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Fock-space description of the 1/N, expansion of quantum chromodynamics
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We present a Pock-space formulation of the expansion of quantum chromodynamics in a power series in
1/N„where N, is the numher of colors. We hope this formulation will aid spectrum calculations in the N, ~oo
limit.

I. INTRODUCTION

Among the many approaches toward spectrum
calculations in quantum chromodynamics (QCD),
which have evolved during the past few years,
't Hooft's 1/N, expansion' (N, is the number of
colors) remains one of the most attractive. In
this article we present a formulation of the 1/N,
expansion which seems particularly suited for
spectrum calculations.

't Hooft has shown' that for a specific process
the N, - limit with N, g' fixed is obtained by
summing the subset of al1. Feynman graphs which
are planar in both color and momentum Qow and
which have a minimum number of quark loops.
For example, the N, limit for the process
e'e -anything is the sum of all planar diagrams
with precisely one quark loop. This graphical
approach is awkward for spectrum calculations:
One has to search for poles in appropriate Green's
functions. As in the derivation of the Bethe-Sal-
peter equation, the locations of these poles are
found by solving the eigenvalue problem for some
homogeneous integral equation. We feel it is use-
ful to observe that the integral equations appro-
priate to the N, - limit can be obtained directly
without the intermediate step of writing down
Green's functions as sums over a specific class
of graphs.

The subject of this article is just such a direct
approach. We begin in Sec. II by introducing the
usual Fock space for QCD without quarks. We
then restrict ourselves to the color-singlet sub-
space. The action of the Hamiltonian on this col-
or-singlet subspace simplifies in the N, -~ limit
and a simple algorithm for taking the large-N,
limit emerges.

In an ordinary reference frame, the bare vac-
uum is not an eigenstate of the Hamiltonian. The

II. THE FOCK-SPACE FORMULATION OF THE
N, -+~ LIMIT

In this article we restrict our attention to the
SU(N, ) Yang-Mills theory without quarks. This is
not an essential restriction because the 1/N, ex-
pansion singles out the pure gluon theory in lead-
ing order: Quark effects come in only in non-
leading order.

We begin by introducing the usual Fock space.
The creation operator for a bare gluon will be
denoted

u, 8(p) (2.1)

where n, P are color indices each running from
1 to N, , p is the three-momentum in an ordinary
frame or the pair (p~, E') i'n the infinite-moment-
um frame [V' —= (1/v 2 )(V' + V')] and i labels the
two physical polarizations of the gluon. We shall
be working in a physical gauge: the axial gauge
A 3 0 in an ord inary frame, and the light -cone
gauge A' =0 in the infinite-momentum frame. In
these gauges the 0 and 3 components of the gluon
field are explicitly eliminated.

The relationship between the a 's and the 1, 2
components of the gluon field is as follows (& =1,
2):

fact that the energy density of the vacuum blows
up like N, ' then introduces spurious divergences
in the Schrodinger equation. In the infinite-mo-
mentum frame these divergences are not present
inasmuch as the bare vacuum is then an eigen-
state of the complete Hamiltonian. Our final equa-
tions are therefore written in the infinite-mo-
mentum frame. In Sec. III we discuss the struc-
ture of the equations to be solved and remind the
reader of a, previous attempt to extract some in-
formation from these equations.

A, „~(x)= (,-, „„,„q, 5,, + ~*,' 1+ ~, [,„8(k)e' '" —g,.~ (k)e '"'"], (2.2a)
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0»cK8 ( ) (2~)3/2 (2iki ),i, (- » lkl ) 5»; + „~ I&

+
ik~, l

['» 8 ~ )' (2.2b)

for the axial gauge in an ordinary reference frame.
A,- z(x) and -Eo,.q„(x) are canonically conjugate,
provided

[a;„8(p), a,.ys(p')] = 5„y58»5;;5'(p' -p') .
(2.3)

The bare Hamiltonian in the axial gauge is

d'P p a, „a p a,. 8 p,
gn8

(2.4)

where we have dropped the zero-point energy.
In the light-cone gauge, the situation is simpler:

I " dp'
(2 )3/2 (2P+) i2 "~j.[»»» 8(Pi»)e — -~ " —»»;8 (P, P')e ""'»' -" »"&]

0

and the light-cone commutation relations are guaranteed, provided

[a,.„f»(p„P'), a',„,(p,', P")]=.5„58,5, 5'(p, -p,')5(P' P") .
The bare Hamiltonian in the light-cone gauge is

oo

P, = dP, dP' 2, Q, a,t»»(P„P')a. »„8(P„P') .
g, n, S

The bare vacuum is defined by the condition

(2.5)

(2.6)

(2.7)

(2.8)8(p)l 0&, = o,
and the Fock space is the space of states generated by letting all possible polynomials of the a~'s act on
10&»».

