon system in detail,
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we first consider the rotational bands that can be
constructed from the measured~ baryon and me-
son resonances, since these hadron rotational
bands serve to further delimit the moment-of-in-
ertia value that we expect to find for the p-p sys-
tem. The key point to keep in mind with respect
to this investigation is the nonadiabatic nature of
the rotational motion, which inakes Eq. (5) the
overriding rotational energy equation for all light
(&20 GeV/c') rotating systems, regardless of their
internal quantum numbers.

It is possible to formally group the identified
baryon and meson resonances into nonadiabatic
rotational bands, using the rotational systematics
of nuclear physics as a guide. In particular, Eq.
(5) serves as the rotational energy equation; and
Fig. 11 makes it clear that the hadron rotational
bands, whose bandheads correspond to the mass
region A &2, must have E, values which are
somewhat larger than 20 MeV. The interesting as-
pect about these hadron rotational bands is that, in
combination with the nuclear rotational bands of
Fig. 11, they enable us to bracket the region where
the g = 2 p-p dinucleon rotational band appears.
Since the systematics of these hadron rotational
bands has been thoroughly documented else-
where, """we give here only a graphical display
of the results. Figure 12 shows the observed A
resonances" grouped into nonadiabatic rotational
bands, Fig. 13 shows the 5 resonances, Fig. 14
shows the X resonances, Fig. 15 shows the 4 res-
onances, and Fig. 16 shows the meson resonances.
As can be seen in Figs. 14 and 15, some of the N
and 4 rotational bands have missing S states
(whose locations are denoted by open circles), just
as the p-p rotational band has a missing S state
(see Fig. 20). However, it is interesting to note
that one of the missing S states, N(1359), whose
existence has long been predicted, "was just re-
cently discovered by a Tokyo group' (see the loca-
tion marked with a square in Fig. 14).

The experimental E„,values" that we obtain
from the nonadiabatic hyperon, baryon, and meson
rotational bands of Figs. 12-16 are shown plotted
together in Fig. 1V. As can be seen in Fig. 17, the
rotational energy parameter E, varies inversely
with the mass of the rotating bandhead, but this
dependence on mass is much weaker than the A"'~'
mass dependence shown in Fig. 11. The really in-
teresting aspect of these studies occurs when we
combine together the hadronic E, values of Fig.
17 with the nuclear E, values of Fig. 11. This
result is shown in Fig. 18, where it can be seen
that the E, values for these two disparate sys-
tems fit smoothly together, and they accurately
delimit the expected E, value for the p-p dibaryon
system. In fact, looking ahead to the results of

the next section, we have included the experimen-
tal p-p E, value in Fig. 18, and it is just the value
that is obtained by interpolating between these two
domains.

As the final result in this section, we show in
Fig. 19 the experimental moments of inertia that
'correspond to the E„,values of Fig. 18. Again,
the accurate agreement of the p-p moment of in-
cr'tia with those of hadrons and of light atomic nu-
clei is clearly in evidence.

The hadron rotational levels that are shown in
Figs. 12-16 are arranged in the order of increas-
ing / values. It should be pointed out here that it
is not possible to form similar hadron rotational
bands based on increasing Jvalues rather than in-
creasing / values. " This fact is sufficient to es-
tablish the nonadiabatic nature of the hadron rota-
tional exc itations.

EXPERIMENTAL VALUES OF THE IVIOIVIENT-OF-INERTIA I FOR
MESON' (+), BARYONS ( ~ ), AND LIGHT ATOMIC NUCLEI
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FIG. 19. Experimental values of the moments of in-
ertiaI=S'/2E~t that correspond tother, tvalues of Fig.
18. The p-p dibaryon system stands at the boundary
between the domains of nuclear and hadron physics, and
the experimental p-p moment of inertia, as obtained
from Fig. 20, accurately matches the values that are
obtained by extrapolating from both of these domains.
This suggests that the three reported p-p resonances
(Ref. 1) do in fact correspond to levels in a nonadiabatic
p-p dinucleon rotational ba,nd.



