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We derive a formal expression for the one-loop corrected effective potential of non-Abelian gauge theory in

the covariant gauge, This expression is checked, for arbitrary gauge group, by graphically calculating the
one-loop renormalization constants, The effective potential for a restricted range of fields is explicitly
evaluated for the gauge groups SU(2) and SU(3) in the Landau gauge. We extend the range of validity of
these results using the renormalization group to improve the effective potential. Extension to larger, simple

gauge groups follows immediately from our formalism. The possibility, and physical meaning, of a nonzero
vacuum expectation value is discussed, A nonzero vacuum is shown to behave as a regulator for infrared
divergences.

I. INTRODUCTION

'The effective potential for a field theory' has
been used extensively in studies of spontaneous
symmetry breaking. One of the more interesting
applications is that of Coleman and Weinberg, who
examined one-loop radiative corrections to the
effective potential in massless scalar electro-
dynamics. ' This theory was thought to be plagued
by logarithmic, infrared divergences in its
Green's functions on the scalar mass shell. 'The

result of the above analysis was, however, that
the theory e8capes this problem by cleverly grow-
ing, at the one-loop level, an effective ggxong-sign
mass term. A nem nonzero vacuum is thereby
introduced which breaks the original U(1) sym-
metry, gives mass to the scalar field, and avoids
an on-shell infrared catastrophe. The gauge de-
pendence of the effective potential clouds this issue
but the above conclusions survive analysis in this
regard. ' The starting point of the present investi-
gation is the anticipation that pure, non-Abelian,
Yang-Mills theory, being both massless and gauge
irivariant, could escape its well-known infrared
difficulties by a mechanism similar to that found
in the Coleman-Weinberg example.

Formal expressions for the one-loop effective
action of non-Abelian gauge theory have been ob-
tained by several authors' using Schwinger's
proper- time formalism. ' These expressions have
been evaluated for certain simple background
fields. "' However, a direct evaluation of the one-
loop effective potential (rather than the effective
action) is more in keeping with the Coleman-Wein-
berg approach. We denote the one-loop effective
potential by V[/»], where 'P» are space-time con-
stant gauge fields. In Sec. III of this paper we
present a formal expression for V[/„] in the co-
variant gauge (o.'gauge) for an arbitrary, simple
gauge group. This expression is checked in Sec.

IV by graphically calculating the one-loop wave-
function and coupling renormalization constants
(Z„and Z„respectively) in the Feynman gauge
(o =1).

In Sec. II we examine the classical (tree) po-
tential for non-Abeli. an gauge theories and are led
to fields of the form rv„(r is a, gauge group vector
and v, a space-time constant Lorentz vector) as
possible candidates for nonzero -vacuums. These
vacuums clearly do not satisfy the boundary condi-
tions that are normally imposed on gauge fields.
and are, therefore, somewhat pathological. A
careful discussion of these pathologies is given
in Sec. II. However, since these vacuums appear
only as background fields in the relevant path
integral, we do not consider them a source of
difficulty in the calculation of the effective poten-
tial. What is more, we will show that once one is
willing to allow such fields in the domain of the
theory they act, . at least to the one-loop level, as
a regulator for infrared divergences that mould
otherwise occur. In Sec. II it is shown that these
vacuums are simply gauge translates of the zero
field and are, therefore, with respect to any
gauge-invariant quantity, equivalent to the zero
field. However, for a non-Abelian gauge theory,
neither the effective potential nor the S matrix is
strictly gauge invariant. When calculated to the
one-loop level, logarithms appear in the effective
potential which explicitly break gauge inva, riance.
These always accompany massless fields and
appear in exact analogy with the Coleman-Weinberg
example. We emphasize that these logarithms
break gauge invariance in a different, and more
fundamental way than the trivial breaking of this
invariance caused by gauge fixing (e.g. , n depen-
dence). These logarithms limit the region of field
space where the one-loop approximation is valid.
In combination with the known asymptotic freedom
on non-Abelian gauge theory7 they imply that this
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approximation is only valid for fields far from the
zero field. 'This conclusion is strengthened and
made precise by analysis of the renormalization-
group. -improved effective potential introduced in
Sec. VII.

We are unable to calculate the entire one-loop
effective potential graphically. It is easier to
evaluate directly the determinants occurring in the
formal expression for V[/~]. We have done this,
restricting ourselves to fields in the neighborhood
of rP„ for the gauge groups SU(2) and SU(3). Ex-
tension to larger simple groups is obvious from
the formalism. These calculations appear in
Secs. V and VI, respectively, and are carried out
in the n =0 (Landau) gauge. Following Coleman
and Weinberg, we use the renormalization group
to extend the range of validity of our results. 'This
analysis makes the role played by asymptotic
freedom precise and is presented in Sec. VII.'

