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Z dependence of coherent p,e conversion rate in anomalous neutrinoless muon capture
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The coherent muon-electron conversion rate in anomalous neutrinoless muon capture by nuclei is calculated
in terms of phenomenological coupling constants defined by efFective Hamiltonian densities. The possibilities
of muon-number violation occurring through lepton mixing, through muon-number-violating gauge couplings,
or through scalar-Higgs-boson exchange are considered. The variation of the coherent conversion rate with
atomic number Z is discussed for different values of the coupling constants. The present results are compared
with a previous approximate formula given. by Weinberg and Feinberg, The following limits on the
phenomenological coupling constants are found: gp~'& 10 and gIo~ & 2.9 X 10 ', or gs i & 10 '
and g(') & 3.2 X 10 '.

In this paper I present some calculations for the
coherent muon conversion rate in the process p.

+ (A, Z) —e + (A, Z) in terms of phenomenologica. l

coupling constants. In particular, I consider the
dependence of this rate on A and Z for different
combinations of the phenomenological coupling con-
stants. In experimental searches for this process,
negative muons are stopped in some material and

quickly cascade down to the 1s orbit. From this
orbit the muon is either captured by the nucleus
with the emission of a neutrino, or it decays into
an electron and two neutrinos. If muon number is
not exactly conserved, the muon conversion pro-
cess could occur some of the time.

The separate conservation of muon and electron
numbers has been the subject of many theoretical
and experimental investigations. The theoretical
understanding of muon-number conservation made
rapid progress after the discovery of spontaneously
broken renormalizable gauge theories. Many mod-
els are now known which predict a small violation
of muon number. ' Some of these models' repro-
duce the phenomenology of the standard Weinberg-
Salam model for all present experiments. If muon-
number violation does occur, then it has been sug-
gested that muon conversion is the best place to
look for it. ' Experimentally, a limit of A,&(1.5
x10 ' has been set at SIN for sulphur in 1978,' and

- this limit will be improved further by new experi-
ments. " (R,z is the ratio of the muon-number-
violating rate to the ordinary capture rate. } Be-

.fore 1977, the limit on R,& was 1.6 &&10 for cop-
per, set in 1972. '

In most theories, muon-number violation occurs
due to (a) lepton mixing which arises if the lepton
mass matrix is not diagonal with respect to the
weak eigenstates, ' (b) existence of exotic gauge
bosons which have muon-number- violating fermion
couplings, 4 or (c) scalar Higgs bosons with muon-
number-violating fermion couplings. 3 In the first
two cases, to a good approximation the matrix ele-

ment for muon conversion can be calculated from
a local effective Hamiltonian density involving
vector and axial-vector fermion currents. '" For
the Higgs-scalar case, the effective Hamiltonian
density involves scalar and pseudoscalar fermion
currents, and I discuss this case separately.

For the case involving vector and axial-vector
currents, the effective Hamiltonian density can be
parametrized as

e„,=- Q g,"'ey'(1 —n', y, ) p, V„"'
Lt ~ 0, 1

+g „"ey'(& —tr&y, )W„"',

where e, p. , etc. , represent the corresponding par-
ticle fields, the index i. represents the isospin
transformation properties of the quark currents,
g~", g'&', n&, etc. , are phenomenological coupling
constants to be determined from different theories,
and V')„', V')'„', etc. , are the quark currents

P'~s'=(uy, u+rfyA) j2, etc. (2)

In many theories, only the left- or right-handed
electron is emitted in muon conversion in the limit
yn, =0." In that case, all the n' s become equal
and are +1.

With the above Hamiltonian, both coherent and
incoherent muon conversion processes are possi-
ble. The coherent muon conversion process, in
which the final nucleus is in its ground state, is ex-
pected to dominate the rate if g'&' is not very small
or zero. Experimentally, it is easier to search
for, because it involves detecting a single mono-
energetic electron of energy

E, =E~ —E~ /(2M~) =E~,
where E~ is the muon energy (muon mass minus
the ground-state binding energy) and M„ is the
mass of the recoiling nucleus. At this energy the
background (due to electrons coming from bound-
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muon decay and from conversion of y rays pro-
duced in radiative muon and pion capture) is negli-
gible. The rate for the coherent p. e conversion
process can be calculated in a straightforward

manner. Neglecting the bottom components of the
nucleon spinors and terms of order 1/A2 resulting
from the process where the nuclear spin changes,
the coherent rate is

