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William R. Frazcr
Uniuersity of California, San Diego, La Jolla, California 92093

John F. Gunion
Uniuersity of California, Dauis, California 95616

(Received 18 January 1979)

We use the diagrammatic approach to scale breaking to rederive the results of the renormalization-group
approach to two-photon, y*y, collisions, where one of the photons is highly virtual and the other nearly real,
In an axial gauge only ladder diagrams contribute to leading-logarithmic accuracy. When interpreted in
terms of the quark distribution of the real photon we obtain the result G &~(q',x) = [a/a, (q')]f (x) + 0(1),
where f, (x) is an exactly calculable scaling function. By virtue of the fact that only ladder diagrams
contribute in leading-logarithmic accuracy for this and other short-distance photon-target probes, we find
that this form for Gq/y can be employed, (to leading-logarithmic accuracy) in any short-distance application
involving a photon target. We give a summary of these additional applications with emphasis on high-

transverse-momentum phenomena. We present also estimates of the vector-dominance background to the
pointlike component of the photon distribution function. In addition we present a convenient summary of
leading-logarithmic quantum-chromodynamic corrections including dominant x —+1 behaviors.

I. INTRODUCTION

Measurement of the two-photon process y*+ y*- hadrons is possible in colliding lepton beams.
(Fig. 1). Interest in this process, first aroused
by Brodsky, Kinoshita, and Terazawa, ' has been
heightened by the realization that it provides clean
tests of quantum chromodynamics (QCD). Consider
first the total cross section, proportional to the
imaginary part of the forward amplitude y*(q)
+y*(P)-y~(q)+y*(p), as in Fig. 2. The "doubly-
deep" inelastic limit

2P 'q —constant, —,—constant
I q'I ' q'

is the easiest to analyze. This analysis was first
carried out by Gross and Treiman' using light-
cone commutators, but is much simpler in renor-
malization-group language. The result is that in
the limit (1.1), in the Euclidean region or continued
to the physical region with the usual smoothing of
threshold singularities, the amplitude is dominated
by those terms of lowest order in the strong coupl-
ing constant o.,(q'), the quark-loop diagrams: in

Fig. 3.
Although the Gross-Treiman limit (1.1) is most

conve'nient for theoretical analysis, it is most
inconvenient for measurement. Letting one of the

photons y(p} be nearly real, consider the region
of deep-inelastic scattering from a nearly real
photon, y*(q)+ y(p) —hadrons,

(1.2)

+ O(1) (1.4a)

(1.4b)

(We have extracted the color factor explicitly; our
sums are only over quark flavor, e.g. , m&=4 in the
u, d, s, c model. ) The fact that the leading term in

(W,„)„,„violates scaling, behaving like lnq', where-
as (W~„)b,„violates the Callan-Gross relation, was
pointed out by Walsh and Zerwas' and by Kingsley. '
These terms originate from the fact that the pho-
ton, unlike hadrons, can produce partons of large

Using the equivalent-photon approximation one can
analyze the cross section in terms of photon struc-
ture functions W„and W,„, or W,„and W~„, where

1'

Wz 2 v+W2- W»

with v=p q. The contributions, to leading order
in logq', of the box diagram of Fig. 3 to these
structur e functions are".

FIG. 1. A two-photon collision.
FIG. 2. Deep-inelastic total cross section as the im-

aginary part of y *{q}p—y y *(q).
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i,a

I)0

e, i flavors
W,

'

axial gauge is employed. As usual, we may inter-
pret

i, a

FIG. 3. The simplest "bare-box" contributions to
7 *Y 'Y'Y *.

transverse momentum by means of the "hard"
process of direct production of a quark-antiquark
pair.

Turning from the parton model to quantum
chromodynamics (QCD), the box diagram remains
an important contribution to the structure func-
tions. ' It is not, however, dominant. As we shall
see, all ladder diagrams such as the one shown in
Fig. 4(a) contribute to the leading behavior of W,„,
whereas W~„receives contributions also from
ladders. with the top rung crossed, as in Fig. 4(b).
The important conclusion remains valid, that the
leading contributions to W„and W~, are com-
pletely calculable in QCD. That is, the leading
term in W,„ is proportional to lnq' with calculable
coefficient, whereas the leading term in W~„ is a
calculable function of the 'Bjorken scaling variable.
Thus the two-photon process achieves a fundamen-
tal status in QCD, comparable to that of the e'e
annihilation cross section, in that the leading be-
havior of the structure functions is completely
determined —not just the evolution in Q', as in the
case of hadron structure function.

These conclusions were already obtained by
Kitten' by a renormalization-group operator-
product analysis. The main contribution of the
present work is the application of a diagrammatic
method described in a previous paper. ' In addi-
tion to providing confirmation of an important re-
sult, this method allows one to gain insight into the
diagrams of which the result is composed. As for
a hadron target, the leading-logarithmic contribu-
tions to W,„arise entirely from ladder diagrams
(with a mixture of quark and gluon rungs) when an

in terms of the per-color distribution function for
a quark of type i in' a real photon'; we obtain, per
color

G, .i„(x,q') =,'"=,
) f,.(~),2' n

g

where f,(x) is a. scaling function calculated in the
next section. Because the ladder structure of the
QCD contributions is preserved (in the leading-
logarithmic order) when a photon target is probed
by any other short-distance process, this distribu-
tion function is universally applicable. Thus, for
instance, "if we conside yi —qiql y2 q2q2 fol-
lowed by q,q, -q,'q,' via gluon exchange at high mo-
mentum transfer, Fig. 5, the cross section for
q,

' at high p~ will exhibit exact scaling,do', 1 2p ~~i d~p , (~i&a-q-i) .= (p ). f ~r=
1 90 c.m. &S

(l.6)

the I/a, (q') behaviors in q, /y, and q, /z, are can-
celled by the behavior of the cross section

(d(r/dt)(q, q, -q,'q,') ~~,(q') ~'

(here ~q'~-4pr'). Two-photon collisions increase
markedly the number of cross sections for which
exact QCD predictions can be made; the compli-
cations which are typical of reactions involving
hadrons are not present in the leading-logarithmic
order.

II. CALCULATION OF THE PHOTON STRUCTURE

FUNCTIONS: MOMENT APPROACH

Having already calculated in the previous paper'
(hereafter referred to as I) the leading amplitudes
for qq —y*y*, we can calculate yy- y*y* simply by
attaching two additional photons as shown in Fig.
6. Since the two-particle irreducible (2PI) photon-
attachment amplitudes C~ and C~ have the leading
behavior shown in Pig. 7, we need only calculate

(a)

FIG. 4. Typical higher-order contributions to (a)
Wfy and (b) Wi, from the y+ —py* amplitude. Solid
lines indicate quarks, dotted Iines gluons, and wavy
lines photons.