N-fold differentiation of the renormalization-
group-improved (RGI) potential, evaluated at the
vacuum (for now, assume arbitrary ru„), yields
the RGI one-loop, on-shell, N-point one-particle-
irreducible (1PI) vertex function. The above
analysis carries over for these vertices. It fol-
lows (see Sec. VII) that the one-loop a,pproximation
to the 1V-point vertex is valid if and only if v' is
much larger than zero. That is, in o.rder for the
one-looP aPpxoximation for the N-point vertices
to be valid it is necessary (no matter how small
the coupling constant) to expand the theory around
a nonhero vacuum of the form rv„, where v'~ p,

'
&0 (p, is the renormalization parameter). If one
attempted to evalutate these vertices at v'=0, one
would find the famous infrared divergences of non-
Abelian gauge theory. Traditionally one thinks of
the S matrix as gauge invariant which if true would
imply that all rv„vacuums are equivalent. But we
have just seen that they are not equivalent at the
one-loop level. What has gone wrong? The ans-
wer is that the gauge invariance of the S matrix is
broken by the logarithms (or, stated another way,
the S matrix is gauge invariant but the running
coupling constant is not). The part of the S matrix
indePendent of logarithms is gauge invariant and,
presumably, any dependence on ru„dr0Ps out. We
therefore do not expect any violation of either
Lorentz or internal symmetry. However, the
logarithms, by breaking gauge invariance, do
select between various rv„vacuums. The theory,
therefore, can and does demand a nonzero vacuum
at the one-loop level. This vacuum acts as an
infrared (IR) regulator and prevents IR divergences
on- shell. We emphasize that the requirement that
v'& p. '&0 at the one-loop level follows from the
renormalization-group analysis and is not Put in
by hand. It would appear then that the supposed

one-loop, on-shell IR divergences of non-Abelian
gauge theory are merely artifacts of having chosen
the use ong vacuum (6,). These divergences can be
regulated by choosing the nonzero vacuum(s) rw„
demanded by the renormalization group.

II. THE ZERO-LOOP POTENTIAL

We consider a pure Yang-Mills theory with
simple, compact, connected gauge group G (dim
G =N) The. classical Lagrangian density is

(2.1)

where group indices are raised and lowered with
respect to 5,&

(5'~). The N A' fieldS transform as
the adjoint representation under the global action
of G. Denote a basis of the Lie algebra of 6 by
T, (i = 1, . . . , N) and note that

(2.2)

We can (and do) demand that the T,'s satisfy the
normaliz ation condition

Tr(T&T&) =a5&&, (2 2)

where a is chosen to be 2 for SO(N) and -', for SU(N).
Finally, note that the Jacobi identity implies that
c,» is completely antisymmetric. The bare (tree
graph) effective potential V,[$„]is simply the po-
tential part of the Lagrangian density in (2.1) with
the fields taken to be space-time constants $'„.
That is,

V,[P„]= ,' g'c'„c,"P—'„P„'Q„"Q",. (2.4)

The first and second partial derivatives of V[/„]
are of interest and are given by

BP Icho cl =g2Cc C deycyvy (2.5)

s2V

+ C Cc Q~cQgc] '

(2.6)

Any vacuum must extremize the potential. We
therefore look for solutions of the equation ob-
tained by setting (2.5) equal to zero. This equation
is a complicated function of the group structure
constants and may, in general, have many solu-
tions. However, one solution

(2 7)

is both obvious (from the antisymmetry of c,~c)
and physically important. [Note that $„=0 is a
degenerate form of (2.7).] The effective potential
clearly vanishes for all such solutions. 'Therefore,
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g'(g 84" —4 4g)

0

(2.9)

Now diagonalize the Lorentz index matrix. Going
to a frame in which (t)2 = (t), = 0, we find the diagonal
matrix to be

0

(2.10)

Note that the second term is always negative (or
zero). The closest we can get to a local minimum
is when (t) is spacelike. For the rest of this paper
we will always assume this to be the case.

Fields of the form r(t)„clearly do not satisfy the
boundary conditions normally imposed on gauge
fields. Furthermore, as we will now show, such
fields are "illegal" gauge transforms of the zero
vacuum. Under a finite gauge .transformation
U(e) the fields (t)„ transform as

T'Q,'=(((8)(T d, ——U '(9)B,U(9))U '(91. (2.11)

Start with the zero vacuum (t), =0 and let

(2.12)

where v„ is a space-time constant. We find that

(2.13)

if and only if v~= rv„. Therefore, the r(t)~fields
are simply gauge transforms of zero. Moreover,
these gauge transformations are illegal in the sense
that 8 in (2.12) grows without bound for large x".
The unorthodox boundary conditions and the ' ille-
gality" of the gauge transformations are obviously
one and the same issue. Such gauge transforma-
tions spell danger in the canonical path-integral
approach to quantization. Note, for instance, that
both zero and r(t) satisfy the Landau gauge condi-
tion &"A,= 0. It follows that if we allow r(t), fields
in the theory, the usual Faddeev-Popov procedure

a nonzero vacuum of the above form is energetically
as probable as the zero vacuum. For such fields
the second partial derivative becomes

(2 8)

The form of (2.8) is dependent on the explicit values
of the structure constants and is difficult to treat
generally. For simplicity, consider the group
SU(2). In this case the group space matrix of
partial derivatives is diagonal and given by