E 2 ~- 3 (o)+ 0) (o) (x) 2

e ~ 16+( N —N)=G2 e 3gv g» ZR + g» g» NRz

3&o (o) + &1 (1) 3Q —otVgV + Vg V PR + VgV VgV

2 2

where

Rz(pr) = g g + pz(N)4&& d&

and pz, pN are the proton and neutron densities
(normalized to 1), g„ f, are the top and bottom
components of the 1s muon wave function, g„ f,
are the top and bottom components of the Coulomb-
modified spherical electron wave function. " Rz,
R„should be corrected for the nucleon form fac-
tors. The corrections are small (of the order of
2/p) and vary slowly as Z varies. Also, from iso-
spin and from the fact that the neutron charge
radius is negbgible, it follows that Rz and R„are
modified by similar factors. Hence, these cor-
rections can be absorbed in the phenomenological
coupling constants, and I do not consider them
further.

Present evidence indicates that the proton and
neutron densities are very similar. If we assume
that pz ——p~= p and that all the @'s are either +1
or —1, then using (4) we can write for R,„
R.„=~, (Z)l g»"&+ g,'&(Z N) /(2A)]2/-&(qN —&N'),

(6)
where

"2
&ua(Z) = (G»'/2)BE, 'A' (g, g „+f,f„)pr'dr

1

&u(pN- v¹)is the rate for ordinary muon capture.
For the light elements, ec(Z) varies approximate-
ly a.s A'Z, since the muon wave function at the
nucleus varies approximately as Z'~'. Finite-size
effects cause u&G(Z) to increase less slowly as Z
increases. For heavy elements ~a(Z) will de-
crease because of the effect of g, . If gv '=0, 8,„
becomes small for the light atoms since Z =+. To
set limits on g v

' and g v
' one has to make mea-

surements on at least two elements. It is best to
choose elements with significantly different N/Z
ratios.

Assuming a. Fermi distribution' for p, i.e.,

p = po/[1+ exp((r —c)/a)],

with c=1.07 A' ' fm and a constant surface thick-
ness t (defined in Ref. 14) of 2. 4 fm, I have cal-
culated ~~ for a number of elements and Table I
gives &uc(Z) and +c/&u(pN- v¹). The latter has
been calculated using experimenta. l values of

6.0-

4,5

Z

3.0

1.5

I

10 20 30 0
I J

50 60 70
Z

r
I ~~ I

80 90

(b)

:0.6—
Ql

Ol

t 0.4-

3

0,2—

0.0-
10 20 30 40 50 60 70 80 90

Z

FIG. 1. Qualitative variation of: (a) R~ z and (b)
~(p N eN), with atomic number &, for the vector-
current case. For most of the elements in Table I
R, z lies within 10% of the smooth curves shown. The
solid curve is for g v = 10, g v = 0; the dash-dot curve
is for g v = 0, g v = 10; the dashed curve is for g v
=1.5 x10 5, g'v'=2. 25 X10
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TABLE I. Constants useful in calculating the coherent pe conversion rate for some elements.
co„ is defined by Eq. (7) and co+ is defined by Eq. (20).

(dg
(108 sec

Q3~

~ye-&Ã)
~H

(108

6,0
12.0
16.0
20.0
22.0
25.0
29.0
31.0
33.0
34.0
38.0
42.0
46.0
50.0
58.0
64.0
67.0
74.0
80.0
82.0
83.0
90.0
92.0

12.00
24.30
32.10
40.10
47.90
54.96
63.60
69.74
74.95
79.02
87.64
95.90

106.39
118.80
140.1 5
157.30
165.00
183.80
200.70
207.30
209.00
232.20
238.10

0.03
0.65
2.04
4, 63
6.91

10.45
16.32
19.89
23.06
25.53
32.62
39.72
46.79
53,22
63.22
67.93
69.64
71,55
70.96
70.05
70.19
65.24
63.97

72.78
136.64
152.67
188.94
265.64
267.21
287.84
350.26
380.58
448.76

. 449.95
430.77
467.87
498.35
552.65
561.88
537.78
544.91
557.01
538.01
529.33
498.04
581.54

0.03
0.61
1.85
4.06
5.94
8.74

13.14
15.69
17.83
19,48
23,91
27.95
31.46
34.01
36.48
36.01
35.37
32.63
29.1 8
27.67
27.33
21.56
20.18