Qur next task is to characterize the color-singlet subspace. This is easily done: Any color-singlet
state will be a linear combination of states of the form

l )»y+l~' ' '+»
fg) =

i

—
i

Tr[»»tat . ~ »»t, ]Tr[at,»»~, ~ ~ »»t, ) ~ Tr[»»t, »»t, at, ]i 0), , (2.9)

where the at's are regarded as matrices in the color indices. The subscripts in Eq. (2.9) signify that
each a~ has a different momentum and polarization, in general.

Consider first the N, dependence of the norm of the state (2.9). The evaluation of the norm proceeds by
contracting the a's in the bra in all possible ways with the a~'s in the ket. Factors of N, will arise through
the formula Q 5„„=N,. The contraction scheme which yields the most factors of N, is essentially unique.
The maximum number of factors of N, is l, +l, + ~ ~ ~ +)„, and in such a contraction scheme a trace in the
bra with $ a's must completely contract against a trace in the ket with precisely l at' s. The scheme of
contractions between two such corresponding traces is unique up to cyclic permutation (in leading order
as N, —~): There are i ways to make the first contraction, but then the rest are uniquely given. The only
contractions which yield a factor of N, are those where the a and a have a common color index. A simple
example will make this clear:

&oi Tr[a,»»,»», ]Tr[»»t, at, at, ](0&=5„.(0( Tr[a,»»,at.at. ]i 0&

+ 5„(0[Tr[»», a,a2t a, ][ 0)+'5„(0[Tr[a,a,a, »», ][ 0)
but, e.g. ,

(0) Tr[a,a,»»~ a3t ][0) =N, 5» (0i Tr[aa»» i][0)+5»i(0( Tr[a,]Tr[»» i ]I 0)

33 22 ~ »" 3
N

C
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Thus

(Ol Tr[a,a,a,]Tr[ a, a, a, ]0) N, '(6„.5» 5» + 5„5„6» + 5„5» &„) ~

C

The factor (1/v'N, )'~' ''n in (2.9) was chosen so that lg) has a finite norm in the limit N, -~. The
overlap of two states of the form (2.9) will go to zero as N, -~ unless the two states have identical par-
titions of a 's among the different traces. Thus states of the form (2.9) form an orthonormal (in this
sense) basis of the color sing-let Hilbert sPace in the N, -~ limit.

Now we are in a position to consider the structure of the Schrodinger equation

Hl C& =&I C& (2.10)

in the large-Xc limit. For our discussion of counting powers of N, we may suppress the dependence of
the equation on momentum and gluon polarization. Thus as far as dependence on N, is concerned, II has
the generic structure

H- Tr[a a]+ (Tr[a,a, a,]+Tr[a, a,a,jj +—(Tr[a~ta2ta3ta, ]+ Tr[ata, a,a, ]j.
1

4N C
C

+N (Tr[a,a,a,a, ] +:Tr[a, a, a,a4]j + (Tr[a, a, a, ] r[a,a,a, ]j + —( Tr[a,a "a a)+ Tr[a a a a ]]
C C

(2.11)

Terms of the sort contained in the last two sets of
braces are not present in the infinite-momentum-
frame Hamiltonian P . In the matrix products we
adopt the convention that

(a )„8= (ag )t . (2.12)

Now consider how each type of term in (2.11)acts
onastateofthetype(2. 9). Termsofthetype Tr[a aj,
(1/MN, ) Tr[a a a], (. 1/N, )Tr[a a a a] merely sub-
stituteat, (1/MN, )ata~, or(1/N, )a atat forasingle
a in the state. The number of traces is not dis-
turbed; the number of a~'s in a single trace is in-
creased by zero, one, or two, but the explicit
factors of 1/v'N, ensure that each contribution
remains of order 1. Terms of the type (1/
VN, )Tr[a aa] and (1 /N)a~ aata] involve two
contractions. The first substitutes (1/v N, )a a
or (1/N, )a aa for a single a . The second con-
traction will remove another a from the state.
Counting leftover factors of 1/N„we see that these
contractions will yield a state of order 1/N, un-
less the contraction itself supplies an extra factor
of N, . There is only one contraction which does
this, namely the a contracting against the only a
with a common color index. We may characterize
this verbally by saying that the only terms which
survive the N-~ limit are those in which the a' s
contract against nearest neighbors on the same
trace. A. similar conclusion applies to the term
(1/N, )Tr[a aaa]: The only surviving contractions
are those in which all thr'ee a's contract against
three nearest neighbors on the same trace.