is not sufficient to fix the Landau gauge. 'This is
faintly reminiscent of the problem of Gribov Bm-
biguities. Should fields of the form r(t)„ therefore
be disallowed? We would like to argue that, at
least as regards issues discussed in this paper,
such fields are at worst innocuous and should be
retained. We have three reasons for believing
this to be the case. First, in the evaluation of
the one-loop effective potential (see Sec. III) the
gauge fields in the domain of V[/„] enter only as
background fields around which the path integral
is evaluated. To the one-loop approximation this
path integral is a simple Gauss~an whose evalua-
tion is straightforward and independent of the
nature of the background field. The check on the
renormalization constants Z'~ and Z in Sec. IV
gives us confidence that this reasoning is correct.
Second, it is not too hard to convince oneself that
if the gauge fields A~ in the bare Lagrangian are
written as A„= A„'+ rv„, and the theory is quantized
in the Landau gauge, perfectly well behaved
Green's functions can be obtained. In fact, on-
shell Green's functions are not well behaved only
when rv„= 0. Thus, in perhaps a naive but opera-
tionally clear sense', the pathologies in rv„vacuums
do not effect Green's functions and these are the
objects of interest in this paper. Lastly, we
strongly emPhasize that if fields of the form r(t),
are retained in the theory, they act, at least to the
one-loop level, as a regulator for the on-shell,
inf rared dive rgence s that would othe rwi se plague
the theory. 'Therefore, we feel one has two
choices: to disallow fields of the form r(t), because
of gauge-fixing ambiguities and pathological
boundary conditions, thus allowing on-shell, in-
frered divergences, or to allow such fields, thus,
at least to one loop, regulating infrared diver-
gences, though perhaps leaving oneself open to
problems of definition of the path integral. Sirice
it is the purpose of this paper to discuss the
Coleman-Weinberg mechanism as it relates to
infrared behavior, we feel justified in choosj.ng
the latter approach.

The one-loop corrected effective potential in the
Landau gauge is explicitly calculated in Secs. V
and VI for the groups SU(2) and SU(3), respective-
ly. The qualitative features of these results can
be guessed in advance. Invoking gauge invariance,
we expect the loop-corrected effective action to be
a power series in invariants formed from I"„„.
The effective potential VI(t)„] is proportional to the
effective action, with the fields taken to be space-
time constants. 'The nth derivative of the potential,
evaluated at fields v„which extremize the action,
i.s precisely the 1PI Green's function with n vanish-
ing external momenta. For v„= 0 these Green's
functions in the Landau gauge are known to diverge
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logarithmically. It follows that V[7()„] contains
logarithms that diverge as (t)» vanishes. On dimen-
sional grounds these must be multiples of ln(T()'/i), 2),
where p, is some renormalization point with
dimensions of mass. %e can now guess the form
of the first term in the one-loop correction to
V[(t)„] in the Landau gauge. It is

2 2

where g„(T()„)is the renormalized coupling con-
stant (gauge field) and A, 8 are constants inde-
pendent of (t)„. This form is borne out by explicit
calculation. Higher-loop corrections to V[(t)»]
involve higher powers of g„and —2'g„ ln((T)'/[A'). It
is clear that the one-loop approximation is valid
if and only if both g)2 and 2gs In((t)2/p, 2) are small.
For nonzero g„, —2'g„ ln(T()'/)(') is never small near
the origin. Furthermore, loosely changing g& to
the running effective coupling constantg()), ), we
know from the usual asymptotic freedom argu-
ments that g(p, ) is small for large )f. Therefore
—gg()A) ln(T()2/p, 2) is small only for

$2 )i2 )) Q (2. iS)

This result is verified and strengthened by the
precise calculations of Sec. VII.

%e conclude that the one-loop approximation to
V[/»] in the Landau gauge is valid for fields far
from the zero field. Note that rv» v'= p,

' ex-
tremizes V[(t)»] and V[rv,] vanishes. Remembering
that for field configurations r(t)» the inverse of the
transformation defined by (2.12) does not take us
out of the Landau gauge, we see that it cannot be
invoked to gauge the vacuum rv„away if we wish
to stay in the one-loop approximation. As v„goes

to zero it enters regions where first two-, three-,
and finally infinite-loop corrections to V[/»] can-
not be overlooked. Since order by order In(T()'/p, g)

terms break the gauge invariance of the effective
action it is unlikely that the full. y summed action
is gauge invariant. Therefore, a transformation
such as (2.12) cannot be carried out with impunity.
In the following section we define and derive the
effective potential for Yang-Mills fields.

III. THE ONE-LOOP EFFECTIVE POTENTIAL

%e quantize the theory using the path-integral
formulation. 'The sourceless vacuum-to-vacuum
amplitude is given by

(3.I)

2
~gangs fixing 2

( A»)2Q (3.3)

Let J„p, and p be sources for A», )), and g,
respectively. We want to compute W[J»] (the
connected generating functional for Fang-Mills
fields) defined by

z[J„]=e' "»= iim z[i„p, p'],
E,E~-o

where

(3 4)

eff + gauge tixing+ ghost ' (3 2)

The ghost fields )I and $ are anticommf(ting Lorentz
scalars and transform under 6 as the defining re-
presentation and its conjugate, respectively. In
this paper we will work in the n gauges defined by

(3.5)

An expansion in loops is obtained by expanding the argument of the exponential in (3.5) around fields A»(»,
and ))(» which satisfy the classical equations of motion

( 6)
b~» (()) b h (()) I (())

Note that the anticommuting nature of the ghost fields necessitates introducing left- and right-acting func-
tional derivatives of these fields. The notation for such derivatives is introduced in (3.6) and is obvious.
The left-right nature of these derivative seems to make a.series expansion in the ghostvariables ambiguous,
For example, the second derivative of S„f, with respect to $ and then )), can be carried out in four in-
equivalent ways. However, this ambiguity does not really exist since careful integration by parts (re-
specting the directional nature of the partial derivatives) will restore equality. In Appendix A we present
the calculation of IV[J ]. The result is

)y[2„]=A[Ac,t] —fd' 2„A(, tt«et)etre ttt)(» —y)-Act, [A;t te;+(e'A;t t)]D (» —y)]

+-»detg&'ft)()f -y)+ [gaf'~y' -g'&f'~y'+((»„&g(;)) —(s'&(,)„)—(s &(,),)g'„)gcf', ]Df „(~-y
~
&)],