2

FIG. 5. A typical high-P z jet production mechanism
'

in pp collisions; the short-distance subprocess qq
qq (in the box). is illustrated.
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Kr
FIG. 6. Representation of the py y Q * amplitude

in terms of a Bethe-Salpeter equation involving gg
yQ* and qq pQ*. , and the kernels pp gg and

qq. Solid circles on intermediate lines and ver-
tices indicate full, renormalized propagators and ver-
tices.

the diagram shown in Fig. 8. %e use the expan-
sion for the qq - y*y* amplitude given in I (3.7a)
[this notation refers to Eq. (3.7a) of the previous
paper] to obtain the result, averaged over spins of
the target photon y(p),

T,„=e'3x (-2) x —,g4v

n-

d k (ink )"F 2q ~ k

(2~}' k'(k —p}'

x [C,f', „(k', q')

NSf n(|iq }~'
(2.1)

Here the factor of 3 is from summing over colors,
the factor of -2 from closing a fermion loop and
summing over quark and antiquark contributions
(see Ref. 3) and 4v comes from the traces (where
we have momentarily included only the Feynman-
gauge portion, Ee qz =-g z, of the target-photon
polarization sum). The f, „'s include both the
crossed and uncrossed virtual-photon contributions.
The (Ink')'"& arises from the combinat'ion of
Cz(P, k)(ink') "& behaving as (ink')'F. An expres-
sion for y~ is given later.

The singlet and nonsinglet notation of (2.1) is
slightly different from I; assuming that only
'Q 3 and Q = —3 quarks occur it is useful to define

I

FIG. 8. The simplified leading-logarithmic calcula-
tion of yy y Q* based on the kernel behaviors of Fig.
7 which show that only the yy qq kernel Survives in
leading-logarithmic order.

ny

en ' en&
i=1

NS — 12 1 2
en e n en en~

(2.2}

where the flavor indices refer to u = 1,d = 2, s = 3,
c=4, . . . . The coefficients Cs and C» are defined
as follows:

n

q 2fi C fs +C fNB (2.3)

where

4n„+n, 1

9ny nf i=1 (2.4)

with n„ the number of quarks of charge 3 and n„
the number of quarks' of charge ——,'. For the four-
flavor model nf =4

5
S 18 & NS (2.6)

We perform the integration in (2.1) using the
angular integration identity quoted in I (BV) and the
asymptotic forms for f ~~ „and f,"8„quoted in

I(C.3a) and I (3.11). For the leading term (see
Sec. IV for a discussion of nonleading terms) we
obtain"

QG S
= '1 (q'/A') g 3x2 " C» ' +C C" + (2.6a)

where Q'= ~q'~; or, using the identities of Appendix IC and the expression for E",~ in I(3.9c) (repeated in
Appendix A),

T,„=e~ In(Q'/A') g 12y„uP "„8 2- + ~ ~ (1+y ~/2b) (2.6b)

Following Kitten's notation' we have Qefined

d„=—1+ (y ~~+ y ~~}/2b

+(y"~vy FF (2.7a)

P

II a; (log K') ~F

FIG. 7. The leading-logarithmic behavior of the ker-
nels.

where b is defined by reference to the moving
coupling constant

2 2

b In(Q'/A') '
(2.7b)

16m'b-=b=[ —", C,(G) ——;n,T(R)j=(11--.'n, )

in the case C,(G) =3, C,(R) = ~3, T(R) = —', appro-
priate to QCD.

In the calculation outlined, one would find y„'
=Bm'n. There is, however, a further complication
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which we have been ignoring: The contribution of
nonladder graphs in which an external virtual pho-
ton line is crossed with a real photon line. In the
Feynman gauge of the external real photon, which
we used in deriving Eq. (2.1), such crossed dia-
grams do contribute in leading order. One finds,
however, by using the same reasoning as we used
in I, Sec. IIIA, that one can avoid having these
crossed diagrams contribute to leading order by
putting the target photon (with momentum p) in

Lipatov gauge, "where q q =0. The correct ver-
sion of Eq. (2.1) is then found by a calculation of
the ladder graphs formally identical to that given
in Appendix B of I, up to I (B10), to yield Eq. (2.6),
but with

1 fP+ pg+ 2

8v n(n+ 1)(n+2)
' (2.8)

In order to apply. these results in the physical re-
gion we consider the moments of W, =lmT, /2s,
with the result'3

R',„x,q' x" 'dx
0

t'q nI Cs'(1+ y "»»/2b)=e 3y in-
@„

+ Ns (1+y~ /2b)-zC

(2.9)

Thus the moments are exactly calculable in terms
of the anomalous dimensions y«, etc. , which ap-
pear directly and in d„. The QCD expressions for
the y's are given in Appendix A.

It is useful to rewrite (2.9) in the final general
form

=l
2

4 2 2

f 1 '=1=1 3f
f

(2.10a)

(2.11)

where
1+y"„/2b y„fsn= d yn~ fws, n=

1 n "/2b
tl

+ ypy

It is interesting to compare Eq. (2.10) with the
result of calculating the simple quark-loop dia-
gram, uncorrected by gluon exchange:

n

(W,„„)„„=e'3y„q,.' ln(q'/m, .'),
i=1

where m,. and q,. are the ma. sses and charges of
the quarks. The net effect of the ladder correc-
tions, as shown in Fig. 4(a), has been to modify
the numerical value of the coefficient of the lead-
ing behavior, which is proportional to lnq, but
not to change the power of lnq' (the quark mass
is also replaced by the scale parameter A). Of
course, (2.10) reduces to (2.11) if the y», y~»,
etc. , -0. The reason the power persists unmodi-
fied, in contrast to the behavior of a hadronic
structure function, can be traced to the hard-pho-
ton vertices in Fig. V. The logarithmic factor as-
sociated with Cz is (ink') "&, as we discussed in
I(2.20). If the photons were replaced by gluons,
for example, the appropriate power would be
(ink ) ' '& "~. Most significant is the softening of
the vertex by the factor o.,(k2) —(ink') '. By con-
trast, the photon vertices yield simply e', which
we take to be- constant.

The calculation of 8"~, proceeds similarly',
making use of the expression I(3.19) for the

P„P„TV,„=—,
'

vcoTV~ projection, we obtain

00

2v&uT =sv&u(TL } + e'3 x 2x 4v ~g, ,~ 2 .. „[Csf L „(k',q')+ CNs fL „(k',q')]

(2.12)

for the (—g s) part of the target-photon polarization sum; including the other pieces of the polarization sum

in the Lipatov gauge and performing the integrations yields

g2 C ENs Cr, n gi n

TL»=(TL»)box+ e ln A2 Q 6y„(p 1 " /2b
+Cs 1

'
1n=l - + yes +yl +y2 -I

and, using I(C12),

(2.13)

2 C ENs
TL„=(TL„)„,„+e~ ln —,g 6y„uP~ "2„'" + ~ [ELs „(1+y"„»/2b)+ GLs „yz»/2b]) . (2.14)

Expressions for ELNs„, ELs „, and GLs „(the "Born" terms in the ladder development of TL) were obtained

in I(3.20} and are repeated in Appendix A; they include both crossed and uncrossed virtual-photon dia-
grams. The E&'s arise entirely from the graphs with one gluon $oop. This means we need to add the con-
tribution of the bare-no-gluon box diagram which has the same scaling behavior a.s (2.14}. The absence of

the bare box diagram in the EL „s is evident from comparison of Fig. 7 and Fig. I13(b). We have left out
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the box diagram in (2.14) and must add it in separately. Alternatively, one could return to Eq. I (3.19) and
add another amplitude to recapture the box diagram.

Making use of the expressions for.the I'I, 's and GL, 's we obtain finally

5y„(u" 1 C2(R)C„, ngCz' 4r(a) y"„
, 2z'b(n+1) 3 1+y" /2b

+
d ' n+2 2b

Again, to apply this result in the physical region one takes moments of Wl. =1/2mImT~,
1

W, „„(q')=- W, „(x,q')x"-'dx.