1626 MALCOLM H. MAC GREGOR 20

III. THE p-p NONADIABATIC ROTATIONAL BAND

Nucleon-nucleon scattering experiments involve
the interaction of two spin=, particles; this inter-
action has a five-dimensional complex representa-
tion in spin space. At the higher energies, many
partial waves contribute to the scattering matrix.
This makes the identification of N-N resonances
a difficult task, since an enhancement in one par-
ticular partial wave may have only a small effect
on the standard N-N "observables, '"' which in gen-
eral reflect the contributions of many partial
waves.

A decade ago, nucleon-nucleon experiments in
the elastic energy region (below the threshold for
pion production) were complete enough that a rea-
sonably well-defined scattering matrix could be
determin'ed, ' and this scattering matrix showed
no evidence for resonant behavior in any of the
partial waves. The extension of the nucleon-nu-
cleon scattering matrix to somewhat higher ener-
gies' also failed to disclose the existence of ding-
cleon resonances, although the results in this in-
elastic energy region were clearly ambiguous.
Using a dispersion-relation analysis, Amdt"
pointed out that there was possibly some evidence
for resonant behavior in the 'D, phase.

Recently, an experimental breakthrough in this
situation occurred at Argonne, with the simultan-
eous use of polarized beams and polarized targets.
This makes it possible to carry out nucl. eon-nu-
cleon measurements in a single spin state, which
greatly magnifies the effect of a resonance if it
happens to occur in that particular spin state. The
first indication of anomalous nucleon-nucleon be-
havior was obtained from p-p measurements" of
44 and 04 spin states oriented perpendicular to the
beam direction, which showed an unexpected en-
hancement in the cross section b or—- o'"(00)
—p'"(00). This result was followed by p-P mea-
surements" of - and = spin states oriented paral-
lel to the beam direction, which exhibited a strik-
ing energy dependence in the cross section ho~
=o"'(=) —o'"(=). Subsequent measurements" of
the p-p spin correlation parameter C~~ revealed
the existence of three clear-cut dips, which occur
at P„„momenta of 1.11, 1.5, and 2.0 GeV/c. The
central C~~ dip at 1.5 GeV/c, which is the most
prominent one experimentally, was identified as
a 'E, dibaryon resonance by Hidaka et pl. Some
evidence of structure has also been noted in the
corresponding n-p amplitudes, in the form of an
isotopic spin I = 0 effect that closely resembles the
I= 1 '"E, effect" in mass, width, and inelasticity. '
The y+ d -p+ z measurements of Kamae et al. al-
so point to the existence of anomalies in the I = 0
amplitudes.

The topic of these possible dinucleon resonances
is a very lively one at the present time, and sev-
eral comprehensive summaries have been written
on this subject. ~ '~~' Accordingly, we do not at-
tempt to recapitulate all of this information here,
but only the part that is relevant to the present
discussion. In particular, we are mainly con-
cerned with the determination of the masses and
widths of these dinucleon anomalies and also
(briefly) with the theoretical efforts that have been
made to account for their existence. The masses
of the dinucleon anomalies are important in that
they give the energy interval spacings. It is clear
from the results of the preceding sections that a
highly nonadiabatic dinuclepn rotational band must
follow an l(l+ 1) interval rule, and a crucial task
is to test this prediction against the observed p-p
enhancements. The significance of the ggiChhs of
the p-p anomalies stems from the fact that, in
the hadron resonances, rotationless (l= 0) excita-
tions characteristically have widths 1"&50 MeV,
whereas rotational (l)0) excitations characteris-
tically have widths 1 & 50 MeV." Hence if these
p-p dibaryon anomalies are members of a had-
ronically excited rotational band, then we expect
them to have widths of 50 MeV or more. The de-
termination of the '~"l~ phase-shift assignments
for these anomalies has been thoroughly discussed
elsewhere, ' "" ' and we simply take over the con-
clusions of these analyses.