(3. I)
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where

. GdI 8 2cd [~ 8 ~c . S/8]

c't'ca c(o) d(o) + c t ca [+c(o)+d(o) c(o) +d(o)g ] .
(3 6)

(3.9)

where Qa(x) is defined by

-6W[J]Ca(x): p ( )
~ (3.10)

To the one-loop approximation I'[4 „] is obtained
from Eq. (3.9) with W[J,] given by (3.7~) where

A«& has been everywhere replaced by 4'~. Now

-6W[J]
6J,(x) t.g

(3.11)

where v~ is a constant vector field, not necessarily
zero. It follows that

DB (x —y) an(1 D»(x —y Io. ) are the usual propagators
for ghosts and gluons in the n gauge. Note that
the ghost contribution has a coefficient which is
-2 times the gluon coefficient. The minus sign
follows from the fermionic statistics of $, )), and

the factor 2 from the fact that the path integral is
over takeo independent ghost fields.

The effective action of the Yang-Mills theory is
given by the functional

=0. (3.12)

'This is the fundamental equation for probing the
vacuum structure of the theory. Any solution v„
of (3.12) represents a possible vacuum expectation
value of the fields. For theories without deriva-
tive couplings, Eq. (3.12) is most easily solved
by considering the effective potential defined by

V[/, ]= r[$,](Jd'x)-, (3.13)

where $, is a constant vector field. V[pa] is a
function (not a functional) of $,. Equation (3.12) is
equivalent to the equation

(3.14)

For a theory with derivative couplings, the equiva-
lence of Eq. (3.12) to (3.14) is no longer obvious.
In the Yang-Mills case there appear to be- contri-
butions to (3.12) from derivative couplings, but in

Appendix 8 we show that such terms systemati-
cally cancel. We therefore base our investigation
of symmetry breaking on V[/, ] and Eq. (3.14). ln
momentum space

2 4 Ot

V[T()a] =—c'&,c, 'Q'p„'Qdp", +i, , ln det 6&d —igc'&, Q'

(3.15)

G dlwB 2C d ((tc(st 8) yc . tgB)f f C

K 8 = C dC cp (t)8 + Ca cC d(pN $8 —y
. y~)'8)

&"p „(&
I
&) = ~, -g",+ (1 —o')

k0~

(3.16)

V[/ ] depends upon enormously complicated
determinants over mixed group and Lorentz in-
dices. The evaluation of these determinants for
arbitrary groups and field configurations has
eluded us. However, it follows from the discussion
in Sec. II that field configurations of physical in-
terest lie infinitesimally near fields of the form

$,= r(t), . We have succeeded in evaluating V[/ ] in
this region for the groups SU(2) and SU(3) by direct
calculation of the determinants. 'These calcula-
tions are somewhat esoteric and do not particularly
elucidate the structure of the loop expansion.
Insight into this structure, as well as an important

l

check on the validity of (3.15), can be obtained by
calculating the ultraviolet divergent part o-f V[II)„]
by direct expansion of (3.15) in Feynman diagrams.
This calculation can be performed for any gauge
grouP.

IV. ONE-LOOP GRAPHICAL EXPANSION

An expansion in one-loop Feynman diagrams is
obtained from (3.15) by converting the ln det to-
Tr ln and expanding the logarithm. The Feynman
rules are given in Fig. 1. Graphs contributing to
'.he ultraviolet divergence of V[I())„] are shown in
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1

FIG. 2. The four ultraviolet-divergent graphs in the
one-loop expansion of the effective potential. The ghost
and gluon contributions are denoted by (a) and (b), res-
pectively.

FIG. 1. Feynman rules for the one-loop expansion of
the effective potential in non-Abelian gauge theory. The
group structure constants are denoted c~&.

Fig. 2 where we explicitly display the extra factor
involved in gluon loops. The calculation of these
graphs vastly simplifies in the n =1 gauge. We
work in this gauge for the remainder of this sec-
tion. Using dimensional regularization' the ghost
graph (a) is found to be

256m' n —4 2v mp 2J

where g~ is the renormalized coupling constant,
y is the Euler constant, and m is a, ghost "mass"
inser. ted by hand into the propagator. Equation
(4.1) displays a 1/(n —4) ultraviolet divergence.
'There is also a, logarithmic infrared divergence
as m vanishes. The ghost loop is not proportional
to the counterterm [first term in (3.15)] since it is
completely symmetric under the interchange of.d,
c, e, whereas the counterterm manifestly is not.
Therefore the ghost loop taken alone cannot be
ultravioletly renorma, lized. 'The gluon loops share
this property. When ghost and gluon graphs are
added, surprising cancellations occur producing

m & yg p c+ ln ~ —c'~,c, P„(f&„$~Q,,

(4.2)

where C, (G) is the value of the quadratic Casimir
operator for the adjoint representation of the gauge
group. The Casimir invariants for SO(N) and

SU(N), respectively, are

C,(SO (N )) = 2 (N —2),

C,,(SU(N) ) = N . (4 &)

The ultraviolet divergence in (4.2) can be eli-
minated by both coupling-constant and wave func-

a final result proportional to the counterterm. 'This

clearly displays the need for ghosts in renorma-
lizable non-Abelian gauge theory.