(2.15)

(2.15}

For the box diagram one finds [see (1.4b}]
n

[Wx„,.(q')]2..= e'3 0 2 2 „1„2 ~ (2.i7)
( )( )

For the rest we use —,
' the coefficient of uP in Eq. (2.15) (see Ref. 13). One can express the result in the

form

(2.13)
dn

t=1 t=1

In the four-flavor model, where 2;~, Q,4=+,', C„2=-2, and n&C22= —'„', the above expression agrees with
Witten's Eq. (14).' Note, however, that Witten's b (call it b~) is normalized such that b~=37i2b, where b
has the conventional normalization given in (2.7b).

~(k, q) -b(q', k', k q) g. (3.1)

The structure function W,', for a quark of flavor i,
is related to b by'"

W,'(q', p', x) = —Im[2p'qb '(q', p', p.q)] . (3.2)
1

The moments of 8", have the behavior, for the
nonsinglet part [I (4.18)]

In(~q'~ /A2) -~~~i»
2 @' In(tp'I/A2)

Ip'l (3-3)
X

~

~

The (In~p'~} '& factor is present until we renor-
malize the external quark line carrying p. The
expressions for yzz/2b and y~ appear in Appendix
A.

We then calculate the photon amplitude T„Fig.
8, coming from attaching the target photon to a

III. CALCULATION OF THE DISTRIBUTION FUNCTIONS,
t" ] (q~,x) AND 6 ] (q2,x).

In this section we rederive the results of Sec. II
using the light-cone, probability function approach
of Sec. IV of I. We consider only 8'„, though
similar techniques can be employed for W~yp and

restrict ourselves to the nonsinglet part of the
structure function. We begin with the diagrams
of Fig. 6, with the current attachment kernels hav-

ing the asymptotic behavior of Fig. V.

The qq —Z*y*, quark-color-average T, ampli-
tude was given asymptotically in I(4.2) as

quark of given color and of flavor i as

(ink')"~

where

x Tr[y„k'b'(q', k', k. q)gk'y„(p k')]

x p"„„(p), (3 4)

is the spin-average Lipatov-gauge polarization
sum. This gauge, as discussed in Sec. II, elimi-
nates nonladder graphs. As in I Sec. IV we write
d'k = dk'd'k, dz/2z, where

&'+ &,
' &'+ &,

'
zP+ ', k„zP—4zP' " 4zP (3.5)

in a light-cone frame. We evaluate the dk' inte-
gral by picking up the [1/(p —k)]' pole, giving k'
--k,2/(I —z}, take (I/2ii) Im, and obtain for the
contribution to the photon target's 8",„ from a quark
.or antiquark of given color and of flavor i

e'&' ~ dk'Wi (q2 p2 x) Qi & (Ink 2)f~
J.

'd
8 + 1 —g

x 8

x Wi(q, k, x/z), (3.5)

where k' = -k, '/(1 —z)
W,' incorporates all QCD corrections to the bare
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e2
W,*gx) = —q, 'G, .„(x) (3.7)

quark i structure function coming from ladders
with quark-line-i sides and gluon rungs. Note
from (3.3) that its moments reduce to the bare
result W,' „=—,

'
Q; e' when y» -0. Recalling'. that

the per color contribution to W, of a quark of given
flavor i can be interpreted as the per color distri-
bution function of that quark in the given target T
by

where

A yg +'pg+ 2
2v n(n+ 1)(n+2) (3.11b)

is the z" ' moment of k,'Gb, g„of (3.9).
If y~~ or y~~ is set equal to zero, corresponding

to retaining only the fermion-sided ladder graphs
with gluon rungs, one finds from (2.10b) that

G, ,„(q',p', x) = —' Gb. ,„{z,n, ')d'b,

&& G (q' b' x/z)

where, for large kJ

we see that (3.6) is e(luivalent to

(s.8)

(3 8)

fS,.= fNS,. (3.12)

and we see that after summation of (3.11) over
quarks and antiquarks of all flavors and colors
we obtain exactly the result (2.10) for this special
case. The form (3.11) is actually a good approxi-
mation to the more complete expression obtained
with y~~ and y„~ retained as given in Appendix A.
Using (3.7) to convert to a per-color distribution
function, we can restate (3.11) as

is the pointlike distribution of a single quark of
given color in the photon as calculated from the
direct plus crossed bare-box photon diagrams. As
an aside, note that we can derive (1.4a) as (includ-
ing anti(luarks)

0
~ ~I ~

2
t

~

~II «~ ~
iI
2 2 2

«
~S t n ~

1

G...„(q', x)x" 'dx= -e2q, 21n(q.2/a2)f„, „. (s.ls)

This is equivalent [using In(Q2/A2) = 1/4)T be, (q2)}]
to the statement that

8 2 Q

[W,„(x)],=e'3 & 2 ' f wdk, 'G, , ('„(x,k, ') .
s=1

G i 2 ) 2 + fNS(
qi/y~q k Qi ( 2) 4 b

k (s.14)

In E(l. (3.8)
(3.10)

y„ in(Q'/&')
2 1+ y "pp/2b

4
= e ' f In(ik) /A ) (3.11a)

G~ q' k —=— ink '+TV' q' 0 x z'z)
is the fully renormalized distribution for a final
quark of fixed color summed over initial quark
colors, including all leading-logarithmic QCD
corrections. Eq. (3.8) shows that the full proba-
bility distribution function for a quark in a photon
is obtained by the natural convolution of the bare-
quark- in-a-photon distribution function with this
QCD-corrected ciuark-in-a-(Iuark distribution.

Taking moments of (3.6) and using (3.3) we obtain
for a given color and flavor quark or antiquark

all the moments have the same scaling behavior in
q2 in the form of a universal multiplicative factor.
More generally, including the singlet contributions
by extracting the coefficients of Q,2 in (2.10}, we
obtain for a quark of given color

1

G, ,„(q', x)x" 'dx
0

, (
Ns, + s, Ns,

f

(3.15)

which is the result of the convolution (3.8) using
the full G@c&n (q', k2, x/x) including singlet contri-
butions. Namely, from I, Appendix C, the dis-
tribution per color of q, summed over q& colors,
j.s

l1 G"' (q', f', r)r" 'dr =6,,[~(q', f")]~»""+-([~(q', ~')]""D,",+I~(q', ~')]""D,.
0 f

-[g(q', u')]-"»'"]

(3.16)

where
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ln( I q' I /A')
"q ") 1.(Ik I/A)

The 1/2n& occurs because the number of quarks
and antiquarks of all flavors is 2m&., 5,, is diagonal
in that i and j must have the same flavor including
quark or antiquark nature. In the above

y»/2b —y"„„/2b —F

l
(N2 1) dz z -lGQGD(q2 k2 y)

0

—= Nh"c( $)

=N[IP t'(q, k ) "l+D" t'(q, k ) 2]

with t' of Eq. (3.18) and

g)n Dn y EV
2b P'

(3.22)

(3.23)

y"„V/2b —y FF/2b —F
2'

1
[(rFF r vv} r Fv r vF]2b

n n

yn yes+ yVv +~n
2b 2b

(3.17)
The C,(R) factor, mentioned above, is absorbed
into y~v and there is a minus sign coming from
effectively closing a quark loop.