From a study of the results of m-N and K-N
phase-shift analyses, it is clear that the occur-
rence of a dip in the inelastic amplitudes is a re-
liable indicator for determining both the existence
and the position of a resonance. Although the sit-
uation is not quite the same, the occurrence of dip
structure in the p-p C~~ data is also a significant
indicator for resonance formation. The three re-
ported C~~ dips ' correspond to the p-p center-of-
mass energies 2139, 2254, and 2430 MeV, respec-
tively. Thus this C» measurement serves to de-
lineate the energies of the three p-p anomalies.
In addition, the 40~ and ho~ measurements men-
tioned above, "'"and also the standard p-p ob-
servables, "contribute information about the p-p
structure in this energy region. In Table I we
summarize the information about masses and
widths that has been obtained from direct analyses
of the data, ""'from comprehensive phase-shift
analyses, ""and from forward. -dispersion rela-
tions. " Since the slightly different mass values
that are obtained by various workers represent
different ways of looking at more or less the same
set of data, the spread in mass values shown in
Table I serves as a rough measure of the inherent
uncertainties in the data. The masses and widths
that were deduced from these analyses"'" '""
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TABLE I. Determinations of the masses and widths of the Argonne p-p dibaryon resonances.

Reference Data used or method 1
D2

Resonance values obtained

3 G4

Auer et a). , Ref. 1 Ci,g dips

Hidaka et a/. , Ref. 2 P, &0~

Hoshizaki, Ref. 42 Phase shifts

Yokosawa, Ref. 4 Summary paper

Values used in the present paper

Grein and Kroll, Ref. 45 Dispersion relation

&gab = 1.17 GeV/c
E~,m,

= 2139 MeV

M= 2140-2150 MeV'
50—100 MeV

M= 2140—2170 MeV
50-100 MeV

~=2140 MeV
75 MeV

1.5 GeV/c
2254 MeV

M=2260 MeV
200 MeV

~=2220 MeV
100—150 MeV

M=2320 MeV
I'= 290 MeV

~=2200-2260 MeV
100-150 MeV

~=2260 MeV
150 MeV

2.0 GeV/c
2430 MeV

M = 2390 MeV
F = 100 MeV
M=2430 —2500 MeV
I —150 MeV

M=2430 MeVI'- 100 MeV

Corrected for cusp effect.

are shown at the bottom of Table I. The mass val-
ues that have been selected are essentially just
those of the positions of the C~~ dips. The widths
are significant in that they are all larger than 50
MeV, and hence are indicative of rotational exci-
tations. "

The main discussion about these p-p anomalies
has centered on their interpretation. Tradition-
ally, resonant behavior is manifested by the mo-
tions that occur in Argand diagrams. In their for-
ward-dispersion-relation analysis, Grein and
Kroll" generated Argand plots that indicate reso-
nant behavior for the 'F, and 'G4 phases, but not
for the 'D, phase. Hoshizaki" carried out a phase-
shift analysis in which Argand plots of the 'I', Rnd
'D, phases indicate resonant behavior. Amdt, "
in a recent preliminary phase-shift analysis with
both the real and imaginary phases searched,
found evidence for 'D, resonant behavior, and
perhaps some indication of a 'F, effect; however,
the nucleon-nucleon data base becomes rapidly
incomplete at. energies above those available at
LAMP F (E = 2240 MeV), so that a full-blown
phase-shift analysis is not yet possible at the
higher energies. These inherent ambiguities in
the p-p data analysis have led to a great deal of
discussion in the literature as to whether reso-
nance formation is or is not occurring. "a4' "
However, information other than Argand diagrams
can be used to detect resonances. Hidaka, ' in a
detailed analysis of the p-p 'I', anomaly, lists six
pieces of evidence which indicate resonant behav-
ior: (1) the structure in ho~, (2) a Legendre ex-
pansion of the polarization data, (3) a peak in the
total elastic cross section, (4) a dip in the C~~
data. , (5) the Grein and Kroll ' dispersion analysis,
and (6) the Hoshizaki" phase-shift analysis. Items
(5) and (6) involve the use of Argand plots, but