The difficulty encountered summing ghost and

gluon loops is in the reduction of structure constants
to a single expression proportional to the counter-
term. After repeated use of the Jacobi identity
and symmetry properties, the number of these
constants in each product is reduced from four to
two using group-theoretical projection operators.
In this we follow Cvitanovic. " 'The sum of graphs
(a) and (b) is, after a, long calculation,

-gs'p, ' " C, (G) 1
24m', n-4
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tion renormalization. The counterterm may be
written

(4.4)

where the coupling constant and the wave function
are renormalized by Z and v Z„, respectiveiy.
The 1/(n —4) divergence will cancel if

V. EFFECTIVE POTENTIAL FOR SU(2)

We begin by reexpressing (3.15) in a more use-
ful form. Ignoring constants independent of $„we
have

2

V[0.] =
4

c' .c."O'A,'4."0".

C, (G) 1

This expression is satisfied by

(4.5)

(4.6)
where

4

i
( )

indet(6y k' —igc y, Q'k )

d4k
, in det [6&'Dg (k

I
o.')

—(igGi'I'+ g'If~'I')] (5.1)

1Z =1+ g" (—"C (G)) 4' D "(kIo.)=k' -g'„+ 1--1 k„k
(5 2)

which are the well-. known renormalization constants
of Yang-Mills theory in the n = 1 gauge. " Thus
the effective potential (3.15) and the loop expansion
obtained from it are consistent with known pro-
perties of non-Abelian gauge theory. Note that the
decomposition (4.6) cannot be obtained directly in
our approach. Equation (4.2) retains its infrared
divergence after renormalizati. on. It is assumed
(but not shown) that this divergence will cancel
against similar terms in ultraviolet finite loop
graphs. The complexity of summing just these
four graphs of Fig. 2 mitigates against an attempt
to evaluate V[/„] by graphical techniques. We
therefore turn to direct evaluation of the deter-
minants in (3.15).

For G = SU(2) the structure constants are given by
the alternating tensor t.,„,. The calculation pro-
ceeds in two steps. First we evaluate V[/„] at
fields given by

(5.3)

where, by virtue of transitivity of the SU(2) action
on its adjoint representation, we may take r to be

(5.4)

without loss of generality. The ghost determinant
in (5.1) is then given by

-igP 'k

det +ig$'k k' = det

'(k-gy) k

(k+gP) 'k p'k,
P k, k~g4

(5.5)

where the matrix diagonalizes under unitary
transf ormation

1
vP

Z

M2

(5.6)

-iX„8

iX8 D k8+A8. -

where

A„' =g'(0, 0' —4'g, '),
~k'8 2g(y(k'k8 ) y .kgr8 )

(5.6)

The entire ghost contribution to V[rg„] is
This matrix is also diagonalized by (5.6) and yields

E(k -gP)„
d4kif

~
~,

ink 'k.
P~A, Aagt

(5.7) F (k+gy)„' (5.9)

Similarly the gluon rriatrix in group space is
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where F(P)„e is defined by

F(p)„' = p'g-„e+ p„p' ——k„k'. (5.10)

F(p)„e is arrived at by attempting to "square" the
eigenvalues. It follows that lndet of (5.8) is given
by

Then

(k-gQ) .k

(k +gP) ~ k

(5.18)

P=k, keg'
ln detF(p) „e, (5.11)

det(Xe+ e Ye) = det(X + e Y), (5.19)

where the determinant here is over I orentz in-
dices only. This determinant is easily evaluated
as follows:

where

' 0 0

detF(P), '= (p k)—'p'. (5.12)
Y, =IIY,V= 0 0 i. -g(q k)

i 0,
(5.20)

The entire gluon contribution to V[rg„] is

dk . dk-i
~ tnt. h —if ~ 1nv'), (5.13)

e=e, knee

where we have ignored the constant proportional
to Ino. . The second integral in (5.13) can be eval-
uated by using the Euclidean form for k. Note that
the pure Q terms cancel. In the large-k limit the
integral approaches

Converting lndet to Tr ln and expanding the lo-
garithm to order & we find

lndetX + jTr(Y+=') —equi Tr(Y~=') . (5.21)

The first term will cancel against the g' gluon con-
tribution and is ignored. Tr(Y~— ) vanishes. The
final result for the ghost contribution to V(rg
+ &Kg, ) (to order c ) is

d4k

( )4
ink',

which, being independent of Q, can be disregarded.
Thus, adding (5.13) to (5.7) we find that the one-
loop contribution to V[rg ] vanishes. It is easy to
see that this result is correct. If the ghost and
gluon contributions did not cancel then this sum
would have an ultraviolet divergence. . However,
the counterterm vanishes when. Q = rP . We
would be unable to subtract the infinity in violation
of the known renormalizability of gauge theory.
Proceeding to step two, we evaluate V[PJ at fields

=rQ +iKg (5.15)

where r is given by (5.4), e is infinitesimally
small, and K is chosen (without loss of generality)
to be

d'k (g ~ k) '

i&B„' v2q„e

-iVFR„e,

2&B,' .,

&,' =g'(l, l' —4.'g, ')

Q"'=g[-(0 p )g"' —(0 k)g"e+ -p"0e-

The gluon determinant in group space, after
diagonalization of the & matrix, is

det(X+ & 1'),

where X is given by expression (5.9) and

(5.22)

(5.23)

(5.24)

K= 0

0

(5.16)

yyvke 2 ytvp3]

R"'=g[-(4 P,)g"' (4 k)g"'+ PV-
+~vke+ 2 ~rv~e&]

(5.25)

k' -iX 0 0 0

+& 0 0 -iF
0iF 0,

The ghost matrix is given by p, =keg%

Ignoring the a term (which cancels) we find the
entire gluon contribution to V(rg„+ eKg„) (order
&) tobe

dk
4 TrBF' +F'P, +2F'k

where X=gg k, Y=gt)1 ~ k. Denote the left (right)
matrix by X (Y). X~ is of course the step-one
ghost matrix. Define X by