Performing the d'k, integration from (3.21)
(after taking moments as in (3.18)}we obtain

l
(N'-1) G„„(q2,x', v)~"-'d~

By taking moments of the convolution of G,"~&'y and

G@q /q we obtain an integral equation involving the
product of the moments

1

G, ./„(q', p', x)x" 'dx
0

=e', ' d ln, yn

dv gn-1GQcD (q2 k2 r}

(3.18)

rFv»2 —rl=e2N Q,. ln
~A r" 2b d Ft =1 n

(3.24)

G,q, (q', p')v" 'dv

2N, , Q' y 2yFv
(N —1) ' A2

For the color average we thus have (using y", —yl
5n}

yielding (3.15) after using the identity

One should, of course, note that
n

W,„=e'3 x 2 Q,. [2G &„(q', x)],
t=1

(3.19)

(3.20)

(3.25)
with N=3 colors in the standard theory.

We can run a consistency check on the normali-
zation of G &„by checking that momentum is con-
served. The momentum JxGdx corresponds to
n= 2. Thus we should have the QCD-corrected
momentum sum equal to the momentum sum pre-
dicted by the bare-box diagram, i.e. ,

with G, &„given by (3.15), is equivalent to our
t

earlier result (2.10).
With these techniques it is now easy to obtain a

second important result, the gluon distribution in
a photon 6,/y We compute it using the convolution

'2N . G / pe+ 1 G ( gdg

(3.26)

2n l

t= x
Using (3.15) and (3.25) this becomes [factoring out
the common piece, 2@~,e2Q,2y„ln(Q2/A2)]

x GQ(,D(q', k', x/g) .
(3.21)

+ynvv 2b 2yzvd„2bd„ (3.2 "t)

G
&

D is averaged over gluon colors but summed
over quark colors. We require only the moments
of G,&,., these are easily obtained from I, , where

omputed the moments of G, .~ ~ by the xeflec-
tion yv~ —y~v. We obtain, after summing over
gluon colors as well as q,. colors [the net sum
yielding a factor (N' —1)T(R)=NC, (R), where
N' —1 is the number of gluons].

For n=2, r"v,r» —r"vFrF, =0 so that d„=l+r"„ I
2b+yFF/2b; also, for n=2, 2yFv=yFF and we see
that (3.2V) is satisfied.

Note that, unlike the hadron-target case, the
amount of momentum carried by the gluons, in
leading-logarithmic order, is a fixed fraction of
the total
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quark momentum 1+y"„=„/25 (11/3)C2(G)»
gluon momentum 2y z=„'/2b (8/3) C,(R)

(3.28}

n.(Q'):

W„,.(Q') = W,',", .(Q".)+ W,",.(Q'),

where

(4.1a)

independent of Q' and n& C. orrections to (3.28)
are of order [ln In(Q'/A')) /In(Q'/A'), whereas for
a hadron target this ratio approaches its constant
limit much more slowly as Q'-~. For n=2 we
find that y", =0 and the y", term dominates as Q'-~
in (3.22) and (3.16) yielding

2nf

N Q GQcnn"-2
quark momentum;=~ 'i '~ y ~~
gluon momentum (N' —1)G~i n"= 2yzv'

1 n~T(R) 1 Nn~
2 CB(R) 2 (N' —1)
—', x (No. of quarks) 3 n~

No. of gluons 4 4
'

(3.29)

Asymptotically much more momentum is carried
by gluons in a hadron than in a photon if n&=4. The
value of n& at which these fractions become equal
is precisely n&= —", , the critical value at which
assymptotic freedom is lost.

In summary, (3.15) and (3.25) are the crucial
results for a quark and gluon distribution, after
all QCD corrections, in a photon target. To
actually obtain the distribution functions we must,
of course, invert the moment results. We will
pursue this in the next section, where we also esti-
mate the background coming from the vector-me-
son dominated part of the photon.

IV. APPLICATIONS AND PHENOMENOLOGY

A. Nonleading terms in V»

In the previous sections we have calculated the
leading contributions, proportional to o, (Q )
-lnQ, to the deep-inelastic scattering from a
real or nearly real photon. In principle this is
the simplest two-photon process, the total cross
section for a highly virtual photon on a photon tar-
get, being totally inclusive and requiring no mea-
surement of the hadronic final states.

Although in principle the leading term we have
calculated in W, „—call it W, „because it arises
from the pointlike character of the photon —is
measureable by extracting the coefficient of in@2

in S'&» in practice the measurement will be much
easier in a region of x and Q where the background
is small compared to the leading term. In this
section we estimate the magnitude of the "theo-
retical background, " the non-leading contributions,
in 8') .

I et us write the moments 8'&, „ in a form which
exhibits the dependence of the leading terms on

PL

W,'„',„(Q')= '"," [1+O(o.,)jQR (4.1b)

WP„,„(Q')=pa„"[n,(Q')] ""[1+0(~,)], (4.1c)

xG,''t"g, (x) = —,
'

—,
' C,(1 —x)

P

f 2~=2.2) C p
——1.0,

4m

(4.2)

for any q =u, u, d, or d of any one color. We
take xG, t,(x) =*C,(1 -x) corresponding to the
simplest quark counting prediction for x- 1; the
value of C, is chosen so that after summing over
u, u, d, and d of all colors, the quarks carry in
combination 50% of the p's momentum. The re-
sulting contribution to W&„(from 3.20) is

WvMD 3 2+Q 2

gym
d, 4

=4.6 x yp-
x

so that

(1 —x) 4vo.
x p

(4.3a)

where the X, „, the eigenvalues of the anomalous-
dimension matrix, are positive definite (except
for the case n= 2, when one of them is zero). In
this paper we have calculated W&„"„/n,(Q ) and the
result is given in Eq. (2.9). We have also calcu-
lated Wi„" „, which has an expansion like (4.1c}
but with all terms multiplied by a factor 0, The
higher-order corrections to W&„" in (4.1b) are
also calculable in QCD by calculating multiloop
diagrams. '4

On the other hand, 5'&, „ is like a hadronic
structure function in that its absolute magnitude
is not calculable in QCD perturbation theory-its
magnitude is not determined by short-distance
phenomena. It arises from the low-k portion of
the region of integration in (2.1), which in turn
depends on the unknown small-P behavior of the
function A „Q ) in I (3.11). This is, of course, the
analog of the unknown matrix elements of the op-
erators in the operator-product expansion. It is
important to understand what Q 's are necessary
before W|"„«W|„.

Although we cannot calculate S'&", we can esti-
mate it by assuming vector-meson dominance,
W» = W» . A rather quick estimate of the VMD
contribution can be obtained from the quark-
counting form"
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4.6x10 4 '
n(n -1}

We compare this to the bare-box result

(4.3b)

pL 2 2 (I) n Q' n'+n+2
2 2)/ m' n(n+1)(n+2)

(4.4)

x-1 is preserved after all QCD corrections are
incorporated. To see this, we first must obtain
an x-1 expression for G, ./, ." The x-1 limit is
controlled by the large-n moments. As n- y&&
and yves

- 0 a,s I/n relative to yv „and yzz. The
final result is then controlled entirely by y»
(fNs fs as yF)/

yves

0),

2 2

= 1.5 x 10 se ' in m' n(n+ 1)(n+ 2)
'

fj 4„.„-C,(R) (inn+ y ——,'), (4.7)

The experiments will measure, on average, the
momentum moment (n =2), which yields

(4.5)
~VMD bare 0 51r. n=2

( W'„'„,},.„ In(q'/m )

For Q —2 GeV and m =0.5 GeV this is less than
25%. In addition, the ratio of distribution func-
tions can be made arbitrarily small by looking in
the x-1 region. For the naive forms discussed
so far

in( Iq I/A')
ln(ik'i/A~) (4.8)

for the fully renormalized distribution defined be-
low E(1. (3.10).