70.45
127.41
138.11
1 65.52
228.31
223.51
231.79
276.16
294.30
342.43
329.83
303,15
314,56
318,43
318.91
297.82
273, 1, 6
248. 50
229.01
212.52
206.08
164.59
183.43

u(pN- vN') given by Eckhause. " With these val-
ues, the Z dependence of R,„can be studied for
different values of the coupling constants. Figure
1 shows the Z dependence of B,„and m(pÃ-eN)
for some combinations of g~ ' and g~ '. Table II
gives R~ for some elements as a fraction of the
maximum 8,„, for difierent values of gI, '/gv '.
The limits on R,~ for sulphur and copper give
Ig'"l(10- and Igv' I(2 ex~0 T»mp««
the limit on g~ ', it is best to measure R,„for the
heavy elements.

The maximum value of R,„does not necessarily
occur for Z around 29, as was stated in Ref. 16
and as is generally believed. ' This is because
one has to consider contributions from the ex-
change of heavy gauge bosons, '"'" in addition to
the photon exchange considered in Ref. 16. As a
result, the ratio g ~~ '/gv"' becomes model-depen-
dent, and the atom with maximum R,„also be-
comes model dependent. Even if one considers
only photon exchange, the maximum does not oc-
cur for Z around 29. This is because of the Prim-

TABLE II. Coherent-rate branchimg ratio as a function of the coupling constants for the
vector-current case. The first column gives g ~ /g ~ and the other columns give R&g for the(1) (0)

elements indicated, as a fraction of the maximum value of R,z for each value of g z /g~ .(1) (0)

16.0 20.0 29.0 34.0 64.0 80.0 82.0 92.0

—10.0
-5.0

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

0.09
0.14
0.26
0.54
0.80
0.80
0.80
0.31
0.1 5
0.09
0.00

0.11
0.17
0.32
0.67
1.00
1.00
1.00
0.39
0.19
0.11
0.00

0.27
0.34
0.49
0.75
0.77
0.49
0.27
0.04
0.00
0.00
0.07

0.54
0.62
0.77
0.94
0.69
0.22
0.01
0.03
0.07
0.11
0.29

0.82
0.87
0.97
0.95
0.49
0.01
0.18
0.37
0.44
0.49
0.65

0.87
0.90
0.96
0.87
0.31
0.00
0.38
0.57
0.63
0.66
0.76

0.86
0.88
0.93
0.81
0.27'

0.01
0.45
0.64
0.68
0.70
0.78

1.00
1.00
1.00
0.80
0.18
0.06
0.84
1.00
1.00
1.00
1.00
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akoff factor mentioned in the erratum to Ref. 16,
and because of other correction factors which I
consider later on.

The lepton and quark currents in the effective
Hamiltonian density (1) may contain terms involv-
ing the lepton momentum transfer q„. In general,
these terms will be suppressed relative to the
terms included in Eq, (1) by powers of some heavy
mass M, where M is the mass of new heavy leptons

I

or gauge bosons which lead to muon-number viola-
tion in different theories. When muon conversion
occurs due to photon exchange, this suppression
may not take place. One can use electromagnetic-
current conservation and Lorentz invariance in
discussing the photon-exchange case. ' ' The
matrix element of the electromagnetic current
operator between muon and electron states is of
the form

T.= & e(p. ) l~. (o)
I ~(p. ))

=u, (p, )[(f„+f„'y,)™,(z„.„q + (fe +f2 y, )(y„q' —q„y 'q')] u„(p „),
where f„,f 2u, fe, f~2 are functions of q', with q =p~ -p, and m~ is the muon mass. In this case, the matrix
element for p. +u-e +u, for example, takes the form

M(p„p„)= —'e[u, (p,)((f„+fu y, )im„o„„q"+ (fz+ fey2)(y q' —q„y q)]u„(p „)][u„(I2') "yu(k)]/ 'q. (10)

The initial muon and final electron are not on their
mass shells, and the four-momentum transfer is
not a well defined quantity. However, if fz, f„,
etc., are not fast varying functions of q', then it
is a good approximation to evaluate them at q'
= -m„'. The uncertainty in lq l

is of the order of
the muon binding energy. If the effective Hamil-
tonian density (1) represents the contributions of
all processes which do not involve photon ex-
change, then the expression for &u(pN - eN) in (4)
has to be modified by replacing g ~

' and g~ ' with

fg ve'+ e[fe(-m„') +f„(-m„'}]/3jand (g v'
+ e[fz(-m„') +f„(-m,')]), respectively, and by
replacing +~g ~

' and &'„g ~
' with the corresponding

expressions involving leptonic axial-vector form
factors. This amounts to a, redefinition of the

phenomenological coupling constants in (4). Thus,
the inclusion of terms involving q~ in the effective
Hamiltonian density (1) will not affect the discus-
sion of the Z dependence of the coherent muon
conversion rate.