items (1)-(4) do not. Furthermore, Hidaka"
points out in detail that the Argonne data in the
'F,, region near 1.5 GeV/c cannot be accounted for
on the basis of threshold effects, "Deck" mod-
els,"one-pion-exchange three-body theories, "or
one-boson-exchange inelastic threshold models. "
The conclusion that emerges from this analysis of
the Argonne p-p data is that the '&, anomaly, and
probably also the 'D, and '|"4 anomalies, are due
to Brett-Wigner-type resonance formation. ' ~"'"

Guided by the results of the above discussion,
we assume the existence of three measured p-p
dibaryon resonances:

'D,(2140)I' -75, 'E,(2260)I"-150, 'Q (2430)I' -100.

(7)

This brings ug face to face with the problem of ac-
counting for these three resonances. If these res-
onances correspond to hadronically excited dibary-
on states, then, as mentioned above, their rela-
tively broad widths (I'& 50 MeV) suggest that they
are members of a rotational band. " But for this
to be true, it follows from their small (A =2)
mass values that they must obey the I(.l+ 1) energy
interval rule of Eq. (5) for nonadiabatic rotations.
However, since these 'D„'E„and 'Q4 p-p reso-
nances happen to be l = J excitations, their behav-
ior is the same with respect to both the nonadia-
batic Eq. (5) and the adiabatic Eq. (4). Thus the
nonadiabatic assumption of Eq. (5) is not, strictly
speaking, necessary for the analysis of these par-
ticular p-p resonances, although the small mass
of the p-p dinucleon bandhead indicates that the
p-p rotational motion must in fact be highly non-
Rdiabatlc, IQ Flg. 20 the tllree p-p 1 esonRQces of
Eq. (7) are shown plotted against an f (f +1) or
j(j+1)abscissa. The linearity of the curve gen-
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crated by these three resonances domonstrates
that they do in fact accurately follow the energy
interval rule that is expected for a nuclear

FEG. 20. The nonadiabatic dinucleon rotational band
that is delineated by the p-p resonances D2(2140)F

75, 3E3(2260)I'-150, and G4(2430)l -100 [see Table
land Zq. (7)], plotted against anl (l+1) axis [or, equi-
valently, a j(j+1) axis, since l =j for these resonancesj.
Note the linearity of the curve in this representation,
which indicates that these three resonances accurately
obey the l (l+1) energy interval rule of Eq. (5). The l
= 0 and l =1 levels in this p-p rotational band, which
are the states at 2020 and 2060 MeV shown in Fig. 20,
unfortunately lie below the 2082-MeV lower-energy
limit of the Argonne CI.I, 40&, and Aa z measurements,
and these levels have not been observed experimentally.
However, we can use the E—D=D —S equal-interval
rule of Eq. (5) to extrapolate this curve to l = 0, which
gives an experimental p-p excitation energy of 143 MeV,
or just the mass of a pion. This same excitation energy
0an be observed in the A-A dibaryon resonances of Fig.
21. An E~t value of 20.6 MeV is obtained for this ppm
rotational band by averaging over the experimental G-E
and E-D energy spacings; this value for E~t is in ex-
cellent agreement with the values obtained from neigh-
boring nonadiabatic rotational bands, as is shown in
Figs. 18 and 19. The E3 phase shift shown in Fig. 20
is the suggested assignment for an anomaly observed
in the isotopic spin I=O n-p amplitudes (Hefs. 3 and 4)
that closely matches the I= 1 E3 structure in the p-p
amplitudes.