We look for a form

where 5=16m 5 =11—3n& and y~ is Euler's cons-
tant. This leads to the result, from (3.3),

1

0

are VMD'p„~, (1 —x) . (4.6) 6, /, .(q', I)', x) =N(1 —x) (4.9)

This relative enhancement of pointlike pieces as such that

Nr(P)r(n) in( iq' i/A')
~,

"''/" " " = r(.+p)
=

in((I i/A~)
(4.10)

The solution is)~'ts

~u&3/4 - rg)
N=

)

with

4C2(R) ln( I q2 )/A')
In(lk I/A )

We may now convolute this form according to E(i. (3.8) to obtain(s'~

P„. . . "~
dz du' q ' e'e/4-'z)

(4.11a)

(4.11b)

(4.12)

In the limit x- 1, the replacement z =1 —(1 —x)p (0(p(1) makes it clear that z- l. In addition, we use

4C2(R ) 4C 2(R ) A

to finally obtain after P integration

PL 2 2 2 Q ((i
2 .2

,. /

(4.13)

(4.14)

(1 —x)~ exp(-P[b/4Cz(R}+ye —3/4] j
(4C /b)1 [la(I ) /)( )/)n(l l I /s )) pr(p}

I

The upper limit, P =0, dominates in leading logarithmic order and we have

IlimPI'(P) = 11
p-0

''/" p "'»=' 8" 4C,(R)I" ~~ 4C,(R) " 4
(4.15)
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which can be written in the form

GPL 2 2 ~ iQ 2~ 4m

«-i 2v(l, (q ) Jf) —(3 —4yz)C&(R)+ 4C&(R) in[1/(1 -x)]) ' (4.16)

exhibiting a logarithmic suppression as x- 1. For
the vector-dominance piece, we compute (for q
='v) B) d q or d)

l

the per-color distribution moments

t 1

0

VMD 2 2
elelr(q P x) = 'dz

G ba" e v MD(& )G
(lc D( x/& )

dz ~ (1 —z) 4v(l

ri, . q" (((q', I,'))+q e"„(((q',I,'))),
q=wy

Quadr

I Sj
(4.20a)

e'"'4 '~' x ' '

ry)
(4.17)

where the fdk' has been incorporated into
G,"i",&, and we have used the forms (4.2) and
(4.9). Changing variables to z = 1 —(1 —x)P and
performing the P integral as x- 1, we obtain'0

e i&3/4- @&

I'(p+ 2)

P

(4.18)

Note that this reduces to G'"' when tq'I - IP I

and the parameter of E(1. (4.lib), P-0. To illus-
trate the relative behaviors of Gq/p/y and G, /, we
examine the relative size of Wi „and W&„using
the approximations (4.16) and (4.18) at Iq'I =1.5
(GeV), for A =(0.5 GeV) and IP I =m, , with
b =8—,'(n~=4). The x-1 approximations are plot-
ted in Fig. 9(a). We see that, in the x=0.6 to 1

range where the x - approximation is not bad,
the VMD contribution is at least a factor of 10 be-
low the pointlike contribution. This discrepancy
increases as lq'I increases-5'&, " rises with Iq I

while Wi„ falls with increasing Iq I.
Of course, exact inversion is preferable. " We

perform this for the pointlike contributions G, ."/,
of (3.15) and Wl«of (2.10). For the vector domin-
ated contributions we first calculate the contribu-
tion from the quark portion of the bare VMD dis-
tribution by performing the convolution

GvMD (q2 m 2 x) g Gbare vMD(i)
'dz

q=Mv Q X
dv8

i
q n-i bare VMD ~ p

ye, = nXX ale lr —
12 f l

( 1)

In similar fashion, we find

i
x dx Gs~ln lr y((. n 2 kG(~) )

(4.21)

with kc defined in (3.22). With these distributions
it is then easy to calculate

2nf

2W,'„' =e'3 Q('G,",,„,
1

2n

2 WVMD 23 2G VMD
q;/p/y ~

4 =1

(4.22)

Of course, the above does npt include the contri-
butj. pns to Wgy pf quarks which evplve frpm the
gluon portion of the bare-VMD p wavy-function con-
tent. We take (with D, = 1.5)

bare VMD ( (1 X) 47) (l

Jp
with moments

f n- id Gbare VMD g 2 4@0.
riel r ' =ye, n=

8 n(n2 1) f 2

(4.23)

(4.23)

corresponding to dimensional counting x- 1 be-
havior with 50% of the bare p's momentum in
gluons. We then obtain a second contribution to
the complete G, /p/ Thus

kMD($(q', m, ')), (4.20b)
qw, s, c, c 2'+f

where the moment of the bare VMD distribution is

&G, . /, q, mp, — (4.19) y,' „k„" ($(q, m, ')) (4.24)

where the moments of G, , i, . are given in (3.16);
we have set Ik'

I =m, in g(q, k ) =ln( Iq'I/
Aa)/in(IkaI/Aa). The usual k integration in the
convolution is absorbed implicitly into the k, -in-
tegrated bare VMD distribution. We obtain for

~ where

J
i
x" 'dx G'„.",,=k„",(&(q', m, '))

0

=(D" $ "&+Dil $ "~) (4.25)
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FIG. 9. (a) 2W~ as calculated in Sec. IV. , QC aThe bare, QCD correc e, at d and QCD x 1 approximations are compared fory
=1 5 GeV~. (b) The full QCD correc fyted 2 8' contributions (PL andboth the VMD and the pointlike contributions at Q =1.5 GeV .

G of the hoton target2= 2 in uark and luon distributions G /y and G~/„o e p o) o p Q = . . () lyngqua g
ib tions. The. common scaling factor ln Q qA is ivi e ou .coming from the non-VMD, pointlike contribu ions.

and gluon distribution functions G / /y and Gg/p /y o e pof the hoton target coming from
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with

Cg(R) yves N' —1 yves

8T(R)nf 55" 2Nn~ 4b5" '

We can also easily calculate the corresponding
contribution to G &, &, using the moments of G, &, ,

n-fd GLACD Pr(g) Dn ]-y( PDn g-y2 (4.27)

with D",2=DE and D2&
——D&", [see Eq. (3.17)]. We ob

tain a contribution

At fixed Q decreasing x will cause 8' to increase
and new thresholds will be systematically en-
countered.

The vector-dominance contributions are little
affected by thresholds. In the nonsinglet approxi-
mation the initial p content (u, d, u, d) is preserved
and new thresholds are not seen. Only the small
singlet corrections will be sensitive to quark
thresholds.

B. Other short-distance phenomena

i
x" 'dxc,'„,„=y', „I.(() (4.28}

The distribution functions G, ."&» the moments
of which appear in (3.15}, are probed in a large
variety of situations.

per final gluon color.
The results for 2W&„are presented in Fig. 9(a)

and compared to the bare-box and bare-VMD pre-
dictions and to the x- 1 approximations. The x- 1 approximations are seen to be good represen-
tations, on average, and correctly approach the
exact predictions as x- 1. The bare-box contribu-
tion is actually below the full result for x& 0.8
(though of course, the n =2 momentum moments
are the same) while the bare-VMD calculation is
a substantial over estimate of the true result in
the moderate to large x region; of course, as Q
-m the full QCD-corrected VMD form approaches
the bare-VMD form. The effect of the QCD cor-
rections even for moderate Q' appear to make it
easier to isolate experimentally the pointlike,
totally calculable, contribution to 8'&, over a sub-
stantial range of x.