We can compare our expression with an earlier
approximate expression given by Weinberg and
Feinberg. " Essentially, their approximation con-
sists of replacing the muon wave function by some
average value, and replacing g„ f, by j,(m, v) and
zero. They use Primakoff's approximate formula'
for the ordinary muon capture rate. To compare
their formula with our result, we use experimen-
tal values for &u(pN-vN') in their formula also,
and we use the correct value E,' instead of m„'
in the phase-space factor. The Weinberg-Feinberg

expression can be written as
2 3~3Z 4,"

3 (0) (j.) (O) (j.)
"

2
F la etf (@ 2/P) gV gV Z+ V gV N P2( 2)/ ( N &Nt)

gN 2 Z 2 2

E(q'} is the form factor of the nuclear matter distribution at momentum transfer q'. 4(m„2n2Z, «')/Z is
the standard notation for the square of the muon wave functio~ averaged over the nucleus, i.e.,

~ ~ jl (g.'+f.'}p4«'«. (12)

For the Fermi distribution considered by us, the form factor is given by

Ii (q') = 42'p2 a c . sin(qc) — . —g 2an(-1)"exp(-nc/a)/c(n'+ q a )'2'coth(2qa) . v cos(qc) 2 2 2 2

,qc sinh nqa qa sinh 2qa

The three main corrections to the Weinber g-Fein-
berg formula are: (1) In calculating Z,«, one
uses (g„'+f„')whereas in our expression involving
the square of Eq. (5), there is an interference

term between g, and f„. Because this interference
term is omitted, the Weinberg-Feinberg formula
underestimates the coherent conversion rate.
(2) In calculating Z,«, one neglects the variation
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TABLE III. Correction factors to the %einberg-Fein-
berg formula.

Cg C2 C (C2C3

6.0
12.0
16,0
20.0
22.0
25.0
29.0
31,0
33.0
34.0
38.0
42.0
46.0
50.0
58,0
64.0
67.0
74.0
80.0
82.0
83.0
90.0
92.0

1,02
1.04
1.05
1.07
1.08
1.09
1.11
1.12
113
1.14
1.16
1.18
1.21
1.24
1.29
1.34
1.36
1.43
1.49
1.51
1.52
1.61
1.64

1.01
1.03
1.04
1.05
1.09
1.11
1.10
1.12
1.19
1.14
1.17
1.20
1.25
1.31
1.44
1.58
1.67
1,92
2.25
2.41
2.47
5.10
5,83

1,01
1,01
1.00
0.98
0,94
0,92
0,92
0.90
0,84
0.87
0.84
0.81
0.77
0.73
0,65
0.58
0.55
0.48
0.41
0.38
0.37
0.18
0.16

1.04
1.08
1.09
1.10
1.10
1.11
1.12
1.12
1.12
1.13
1.14
1.15
1.16
1.17
1.21
1.24
1.26
1.30
1.36
1.38
1.39
1,47
1.50

C, =

C2=

C3=

"f(g„g, +f„f,) p4vr'dr

fg~ p4vr dr

[fg~, p4wr 'dr/f g, p4wr'dr ]
7

4m „s~sz.„'/Z
-fg. p4vr'dr

- Z(-m ')

(l4)

(l6)

The product of these three factors gives the ratio
of our result for R,~ to the value predicted by the
Vfeinberg-Feinberg formula. Table III gives the
values of C„C„C,and their product for some

of the electron wave function. Since the electron
wave function weights g„more towards the origin,
using Z,«' should lead to smaller predictions for
the conversion rate. (2) In calculating the form
fa.ctors. , one uses q'= -m„'. However, owing to
Coulomb attraction, the effective value of Iq is
grea, ter than m„ in the nucleus and this decrea, ses
the value of the form factor. Hence, using F(-m„')
should lead to larger predictions for the conversion
rate. The first two effects cause the Weinberg-
Feinberg formula to make a smaller prediction for
the rate, while the third effect works in the oppo-
site direction and partially compensates for the
first two. To get quantitative estimates of the
three effects, ' I define three correction factors
ws follows:

atoms. For the heavy atoms, we see that C, and
C, are significant corrections, while their product
is close to I. We have seen qualitatively that these
effects should be in opposite directions.