rotational band.
Figure 20 illustrates another important fact;

namely, that the expected I =j= 0 and 1 levels in
this p-p rotational band lie.below the energy range
of the Argonne C~~, ho~, and 4o~ measurements.
The observed p-p resonances are very weak effects
that persist only for short periods of time (as evi-
denced by their broad widths), and the C~~, b, o~,
and h, o~ data are crucially needed for their identi-
fication. But the measurements carried out at
Argonne' "have a lower momentum limit of 1.0
GeV/c in the laboratory frame of reference,
which corresponds to a p-p center-of-mass energy
of 2082 MeV; the extraplation of the p-p rotational
band shown in Fig. 20 indicates that the (l= j) 'S,
and 'P, levels in this rotational band both occur at
energies below 2082 MeV. Thus these two p-p res-
onances have not yet been delineated experimental-
ly, so we must base our analysis of the p-p rota-
tional band on the extrapolation procedure shown in
Fig. 20.

By using the F —D= D —S equal-energy interval
rule to extrapolate the curve of Fig. 20 to l= 0, we
deduce that the S-state bandhead energy of the p-p
diabaryon system is about 2020 MeV. Hence,
since the mass of two unbound protons is 187'l
MeV, we see that the p-p dibaryon excitation en-
ergy is about 143 MeV, or just the mass of a pion.
Thus the Argonne 'D„'F„and '64 resonances
accurately correspond to the l = 2, 3, and 4 levels
of a nonadiabatic rotational band in which the ro-
tating bandhead is a virtual ppm bound state. The
rotational energy parameter for this p-p rotational
band is E„,=20.6 MeV, as obtained by taking an
average over the experimental Q -F and F -D en-
ergy intervals. This is the E„,value that is used
in Figs. 18 and 19, and it can be seen to be in good
agreement with the E„,values of the neighboring
nonadiabatic rotational bands, thus reinforcing
this interpretation of the p-p resonances. U we
substitute the values E, =2020 MeV and E„,=20
MeV into Eq. (5), we obtain calculated P, D, F,
G, and H resonance energies of 2060, 2140, 2260,
2420, and 2620 MeV, respectively, as compared
to the experimental energies of 2140, 2260, and
2430 MeV for the D„'F„and 'Q4 resonances.

As further evidence for this interpretation of the
p-p resonances, we note that other dibaryon reso-
nances also exhibit this same virtual pion excita-
tion mechanism. Figure 21 shows the strangeness
S= 0, -1, and -2PP, PA, and AA dibaryon excitations
that have been reported to date. ' As can be seen
in Fig. 21, the S= -2 AA dibaryon excitation ac-
curately appears as a AAm virtual bound state,
thus echoing the S =0 ppn virtual bound state that
we deduced from the systematics of Fig. 20. The
narrow-width S= -1 pA dibaryon excitation, which
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has been observed in a number of experiments, "
appears as a pAM excited state, where the excita-
tion energy I-70 MeV is just half of the excitation
energy m-140 MeV that occurs in the pp and AP
dibaryon resonances. A possible second pA exci-
tation level appears at an energy of roughly 140
MeV above the first pA level in Fig. 21.

The occurrence of the m as a mass-shell (zero
binding energy) excitation quantum has also been
observed in a completely different hadronic sys-
tem —the "charmed" D and D* kaon system —as is
demonstrated by the following strikingly similar
decay modes

pps(2020) -pp(1877) + 143 MeV kinetic energy,

D*'(2009)-D'(1868+ w'(135) + 6 MeV kinetic energy,
(8)

D*'(2009) -D'(1868) + y(141) .

ments' show some structure in the ~-p ampli-
tudes. If this structure is interpreted in the con-
text of an isotopic spin I =0 resonance, then it
indicates a mass, width, and inelasticity that
closely resemble those of the I =1 '&, p-p reso-
nance, ' and its quantum numbers appear to be eith-
er 'P, or 'F, . From the systematics of Eq. (5),
'I', and 'P, resonances, which are both )= 3 excita-
tions, should appear at the same mass value (as
we have indicated in Fig. 20). Thus the present re-
sults point to the quantum state assignment 'Q, for
this g-p structure, and it appears as the I = 0
counterpart of the dominant I=1 'I', enhancement
in the p-p scattering amplitudes.