In Fig. 9(b) we show the Q dependence of the
two different contributions to 2W&, . As expected,
the VMD contribution decreases, except at small
x, as Q increases, while the pointlike contribu-
tions continue to rise as In(Q'/A').

In Fig. 9(c) we give the pointlike contributions to
the quark and gluon distribution functions (per
color) as obtained by the exact inversion tech-
niques. " We have divided out the overall factor,
In(Q /A2}.

In Fig. 9(d) we give the vector-dominance con-
tributions to the quark and gluon distribution func-
tions (per color) in a photon target, as obtained by
the exact inversion, at Q = 1.5 (GeV) and 5 (GeV) .

Care must be exercised in using the pointlike
contribution curves; the curves assume that u, d,
8, and c quarks all contribute fully. Of course, in

reality there are thresholds in W2=@ (1 —'x)/x. At

fixed x=0.3, for instance, 8' -3 GeV at Q =1.5
(GeV)' and the c contribution will be small; the
correct result can be approximated by scaling
according to the nonsinglet factor Z; ~Q;,

3 4

1. High transverse momentum
I

(o) yy collisions. This is studied exhaustively
in Ref. 10. We first recall from the Introduction
that the behavior G,, &„~1n(Q /A )f(x) guarantees
that the process of Fig. 5, based on quark-quark
scattering, scales in leading-logarithmic order.
The same arguments apply equally to the process
of Fig. 10(a), which also produces four jets, two

gluon jets at high P~ and &wo other at low p~. The
three-jet process of Fig. 10(b) is also exactly
scaling. Here one incoming photon participates
directly in the high-P~ subprocess, yq- qg; the
subprocess cross section is proportional to
n, (4Pr ) while the incoming quark distribution is
proportions. l to a, ~(4pr ). The inclusive quark
or gluon jet cross section thus scales exactly. A

third process, which scales exactly is illustrated
in Fig. 10(c). Here both incoming photons parti-
cipate directly in the production of the two jets.
There are no distribution functions involved and
the yy-qq subprocess cross-section scales ex-
actly to leading-logarithmic accuracy. All QCD
corrections are simply absorbed into the renormal-
ized quark charges. It is easiest to visualize the
calculation in terms of the imaginary part of an
amplitude as illustrated in Fig. 11. Diagrams in
which explicit gluon loops connect, for instance,
the intermediate virtual quark and a final quark
are suppressed by n, (4Pr ) in axial gauge (see Sec.
IIIA of I); of course, there are implicit gluon
corrections which are included in the wave func-

/
/

/

I

I

I~J

(b)

FIG. 10. Three additional (to that shown in Fig. 5)
high-p z jet production cross sections based on sub-
processes (a) qq gg, (b) pq qg, and (c) py qq.
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+ o ~ ~ e2 ~/n q2~-2)F ()n ~2~27F e2

FIG. 11. The pp qq high-p &cross section as an

asymptotic series in fully renormalized diagrams, in
the axial gauge.

FIG. 13. e'e annihilation total cross section as it
would be calculated in leading-logarithm order in the
axial gauge.

tion (i.e. , propagator) and vertex renormaliza-
tions represented by blobs in Fig. 11; these are
eventually absorbed in the charge renormalization
at the photon vertices —wave function and vertex
renormalizations cancelling to give e&. The first
diagram of Fig. 11 would thus be computed as be-
ing proportional to

[e In(4Pr ) "&] [In(4Pr )"&] =e

This is another illustration of the power of the
axial gauge which makes this cancellation obvious.
In Feynman gauge, for instance, both diagrams
in Fig. 11 would contribute in O(1) and only a full
computation would reveal the appropriate cancella-
tions.

Implicit in the above results is the assumption
that the experimental calorimeter which observes
the quark or gluon jet accepts the entire renormal-
ized jet including QCD emission and reabsorption
corrections, represented for instance by the re-
normalization blob in Fig. 11 (similar blobs are
implicit in Fig. 10 and Fig. 5 but were not drawn).
This is a nontrivial requirement as the renormali-
zation of the propagator involves gluon-ladder
loop integrations characterized by large momentum
transfer Is)' of order 4pr' itself (Fig. 12). The way

to handle this requirement is illustrated by e'e
annihilation. That the total e'e cross section
computed as the imaginary part of the diagram il-
lustrated in Fig. 13 should scale follows from the
same type of argument as above —vertex correc-
tions cancel propagator corrections. This scaling
can be characterized as sealing of the cross sec-
tion for production of jets. One looks at the en-
tire event and then reconstructs the direction and

total momentum of the jet. Similarly in yy colli-
sions one must look for a high p~ hadrons or an

energetic calorimeter trigger as a signal for a high

P~ jet, but then examine the entire event to decide
the true direction and total P~ of the jet. In this
way one can determine the cross section for pro-
duction of a jet of given p~ and angular orienta-
tion.

(b) High-Pr y ps"oduetion ".If one looks at the
cross section for production of a bare quark or
hadron of given high p~ then scale breaking is in-
troduced. Just as G",&, (q', x) and

1

G, /r(q', x) = —G, /™r (z) G, /, (x/z, q')
x g

exhibit scale violations so do the reverse decay
functions. " In the realistic hadron case we are,
as usual, faced with a lack of knowledge of the
primordial (i.e., pre-QCD scale violation) decay
distribution D'„",,"'"'(z). However, if we look at a,

final y from the decay of a high-P ~ jet the point
like contributions dominate as they do in the re-
versed process of deep-inelastic scattering on a
photon target. We obtain

2tl

J =1

x G, g, (z, q', IIB) (4.29)

per color of q, . Here G,"-cg is color averaged
for one quark and color summed in the other and

(4.30)

(also per q color) has moments

2
rr &a«S
Wy/q~ &yf y 2 yl

l.
with

+8+ 2
8v' n(nB —1)

(4.31a)

(4.3lb)

analogous to (2.8). Retaining, for the moment,
only the nonsinglet diagonal part of Go

1
z~-rdz G '&, (q' II' z)

In([qsl hl ')
In() l~) /A')

(4.32)

where 5;,. indicates diagonality in quark flavor
(including q or q nature), we obtain

FIG. 12. The gluon structure implicit in a renor-
malized jet. The gluons nearest the short-distance sub-
process have the largest p z,'s relative to the final quark.

x" '
dxD&g, (x, q') =e'ln

B Q& BfNs
~

0
g q~

(4.33)
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where

y-
1+y~~/

(4.34a)

2n

r)r) (x, d')=, J d'a —D rr( —,, a')
4 =1

and we define for later use

1+y"y/2b
S, n yn

n
(4.34b)

e'ln A. ~' Ns n

these are, of course, closely analogous to the
definitions (2.10b). As in (3.15) we can generalize
(4.33) to include the nonsinglet contributions with
the result

l1
x" 'dx D'$ (x, q')