—Tr[QE '(k)Q'E'(P )

+RE '(k)R'E '(p,)]}, (5.26)
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where

pu pa 2p(wy8)
~-&(p)n8 +n8+ (y2 ~ &p2)

(p ) )' (p ~)

(5.27)

is the inverse of E(p)n8. Clearly a long calcula-
tion is in the offing so, for simplicity, we take

=0 (Landau gauge). We then have the useful
property

I' '(p)„8l28=0 (5.26)

for any P. This choice will also simplify the re-
normalization-group equation for the effective po-
tential (see Sec. VII). Note that

(5.29)

i.s the usual Landau gauge gluon propaga. tor. Ex-
pand Eq. (5.26) using Eqs. (5.25), (5.27), (5.26),
and (5.29). Collect terms so as to maximally re-
duce powers in the denominators. Integrals that
are functions of 0 only all vanish. The remaining
integrals naturally divide into two types, those
that have nonzero powers of p, ~ k in their denom-
inators and those that do not. The ghost term
(5.22) and the first trace in (5.26) have the first
type of integral only. The second trace in (5.26)
has both types of integrais. We find after integra-
tion that the terms of the first type exactly cancel
each other. The remaining terms can be dimen-
sionally integrated and summed to yield

4+4-n + 24, 2 n/2-2

16m' 4m p.
'

P

—41'(2 —n/2) +—(n —1)I'(3 —n/2) B(n/2, n/2) e'[Q'g' —(Q ~ t)) '],n
(5.30)

where B(n/2, n/2) is the P function. As in Sec. IV,
surprising cancellations ensured that this term
would be proportional to the counterterm. In
Appendix C we evaluate a typical integral con-
tributing to (5.30) to show how the P function and
the important P'p, 2 term arise. Using

I

The counterterm is given by

u "2' ~ 'e'[0'0' —(4 0)'] (5.33)

where the fields have been renormalized. The
ultraviolet divergence in (5.32) can clearly be re-
moved by taking

B(n/2, n/2) =-,' -~(n 4)+-0((n-4)'),

we can expand (5.30) and find

RR &
4 4-n

+2
16~' 3(n —4)

2 2
gR 0 &2[4 2~2 (y ~)2]
4w p.

'

(5.31)

(5.32)
I

2

g 1 RR [13 C (SU(2) )]

2

Z, = 1+~, [inc, (SU(2))l

(5.34)

[C,(SU(2))= 2] the well-known renormalization con-
stants of Yang-Mills theory in the n =0 gauge.
Putting everything together we find the zenorrn-
alized effective potential in the Landau gauge to be

y[y ] RR
~

1+BR z ln ~ + ln + 1 l~&a & eeybyeynye

for fields of the form (5.15) to second order in q.
In the next section we extend this result to the
gauge group SU(3).

VI. EFFECTIVE POTENTIAL FOR SU(3)

The relevant expression for the effective poten-
tial for G = SU(3) is still given by (5.1). As in the
preceding section we can evaluate the determinants
for fields of the form (5.15) only. However, for
SU(3) the direction of vector r becomes relevant.
It is obvious that SU(3) does not act transitively
on its adjoint representation. This permits the
appearance of several little groups and, in fact,

I

it is known that there are precisely two: U(l)
XU(1) and SU(2) &&U(1)." Vectors having the former
little group are dense on a sphere in octet space.
The remaining vectors with little group SU(2)
x U(1) lie on two isolated, closed orbits of which
the 8 direction is a member. Since we are inter-
ested in possible applications to unified gauge
models, SU(2) xU(1) is of more interest. We
therefore choose r to have this little group and,
without loss of generality, to lie in the 8 direc-
tion. As before, we can take its magnitude to be
unity. Consider the first term in (5.1) for fields
of the form (5.15) with K unit norm, orthogonal to
r but otherwise arbitrary. It is clear from the
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lg'(k)B'0' —(0 4']&'. (6.1)

Note that this becomes Identical in form to the
SU(2) counterterm if we set

SU(3) structure constants that any component of
K in the 1, 2, 3, or 8 direction does not contribute
to this term. We must take K to be a linear com-
bination of the remaining four directions. For
simplicity we choose K in the 4 direction. The
counterterm then is given by 1z„=1-g', {—", [-,'c,(SU(2))lj„4,

1z, = 1+g", {—", f-,'c, (SU(2))p

(6.3)

since

of algebra, that the ghost and gluon terms expres-
sed in terms of g' and Q

' of (6.2) are precisely
the SU(2) expressions (5.22) and (5.26), respec-

'

tively. The renormalization constants in the c).