If muon-number violation occurs due to the ex-
change of a scaLar-Higgs particle, then the effec-
tive Hamiltonian density takes the form

Q gs" (I+ s&.)p~"'~ L~.o, i

+g 0) e(I y ~5y ) p~e
&

where S'", etc. , denote the quark currents

S"'= (uu+dd)/2, etc. (I8)
The rate for the coherent process is given by (4),
with the replacement of the vector coupling con-
stants by the corresponding scalar coupling con-
stants and R~, R„by R~, 8„' where

+s v)= &e~f —
e ~ Ps v&4~& && ~

If we assume that all the &'s are +I or -I and

p~ = p~= p, then the expression for R,„is given
by (6) if we replace gr"', g r' ', and &us(Z) by gs',
gs ', and &uz(Z) where

(o„(Z)= (Gr'/2)9E, 'A'

(20)

Table I gives &uz(Z) and vz/&u(pN- vN'), in addi-
tion to cue(Z) and &ue/m(pN-vN'). &u„(Z) and ue(Z)
differ in the sign of the contribution coming from the
lower components of the lepton wave functions. This
contribution becomes important for the heavy ele-
ments. For the light elements, the Z dependence
of e„(Z) is similar to that of &ue(Z). For the
heavy elements, &o„(Z) falis off faster than u&e(Z).
Table IV is analogous to Table II with gsu'/gs'0'
replacing gr"'/gra'. Figure 2 gives the Z depen-
dence of R,„and ur(pN- eN) for some values of
gs"'/gs"'. The limits on R,„for sulphur and cop-
pe»ve Ig'"I&»'»d Igs"I&& 2xlo'

The main uncertainty in calculating the coherent
muon conversion rates comes from the neutron
density. If the error in B„d fi eednby Eq. (6) is
$s, then the error in the rate ((„)is approximately

~& (az."'-r,
)

(o) 0)8v Ap''

2

and this expression ean ea,sily be modified for the
Higgs-particle-exchange ca,se. Present experi-
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TABLE IV. Coherent-rate branching ratio as a function of the coupling constants for the
scalar-Higgs-boson case. The first column gives gs /gs and the other columns give R,& for
the elements indicated, as a fraction of the maximum value of R,z for each g's /g's.

16.0 20.0 29.0 34.0 64.0 80.0 82.0 92.0

—10.0
-5.0

0.0
5.0

10.0
15.0
20,0
25.0
30.0
35.0

0.18
0.26
0.40
0.68
0.83
0.83
0.83
0.83
0.44
0.26
0.00

0.21
0.32
0,48
0.81
1.00
1.00
1.00
1.00
0.53
0.31
0.00

0,49
0.58
0.68
0.84
0.71
0.45
0.25
0.10
0.01
0,00
0.17

0.93
0.98
1.00
1.00
0.60
0,19
0.01
0.06
0.18
0.27
0.64

0.99
0.97
0.87
0.70
0.26
0.01
0,11
0.57
0.75
0.82
1.00

0.81
0.78
0.67
0.50
0.15
0.00
0,18
0.69
0.82
0.85
0.91

0.77
0.73
0.62
0.45
0.12
0.00
0.20
0.73
0,85
0.88
0.90

0.72
0.66
0.54
0.35
0.07
0.02
0.30
0.92
1.00
1.00
0.92
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FIG. 2. Qualitative variation of: (a) A~ & and (4)
co(p, N eN), with atomic number Z, for the Higgs-
scalar case. For most of the elements shown in Table I
&~& lies within 10% of the smooth curves shown. The
solid curve is for gs ——10 ~, gs =0; the dash-dot curve(0) -g (1)

is for gs =0, gs =1.5&& 10; the dashed curve is for
g~&=1.33x1O ' gc)=2~1O 4.

8 s

mental data on the neutron distribution a.re rather
limited. However, considerable progress has
been made in estima, ting the neutron and proton
distributions, and many other nuclea. r properties,
using realistic nucleon forces. ' The proton dis-
tribution calculated by this method a,grees well
with experiments. The calculated neutron density
also agrees with the experimental density, to the
extent that the latter is determined. Also, the
neutron and proton properties calculated from
many-body theory a,re expected to be compa, rable
in reliability. Hence, such calculations provide
the most reliable neutron densities, and corre-
spondingly the most reliable estimates of („.