0

x G &'(z q' I22) (4 3g)

where G, /, is summed over gluon colors and
QCD

i
averaged over q,. colors, in our standard definition.
Note that we have reversed the gluon-quark transi-
tion. The result for G, ~~ is. obtained from
[(N' —1)/N] Go/, . [see Eq. (3.22)] by changing n
to -(n+ 1) in the moments; the factor (N' —1)/N
converts the gluon-color average to a color sum
and the quark-color sum to a quark-color average.
The net result, analogous to (3.25), is then

2

ny

+ „Q Q, '(f r, . f„..))-;
(4.35)

clearly the only change has been the replacement
of y„by y„. This is intuitively correct since the
distribution Dy/, is related to G, /& by the reflec-
tion (both are per color of the (Iuark)

, y„"C,(R)
2bd„8T(R)nf

n

= 2 ln 2
—e2 .2y

(4.40)

where we have used
I

D b'/, (x) =xGb'/'„' (1lx) (4.36)

so that the moments are related by
'

J
1 1

x dxD / (x)= xn dxxG ~ (1/x)
0 0

- (n+ r) C2(R) n

8T(R)n

+-(n+ j.) y (n+&) yn ynFV VF FV VF

(4.41)

1

d& &- (n+ r)-r G
bare

(&)a/y
0

(4.37)

and

NC, (R)
( )

¹

—1
(4.42)

DP'/, (x, q') = xG,~ (1/x, q') (4.38)

i.e., by the n- —(n+ 1) reflection which converts
y„ into y„. In (4.35) the f 's contain y~z, y~ and
(in d") y~, y~; these are defined through mo-

Appendix A), respectively. The first two are
symmetric under the reflection operation of (4.35)
so that y~ and y~ are unchanged under reflection,
while the product y~ y~ is unchanged under re-
flection. Thus (4.35) guarantees that the recipro-
city relation

2). 2 In(Q'lA ')
y/ ( q ) I ['1/(1 )]

(4.43)

The result (4.40) is more trivially obtained direct-
ly from (3.25) by n - —(n+ 1) reflection and use of
(4.41) and (4.42).

These distributions may be used to make pre-
cise predictions for high-P~ y production in colli-
sions of various types as well as for y production
in the jets of e e annihilation. The two most im-
portant features of the y distribution are its en-
hancement with in@' and its very weak suppres-
sion as z -1

holds after including all leading-logarithmic cor-
rections.

An analogous result for gluon decay into a y is
also easily obtained, by reflection arguments,
from the result (3.15). We would compute the per
color decay into a y as

[see (4.16)]. As the edge of phase space is ap-
Proached (2PyrAs -1 in high-Pr collisions,
2~ py~ /vs -1 in e'e annihilation) single-y pro-
duction will actually become comparable to
single-hadron production for which the decay dis-
tributions are suppressed by a power in (1 -z)
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and by an overall q' dependent suppression factor;
for instance [see Eq. (4.18)]

& (3/ ~w@)p(q2)

D, /, (z, q') (1-z)'~" '
~( (,) 2).

(4.44)

The effects of this weaker suppression have al-
ready been surveyed in papers by Ruckl, Gunion,
and Brodsky and by Jones and vicki (see Ref. 22).
One finds that at high Pr the y/m ratio coming from
jet fragmentation can approach 1 for

yor Z
T

quarks or antiquarks in a photon source is much
higher than for a hadron source [see Fig. 9(d)]
where fast fragments are suppressed by a power
[see (4.16) vs. (4.18) for example]. Thus the
large-mass portion of the p, -pair spectrum in
yN collisions will be greatly enhanced relative to
the p. -pair spectrum observed in a purely hadronic
collisions such as mN. Correspondingly the mas-
sive particle or p. pair will have a broader distri-
bution (at any given mass) in x~—its longitudinal-
phase-space location —in y initiated collisions.

V. CONCLUSION

However, the high-P~ cross section is dominated
by diagrams in which the y participates directly
in the high-P ~ subprocess and thus Dy/+ is not
probed. This is restated diagrammatically in Fig.
14. Tests of this weaker fragmentation suppres-
sion will thus be easiest in e'e annihilation. In
high-P~ physics one must distinguish between dia-
gram (a) and (b) of Fig. 14 by noting that if the y
participates directly in the high-p~ subprocess
(a) then it is produced on its own, i.e., without
accompanying hadrons; whereas if it is the frag-
ment of a quark jet, (b), it has an accompanying
jet of hadrons. Diagrams of type (b) generally are
only a small percentage of the total high-P~ y cross
section.

2. Ijt.+p pair prodgetion, etc.

In this category we include any reaction in which
a quark (or antiquark) from an incoming photon
target is used to make a massive object F, g, p,

'
p,

pair, etc., —via the usual qq annihilation method,
Fig. 15. In the leading-logarithmic order the
ladder structure of the theory (in axial gauge)
guarantees that it is correct to use the G, /y(q', x)
as measured in deep-inelastic scattering on a
photon target to calculate the massive particle
(or pair) production cross section. This is true
in yN and yy collisions. The shape of the G, /~
= 0-, /~ distribution function illustrated in Fig. 9(c)
shows that the relative probability of finding fast

y
t

/~(x, q') ~in(Q'/A')f, ~~(x) . (5.1)

The moments of the pointlike contributions to the
G's and D's appear in equations (3.15), (3.25),
(4.35), and (4.40). Thus reactions involving two
photon collisions take on special significance as
they are exactly calculable to leading-logarithmic
accuracy in QCD. For instance many of the high-

P~ jet production cross sections are then predicted
to exhibit exact scaling. We have also estimated
the full QCD-corrected vector-dominance back-
ground to the above G distributions. These appear
in Eqs. (4.20), (4.23), (4.24), and (4.28). For
moderate Q' (& 1.5 GeV') they are relatively small
over much of the x range.

In addition, we have rederived the earlier re-
sults for deep-inelastic scattering on a photon tar-
get obtained by Witten. ' The leading contributions
to W, ~

and W~y, Eqs. (2.10) and (2.18) are exactly
calculable and according to estimates are likely
to far exceed vector-dominance backgrounds over
a substantial range of x = 1/ar.

Finally in Appendix B we present a convenient
summary of QCD corrections through the full
leading-logarithmic forms of G~f~, G~g, , G~~/

and Go@.

Thus we have seen that the photon again reveals
itself to be a particularly simple object. When the
photon's distribution functions G, /yp Dy/, p Gz/y
a d Dyle are probed at large momentum transfer
q' by any short-distance process, all the above ex-
hibit extremely simple and exactly calculable scal-
ing behavior, for instance

(a)

FIG. 14. Mechanisms for production of a high-p 2, y
in pp collisions. (a) dominates over (b) but is disting-
uishable by the absence of an accompanying quark jet
of hadrons.