=0 gauge can then be read off from (5.34):

(6.2)
—,'C, (SU(2) )=C,(SU(3)) . (6 4)

We now evaluate the second and third terms in
(5.1). As before, the contributions of zeroeth
order in q cancel. It appears, after a great deal

This result is consistent with Yang-Mills theory.
For SU(3), the renormalized effective potential for
fields of the above form in the Landau gauge, to
second order in & can be read off directly from
(5.35) and is

2 ( g 2 y2 3 R

(6.5)

(6.6)

where the fields have been renormalized. Notice
that nothing in this solution prevents us from
taking g = P . In this case

4.=(r+ «)4.
and V[7() ] vanishes. It follows from this and the
discussion at the beginning of the section that
there is nothing in the theory to single out the 8
direction. The vacuum direction r+ eK fox every
K is just as good as r. However, most vacuums
r+ &K lie off the isolated SU(2) &U(l) orbit and
have little group U(1) XU(1). Therefore symme-
try breaking in non-Abelian gauge theory does not
ngtura/ly single out the little gxouP. This result
is due to gauge invariance which prevents terms
cubic in the adjoint field from appearing in the
effective potential.

t

For the effective potential this equation becomes

(7 2)

Q2
V(4) =g 1+g 2 A+ —lnR 2 ~2 (7.4)

A and 8 are independent of T() and depend on the
gauge group. If we let

It follows from Secs. II, V, and VI that to one-loop
approximation for fields near rQ„

2

V[@]=c'„c."4'.y:4:4".V"'/g~ -'»
j

(7.3)

VII. THE RENORMALIZATION GROUP

In Sec. II the one-loop approximation to V[((() ]
was found to be valid only when both gR and
—,'gsln($2/p2) were small. This restriction on
the second term played a major role in the physi-
cal interpretation of the nonzero vacuum. Fol-
lowing Coleman and Weinberg, we know thatthe
range of validity of the logarithmic term can be
extended using the renormalization-group-im-
proved effective potential. The renormalization-
group equation for the effective action in the n =0
gauge~3 is given by

+P(g&)—

4

8 8

+«(), ) I~"a:(.),„.' r(A„(=o. (7.))
5A~ x

P=c(1
V=&(1 r} '—

and change variable p, to t we find that

(7.5)

(7 6)

Differentiating four times with respect to Q& and
noting that V' is a function of gR and t ordy, we
arrive at, the renormalization-group equation

8 — 9——+(6 +4y V"'(g j) =0
Bt . Bg

(7.7)

The general solution for this equation is known and
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is given by

= P(g') (7.9)

with boundary condition

g (0~8') =8's ~ (7.10)

To one-loop approximation, consistent with the
renormalization constants in (5.34) and (6.3), the

P and y functions in the cd = 0 gauge are"

3
p= ~& ~J c (g)] 6/2

2

gg (G)
16m 2

(7.11)

Note that this approximation is valid if and only
if gs is small. If we assume that g' is small for
some range of t then the functions in (7.11), with
g' substituted for g„, can be used to find a valid
approximate solution of Eq. (7.9). This solution
to order g~' is given by

I'"'(A' t) =I'"'(a'(t g ) o)
t

& exp 4 dt r(g'(t, g,)), (7.8)
0 1

where g' (t, g„) is an effective coupling constant
satisfying the differential equation

This will be true if and only if

t~o. (7.13)

As predicted, the renormalization group has lifted
the restriction that g„t be small. It is important
to note that t must be positive (as opposed to the
negative range for t in the Coleman-steinberg ex-
ample) precisely because of the famous (asymp-
totic freedom) minus sign in the P function for
non-Abelian gauge theories. Therefore, for such
theories the renormalization-group-improved
potential to one-loop approximation is valid for
g'(t, g„) small and

2) p2

but not near Ne sero field. This strengthens the
conclusion of Sec. II and makes the role played by
asymptotic freedom precise. The exponential fac-
tor in (7.8) can be evaluated to order gs' by sub-
stituting (7.12) into (7.11) and evaluating the inte-
gral. The result is

2 26j ll
I+ g" (~~ g (G))t8g2 3 2 g&2 (7.15)

Putting everything together we have from (7.8) and

(7.4) that

I 2 2 26/11V"' (g„, t) = (1+g''4) "„.(7.16)

2

g'(t, g„)=g„1+8", ('-,'C, (G))t

Now g'(t, g„) must be small for any small g„.

(7.12) The effective potential is determined from (7.3).
For example, if G = SU(3) then it follows from (7.3),
(6.5), (7.12), and (7.16) that

2 2 ~2 15/11
y[y ] cd o deyb pity& R 1+

1+ ", 1+ 2
'-,' ln, ln, +y-~ (7.17)

is the renormalization-group-improved, one-loop
effective potential near fields of the form rQ„Its.
region of validity is given by (7.14).

VIII. DISCUSSION

Examination of the tree level potential led us to
consider constant gauge fields of the form rv„as
possible candidates for the vacuum state of a non-
Abelian gauge theory. It was shown that such fields
are simply gauge translates of the zero field and
are, therefore, with respect to any gauge-invar-
iant quantity, equivalent to the zero field. How-
ever, by direct computation, it was found that for
a non-Abelian gauge theory the effective potential

and (it follows) N-point, 1PI, on-shell vertex
functions are not strictly gauge invariant at the
one-loop level. In the one-loop effective potential
gauge invariance is broken in two ways. First it
is broken by terms due to gauge fixing (n depend-
ent) and second (and much more important) by
logarithms In(g'/g'). These logarithms, in con-
junction with asymptotic freedom, imply that the
one-loop approximation to the effective potential is
valid only far from the zero field. Therefore, at
theone-loop level the fields rv„are no longer
equivalent to 0~ (as far a.s the effective potential
is concerned), and a renormalization-group an-
alysis shows that one must expand around vac-
uum(s) rv„with the property that v'a id,