Although this proposed dinucleon rotational band
meets the tests of properties (1)-(6)that we have de-

In the ppm decay a virtual pion is transformed into
kinetic energy, whereas in the D* decays the pion
is either emitted directly or else transformed into
a photon.

We can summarize the results of the above dis-
cuss ion in the follow ing statement: The threshol d
for dinucleon resonance formationis equal to the
threshold for pion production, and the excitation
mechanism consists of the formation of a mass-
shell ppw virtual bound state, which is manifested
experimentally in the form of a pp& dinucleon ro
tgtjoggl bg~d. It should be noted here that the iden-
tification of the three Argonne p-p resonances as
the l = 2, 3, and 4 members of a nonadiabatic dinu-
cleon rotational band is the only quantitative ex-
planation which has been set forth to account for
the existence of these three states. This p-p ro-
tational band has the following properties:

210
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g
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I
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c0
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O
X

70—
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.2231
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(1) The p-p'resonances have the broad widths
(1"& 50 MeV) that are expected4' for rotational ex-
citations (see Table I).

(2) The D, E, and G resonance energies accu-
rately correspond to the nonadiabatic l(l+1) inter-
val rule of Eq. (5) [and also the general j(j+ 1)
interval rule of Eq. (4)].

(3) The extrapolation to l = 0 gives an 8-state ex-
citation energy of about 140 MeV (Fig. 20), which
is a characteristic hadronic excitation unit; [see
Eq. (8)J, and also a characteristic dibaryon exci-
tation unit (see Fig. 21).

(4) The experimental moment of inertia of the
rotating pp7t bandhead is consistent with the experi-
mental moments of inertia of the neighboring non-
adiabatic rotational bands (see Figs. 11 and 17-19).

There is one other piece of experimental infor-
mation from the Argonne measurements that ties
in with this concept of nonadiabatic dinucleon ro-
tational bands. P reliminary. Argonne experi-

FIG. 21. The pp, pA, and AA dibaryon resonances
that have been observed experimentally, shown in the
form of an energy level diagram. The pp(2020)
level in Fig. 21 is obtained from Fig. 20 of the
present paper, and the p A and AA levels are from Ref.
26. Although the AA(2365) and AA(2370) dibaryon levels
represent very weak experimental effe"ts, it is inter-
esting to note that they match the 140 MeV excitation en-
ergy of the pp dibaryon level. Of equal interest is the
pA(-2127) dibaryon level shown in Fig. 21. This level
has been observed in several experiments, and it has
a very narrow width ( I™6 MeV). The excitation energy
for this level is about 70 MeV, which is just half of the
excitation energy of the pp(2020) and AA(-2367) levels.
The weak pA(2251) level in Fig. 21 appears roughly 140
MeV above the dominant pA(-2127) level. The main
point we wish to bring out in Fig. 21 is that an excitation
energy of 140 MeV for the pp dibaryon system is a re-
sult that fits in with other experimental dibaryon mea-
surements, and hence lends additional credence to the
systematics developed in Fig. 20.
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scribed above, its existence raises severalques-
tions. Perhaps the'most important of these has to do
with the nonobservance of the S and P levels in the p -P
rotational band. As we discussed in connection
with Fig. 20, this results is attributable to the fact
that the p-p S and P levels lie below the range of
the important Argonne C~~, &0~, and ~0~ data.
Thus the present analysis suggests the usefulness
of extending the measurements at Argonne down
from the existing laboratory momentum limit of
1.0 GeV/c to at least 800 MeV/c, which is the mo-
mentum that corresponds to the energy of the p-p
S-state bandhead. It should be noted here in pass-
ing that the ppm bandhead defined in Fig. 20 is a
characteristic hadronic excitation —not a nuclear
excitation —and some of the hadronic rotational
bands have unobserved S states (see Figs. 14 and