FIG. 15. Massive-pair production in yy and pN col-
lisions.
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APPENDIX A: PARAMETERS USED IN CALCULATIONS

Yy'
b

Next we repeat the expression for the moments
of the "Born" terms of the Bethe-Salpeter equa-
tions for T, and T~ in I. We obtained

F' =2@ ' G' =0
12N f y 12tf

Q, 'C, (R) 1
2v2blnIq2] n+1

ny

2 Q q, 'T(It).
Gz 7 binI

1
(n+ 1)(n+ 2)

(A6)

[Here z = (p,'+ p2t)/(p, +p2) and b = p' in a frame
with P~ = 0, P' and p are the momenta of the second-
ary and primary quark, respectively. ] The other
ingredient, y~, the propagator anomalous dimen-
sion, is the n=1 "probability" moment

In this appendix we accumulate some of the. im-
portant parameters which go into the photon-struc-
ture-function calculations. These were all derived
in I. First the anomalous dimensions (16 bt/=b)

when both uncrossed and crossed virtual-photon
graphs were included. We also use several times
the identity from Appendix IC

2b b n(n+ 1) 2~~ j &3
(Ala)

Ctx n gf)t n" „+ "„=—[F„„(1+y"/2b)+G. „y" /2b].
1+&", 1+r2

yw 11 4 4 ~li3
2b b 3 n(n —1) (n+ 1)(n+ 2) &~ j&I

(Av)

1 4 1l+= —n,
(A1b)

APPENDIX B: COMPENDIUM OF DISTRIBUTION

FUNCTIONS 2~

ye~ 1 n'+n+2 I/4

2b b n(n' —1) (3
(A1c)

y" 8 n'+n+ 2

2b b n(n+1)(n+ 2) / 2
(A1d)

r~
b

(A2)

where

The constants in parentheses refer to the group-
theoretical constants C2 (G) = 3, C2(ft) = —',, T(ft) = 2

(per fermion flavor); n/ is the number of q flavors.
In I, for example, y~/2b was computed as

We summarize in our language the crucial re-
sults for the QCD evolution functions GQ /, ,

function of $= ln(Iq'I/A')/ln(I/2'I/A2), whereq'is
the off-shell mass of the final q or g. 'This off-
shell mass becomes essentially the same as the

mass of the short-distance probe in leading-
logarithmic order [see I(2.5)]. The variable b2 is
the mass of the initial q&. G &, and G, I -0 as
Iq'I - Ib'I while G / and G /

-appr'opriate 6

functions in this limit. Each G is averaged over
colors of the final particle and summed over
colors of the initial. They are to be folded to-
gether with per color primordial target, T, dis-
tribution functions Gerr/tr "4t" (assumed to have

strong br damping)

btl r 1+g2
tttt dz tt I C (It )

8g2b g 1 g
(A3)

GQGD corrected(z
I

q-2
I

2)

is a moment of the lowest-order QCD distribution
for a quark-from-a-quark of the same type; for
large k~'

f C " (z)cz—('; ~z'"~, zz„')
~~Cy 0 X

(B1)

to obtain the per-color QCD-corrected target dis-
tribution functions, GQ/cr '"'~"c (we have taken
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(p1~Da + p'aD p'~j)
Sf

(82a)

(82b)

(Ik'I)-mr' for simplicity). The+a does not in-
clude colors; the color sum for Za is incorporated
in our definition of 6, /~ . We have obtained the
moments

(G,,/, ,).= 6(/("»

Each is the correctly normalized moment of the
lowest transitions: (a) q -q+ (g); (b) q-g+ (q);
(c) g-q+ (q); and (d) g-[g+ (g)]+[g+ (q)], respec-
tively. 'The particles in parentheses are the spec-
tators to the probed particle.

Following the procedures discussed in Sec. IV
we may obtain forms for the distributions valid as
x-1. We use the large-n limits (see Appendix A)

ya»- —C, (R)(inn+ ys - a), (BVa)
b

Sf

(G ) (P'iDtl + PaaDlt )

Here

g =»(Iq'I«')/»(Ik'I«')
and

(82c)

(82d)

(83)

y"„-=C,(G) inn+re ——+ /C
4 11 n/T (R

y" -=-C (R),
11

12 ~g 2

8 1
y" -— n/T(R—)

yn

(87& )

(BVc)

(8'td)

r"„,= a (r"„+r"„v6"),
6" = [y"„r"„)'-+4r"„r"„]"

n n n n n
11 22 Dll 2gn

(84)

. and

D"„-1, y", -y"„
n n n

y22 yll &
(BS)

we have used the notation which yield (note that y", „&„y",for C, (G) &C,(R) so

(2n/NG, / + (N' —1)G«a)„., = 1,1

1 2nf

G, /, +(N' —1)G /, =1,
N

(86a)

(85b)

n n n n

yn yVV yn yFV yn yVF
2y '

with the y», etc. , of Appendix A. It can, of
course, be verified that the n = 2 moment is con-
served under evolution. Using 6"'=y",,'+ya»',

(G, /, )„-5,)P"»,

„.C, (R)1' "2m~
n

¹

—1(.„a n/T(R)
4f~/S n

f

(G ) ]aa

6„=[C,(G) —C, (R)] (inn+ re)+-a'C, (R)

C ( )
AT(R)

(89a)

(89b)

(89c)

(89d)

d ( (G a ~
/ a&

)n I c o
= 6 t/ y 11 t (86a)

verifying explicitly gluon-momentum and quark-
momentum conservation, respectively.

We also note that the derivatives (-dG/dg)&„,
give the lowest-order contributions to the 6's in
the ladder. development discussed in paper I:

The form (89a) was inverted in Sec. IV and the
form (89d) is entirely analogous. The result is
essentially obtained by the intuitive substitution
n-(1/1-x) (i.e. , the larger the moment, the
nearer 1 the x value probed) accompanied by
appropriate normalization. We obtain

d N
g( (Ga/a&)» Ii o

= »&&Na (86b)

(86c)

G. /, (x, $),- 6o(1-&)''

expa4Ca(R)/b] in&(S/4 rs)]—
1'(4C, (R) 1n)/b)

d—~((G,/, )a I c.0 =y» (86d) where P = [4C,(R)/b] lng

(810a)

I

~p-x exp([4C, (G)/b] in)[11/12 —ys -n/T(R)/SC, (G)]j
1'(4C, (G) in'/b)

where p = [4C,(G)/5] in'
(810b)
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G,~, (x, h),=g ~, (1-x)~
1

~(x) = [C,(G) —C, (R)](ln + y )
1 (B10c)

,-,'C, (R)-,', C, (G)
"

The off-diagonal distributions (B9b) and (B9c) are
inverted in entirely similar fashion. The I/n in
the moments indicates a basic power (1 —x)
rather than (1 —x)~ ', as for the diagonal elei"ents,
where p = [4C„(R)/I ) In( as appropriate to $ "&&; the
1/Inn is correctly incorporated by the substitution
n- I/I -x as was the case for G, ~„ in Sec. IV. The
normalization is determined as in the case of
(B9a) discussed in Sec. IV. We obtain

4C, (G)ln) 4C, (R)ln)
5 b

(B11)

Finally we note the result, proved in Sec. IV for
a few special cases, that decay distributions, D,
including all leading-logarithmic corrections are
simply obtained by the reciprocity relation

are intuitively sensible. A gluon —gluon transi-
tion is controlled by the Casimir operator C, (G)
while the quark-quark transition is controlled by
C, (R) where C, (G)/C, (R) = —', , a ratio which is en-
countered in gluon vs quark jet multiplicity ratios.
Note that for large enough $ a gluon prefers to use
the "off-diagonal" decay into a quark rather than
decay into a gluon. This occurs (roughly) when

and

G, ~, (x, $)„=, G,(, (x, g).
(B10d)

(B12)

at the quark and gluon level. 'This remains valid
even after the quark and gluon decay distributions

The latter result is intuitively obvious since G, ~~
and G,~, should be related by x-1/x as x-1
aside from different color average and sum fac-
tors. 'The general features of these x-1 results

are folded together with primordial hadron or
photon source distributions. 'The preceding for-
mulas thus allow an economical summary of all
leading-order QCD corrections.
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