'& 0. This
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is true even though all fields of the form rU are
energetically. equivalent at one loop (V[rv„]
= V[t)„]= 0). The effective potential is notoriously
difficult to interpret physically. It is perhaps
more enlightening to consider the one-loop, N-
point, 1PI, on-shell vertex functions of the theory.
These can be obtained by calculating the Nth
derivative of the one-loop effective potential and
evaluating it at the vacuum (for now, arbitrary
ru„). Since the 1I&I vertices are derived from the
effective potential it is clear that the one-loop
approximation to these vertices is valid only if
we choose nonzero vacuums(s) rv „such that v'
& p, '& 0 as above. This has the effect of regulat-
ing the logarithm terms u&hich u&ould dkverge if (ve
tried (incorrectlyj io use the zero field as the
vacuum. Traditionally one thinks of the S matrix
as gauge independent. This is true if one ignores
the logarithmic terms. However, these logar-
ithms break the gauge invariance of the S matrix
and therefore the theory can, and does, dieting™
uish between rv„and 6„. If one wants the one-
loop approximation to4e valid, then +e +e«y
demands (no matter how small the coupling con-
stant) a nonzero vacuum rv„such that v'a i&2& 0.
This acts as an infrared (IR) regulator preventing
disastrous logarithmic divergences. In the sec-
tor of the S matrix independent of logarithms

gauge invariance demands that rU „be indistin-
guishable from f„. We therefore do not expect
that our nonzero vacuums will break either
I orentz or intern@. symmetries.

To conclude, it would appear that at least at the
one-loop level the supposed IR divergences of
non-Abelian gauge theory are mere1. y artifacts of
having chosen the u&rong vacuum (t%„). In fact,
these divergences are regulated by choosing the
nonzero vacuum(s) rv „demanded by the renor-
malization group. These nonzero vacuums are
energetically equivalent to the zero field. It is
therefore not energetics, but the theories need
to regulate its one-loop divergences, that forces
nonzero vacuums upon us. Such vacuums, outside

of logarithms, are equivalent to 0" and therefore
spontaneous symmetry breaking, in the manner
of Coleman and steinberg, does not occur.
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APPENDIX A: THE LOOP EXPANSION

The zero- and one-loop contributions to the generating functional. Z[ J „, p, p ] are given by

Z[ J„,p, iit]=N exp i S[A„(,&, $(o), &I(o) ]+ d'x(- J
q

~ A(&o) + f(,)
~ tI+ p

'
~ )) (,))

L

x [XAc][i&&][dp]xxP(~ — d'xd'P), (x) 2 Pt())),(i, , - 5 (Al)

where (,.(x) =(t)( (x) —P«» —P,.«&(x). The second functional derivative of S (for the directional derivative
shown) can be evaluated. The entire space-time integrand of the second term in (Al) is

(&',(x), C(x))

O'S

i)A,,"(x)M,"(y) g2„c,( sP,
'

)&o(y)) |&(x -y)
A'„(y)

0;2gc„,)I'(o) (y)a "5(x -y) -28'()d, + 2gc,d,A, '„(,) S "+2gc,d, (() "8'„(o))5(x-y)

(A2)

Iteratively solving the field equations (3.6) for g&» and)I&,
&

we find that as p and p go to zero, q&, &
van-

ishes and q&» vanishes and $ «& approaches an arbitrary constant. Therefore, in this limit the off-diagon-

al terms in (A2) vanish. The gluon and ghost modes thus decouple and the path integral can be evaluated in

the usual way. The result is

tc[2,]=0[)t„„,]-I d'xd„~ )t,'„-t tndet((-20'0', 2dc, 'cA'„(0)0"+2dc,', (0 "A'„„,))0(x-2)

(A3)
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Evaluating the second derivative using (2.1) and
throwing away infinite constants we arrive at Eqs.
(3.7) and (3 ' 8).

APPENDIX B: DERIVATIVE COUPLINGS

To the one-loop approximation I'[C ] is given by
(3.7). The dangerous terms in the graphical ex-
pansion of K[4] are those which involve @B„C'.
A typical example is

fore they do not contribute to calculation of the
vacuum expectation value.

APPENDIX C: INTEGRALS

A typical integral contributing to (5.30) is

$ 4k 0"k
(2m)' (k —gy)'k'

Combining the denominator we have

cy~c~g 6 x6 J ~~@g&

xD,'„(x-y)c' (y)s„D,8(y -x) .
Functionally differentiating this expression with
respect to ~'z we find

-c~"c,', g a„a'„~-y @4"&,„a~~8 y -~

in n dimensions, where

m'= Q'g'x

P= —Pgx,

m'+ p'= y'g'x(x —1) .

ink knks

(2,)" (m -2p k-k)'
(C2)

(C3)

+term proportional to 8 "4„. (B2)

Taking 4 to be a space-time constant g the last
term in (B2) vanishes and the first term becomes

Note that m'& 0 if and only if P is spacelike (our
condition from Sec. II). The k integral can be eval-
uated in the usual way' and the result is

+D~8„(s y)s, (s,-D$8(y -g)]

n/2-2 12
2 4 ~2 ~2+p2 2~/2

(
I'(3-m/2) ',"", -I'(2-n/3) —'—). (C4)

(B3)
In the first term the derivatives act on the first
variable in the propagator, making that term, in
momentum space, proportional to —k&0„. The
second term is proportional to + k&4 hand there-
fore (B3) vanishes. This result follows from the
trace over space-time variables. Clearly, every
such term vanishes for the same reason and there-

The term (-g.'P') "/' ' can be extracteh from
(m'+P')"~' ' and combined with (4vp')' "/' to yield
the important factor

(c5)

The remaining x integrals are precisely the defi-
nition of the P function. The final result is

g ' — ~" ~ 1(3 n/2) ~-"~28 B(n/2, n/2 —I)+I'(2-n/2) "8 B(n/2 —1, n/2)16m' 4mp.
' 2 (c6)
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