15).
Another question about this dinucleon rotational

band has to do with the I=0 resonances. If I=1
D, I', and G states exist, and if an 1=0 I' state
also exists (see Fig. 20), then we might logically
expect to find I = 0 'D, and 'G, enhanceme~ts ap-
pearing in the z-p amplitudes, and as yet there is
no evidence for their existence. The answer to
this question may involve the magnitudes of the I
= 0 cross sections. The 'F, resonance is the most
prominent of the three observed I = 1 enhance-
ments, which suggests that the 'I, resonance is
the most prominent I = 0 enhancement. The yg-p

scattering matrix, which includes both I = 1 and I
= 0 amplitudes, has much more parameter freedom
than does the p-p scattering matrix, which includes
only I = 1 amplitudes. Thus I = 0 resonance effects
are intrinsically more difficult to observe than are
I = 1 resonance effects, and small 'D, and 'G4 en-
hancements may be difficult to isolate experimen-
tally.

A final question about the dinucleon rotational
band has to do w ith the fact that a resonance is ob-
served in the 'I', phase, but not in the 'I', or 'E,
phases. The answer to this question involves two

microscopic processes, both of which are essen-
tially unknown: (1) the nuclear-force mechanism
that leads to the production of a virtual pion in a
p-p 'F, state, but (presumably} not in a 'F, or 'F~
state and (2) the angular momentum quantization
mechanism that produces resonances which have
discrete angular momentum values. In connection
with (2}, it is worthwhile to point out that the identi-
fied 'D„ I'3, and 'Q4 p-p resonances, and also the
possible 'P, ~-p resonance, are all states in which
the (observed) orbital angular momentum is equal
to the (observed) total angular momentum, i.e. ,
these are states for which l= J. In highly nonadi-
abatic rotations the spin vector is essentially un-
coupled from the orbital angular momentum vector,
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FIG. 22. A curve of experimental E~t values for had-
ronic and nuclear rotational bands. This curve was
drawn up (Ref. 52) prior to the discovery of the Argonne
p-p resonances. As can be seen by the lines added to
the drawing, the experimental E~«value of 20.6 MeV
for the p-p rotational band (Fig. 20) falls right on this
pre-existing curve. This demonstrates the fact that
the nonadiabatic hadronic and nuclear rotational bands
described in the present paper were worked out in de-
tail before the appearance of the Argonne p-p rotational
band.

and it is possible that these observed /= J enhance-
ments reflect the nonadiabatic nature of the rota-
tional motion rather than the nuclear force aspects
of the pion production process. It has long been
hoped that p-p and yg-p inelastic-scattering experi-
ments would provide vital clues as to the nature of
the unknown pion-production mechanism, and it
may be that the Argonne results are for the first
time delineating an area of research that can give
answers tp this important question.

There is one final point to be mentioned here
with respect to the yresent interpretation of the
p-p and yg-p resonances. The identification of
nonadiabatic rotational bands in light nuclei and in
baryon and meson excitations was completed and
published" prior to the discovery of any of these
Argonne nucl. eon-nucleon data anomalies. Thus
the explanation that has been advanced in the pres-
ent paper is not one that was specifically tailored
to agree with the new Argonne data. ' Figure 22
shows a curve of E„,values for nonadiabatic ro-
tational bands that was drawn up" before the pres-
ent author had any information about the recent
Argonne results. Superimposed on this figure is
the p-p E„,value of 20.6 MeV that we obtained
from Fig. 20 of the present paper. As can be seen
in Fig. 22, this subsequently deduced value of E„,
for the p-p rotational band is in accurate agree-
ment with the pre-existing experimentally derived
curve of E„,values for rotations in hadrons and
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in light atomic nuclei.
Although considerable uncertainties still exist in

the analysis of the Argonne p-p and n-p data, it
seems apparent from the results achieved thus far
that the identified p-p resonances' serve as a di-
rect and unique experimental link between the do-
mains of nuclear physics and hadron physics. As
stated in the abstract to this paper, the p-p rota-
tional levels, which are nuclear in origin, can be
used to pinpoint the mass of the p-p bandhead ex-
citation, which is hadronic in origin.
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