The assumption p~= p~ is quite good for the light
nuclei, and the largest errors from this assump-
tion will be for the heavy nuclei. For these nuclei,
the neutron density has. a larger root-mean-square
radius and hence R„wil1. be sma. lier than R~. Us-
ing the neutron density for ' 'Pb calculated by
Negele, "I estimate that R„(RN) is smaller than
R~ (R~) by about 10%, where R„, R~ are defined
by Eq. (5) and R„', Rz are defined by Eq. (19).
Hence the assumption p~= p~ leads to g„of about
-12% for lead if the phenomenological. coupling is
purely isoscalar. For the case in which the iso-
vector coupling is much larger than the isoscalar,
the error $„may be much greater. For the heavy
elements, the a,ctual isovector curves will be low-
er than shown in Figs. 1 and 2. The detailed
shape will depend on the nuclear model chosen to
estimate the neutron density.

We can now consider the nuclear matrix elements
contributing to incoherent capture. Such matrix
elements have been calculated for oxygen, "and
are also being calculated for sulphur, "using nu-
clear-model wave functions. The nuclear matrix
elements for the isovector Lorentz vector and
axial-vector currents are very similar to those
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1 2 (22)

Since the capture rate involves an incoherent sum
over protons and neutrons, this equation can be
modified for the nonzero isospin nuclei. For
these nuclei, normal capture has an extra inhibi-
tion factor because of the Pauli exclusion effect of
the excess neutrons. If we estimate this factor
using the Primakoff formula we find

-l
g I 3 A 2 Z (23)

For the heavy atoms, the coherent and incoherent
rates might be comparable if the coupling is iso-
vector.

CONCLUSION

I have discussed coherent muon conversion and
have considered the possibility of muon-number
violation occurring by lepton mixing, gauge bosons

that occur in ordinary muon capture. From the
measurements of the partial rates for ordinary
muon capture leading to different excited nuclear
states, one can determine the required matrix
elements by isospin rotations. The isoscalar Lo-
rentz vector matrix elements can be determined
from nuclear electromagnetic transitions and elec-
tron scattering experiments. " The main uncer-
tainty comes from having to correct for the Cou-
lomb effects on the electron wave function and
from the variation of the muon wave function with-
in the nucleus. If other matrix elements are
needed, then the best approach would be to use
nuclear wave functions determined from optical
potentials.

To illustrate the approach of isospin rotations,
we consider the special case g~ '= -g~"'=g and

g ~"' =g ~
' = 0. In this case, the total rates for the

two processes are related by isospin and for iso-
spin zero nuclei we have

R„„„=~(pN- eN')/~(pN- v¹)

or scalar-Higgs bosons. Tables II and IV and
Figs. 1 and 2 show the Z dependence of R,~ for
different values of the coupling constants. If the
isoscalar and isovector couplings are comparable
in magnitude, the Z dependence of R,~ does not
depend strongly on the isovector coupling constant.
For purely isoscalar couplings, the Z dependence
is rather flat for the heavy elements, for the
gauge-boson case. R,~ for sulphur, for which we
have some experimental information, is about 25%
of the maximum R,„for this- case. The limit on

A,N for sulphur implies ~g~"'~ &10 '. For the
Higgs exchange case, the maximum R,„occurs
for Z =34. R,„does not vary much between Z=34
and Z = 64, and begins to drop for the heavy ele-
ments. R,„for sulphur is 40/o of the maximum
R,~, in this case. The limit on R,~ for sulphur
implies ~gs"'~ &10 '. Present experimental bounds
on R,„do not provide significant limits for the iso-
vector coupling constants. The limits on R,„for
sulphur and copper imply

~ g ~
'

~

& 2. 9 x 10 or
~ g s"'

~

& 3.2 x 10 '. The isovector coupling con-
stants can be constrained by experiments on R, N

for the medium and heavy elements. R,„does not
vary significantly for these elements when the
coupling is purely isovector. For Z between 50
and 92, we estimate that R,„can vary by a maxi-
mum factor of about 2 for the gauge-boson case
and about 4 for the Higgs-scalar exchange case,
even when the calculation is done with the correct
neutron distribution. Also, the coherent and
incoherent conversion rates may be comparable
in magnitude for these elements, if the coupling is
purely isovector.
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