It is amusing to observe what the suppressed
contractions do to the structure of the state. If
the two contractions are against non-nearest

neighbors on the same trace, the result of the
contraction is to split that single trace into two
traces. If the two contractions are against two
a's from different traces, the two traces are tied
together into a single trace, similarly for the term
involving three contractions. If the contractions are
against three non-nearest neighbors on the same
trace, the trace splits into three, or if one is against
one nearest neighbor and one non-nearest neighbor,
splits into two. The various possibilities are il-
lustrated pictorially in Fig. 1. A term of the
form: (1/N, )Tr[a aa a]: is always nonleading
and either splits a trace or joins two traces. In
general we have the result that changes in the
color "topology" are suppressed by powers of
1/N, in the large N, limit. -

Finally, we come to the terms in H which in-
volve only a 's or only a' s. The presence of these
terms means that the bare vacuum is not an
eigenstate of H. Their action on states of the
form (2.9) yields states of order N, as N,
For example,

3

Tr[a~ta, a,]~ 0)s =N, Tr[a,a,a,] ~ 0)s .

(2.13)

The presence of these terms complicates enorm-
ously the Fock-space description of the large-N, .

limit. The large-N, limit of Feynman graphs
makes it evident that these terms which blow up
as N, - are all associated with the fact that the
energy density of the vacuum is of order N, '. To
see this, refer to Fig. 2. If one expands the U
matrix in perturbation theory a term such as
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Tr a~aa
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FIG. 1. Pictorial representation of the action of vari-
ous terms in the Hamiltonian (2.11) on states of the
form (2.9). Each trace is represented by a ring and
each a~ in each trace by a dot on the appropriate ring.
Only one typical example of each type of contraction
scheme is included on the right-hand side of each equa-
tion.

(b)
FIG. 2. Two possible time evolutions of a vacuum

fluctuation for e+e annihilation. In (a) the fluctuation
has no effect, whereas in (b) the fluctuation modifies
the measurable amplitude. We also show the Fock-space
representation of the intermediate states at three suc-
cessive instants of time.

(2.13) corresponds to the production of three
gluons in the vacuum. The time evolution of
these produced gluons can either lead to their sub-
sequent annihilation in the vacuum [ Fig. 2(a)] or
their absorption by the part of the graph connected
to external lines [Fig. 2(b)]. The first of these
is just a disconnected bubble and contributes to
the energy density of the vacuum a piece of order
N, '. The creation amplitude is of order N, and

the annihilation amplitude is of order N, . The
second process [Fig. 2(b)] is physically measur-
able, but the amplitude for absorption is of order
1/N, ) (it involves a change of color topology) so
the whole process is of order (1) in the N, -~
limit.

In an analogous way other processes which are
a Priori suppressed such as the splitting of a trace
into two traces can be enhanced if the gluons in
one of the two traces are ultimately annihilated in
the vacuum. The terms in the Hamiltonian re-
sponsible for this enhancement are the ones with

only annihilation operators. For example, the
term (1/»'N, )Tr[aaa] will yield a net factor of

when contracted against a term [1/(VN, )']

x Tr[a a at] in the ket. Contractions of this term
with a 's in larger traces will be at most or order
one.

To make progress in the presence of these di-
verging contributions, it is clear that one must, at
the very least, begin with an approximate vacuum
state which is dramatically different from the bare
vacuum. In order to get an inkling about the
structure of such an approximate vacuum, con-
sider the simple quantum-mechanical model,

Hz„=E, Tr[a a]+ ( Tr[at']+ Tr[a']],-1

which has parallel structure to our Hamiltonian.
Let us try a, state (for N, -~) of the form

Ig&=Fr„ITr('~ ) II
o&.

One obtains the recursion relation

3nc„E,+Nc„,+ 3(n+ 1)Nc„+,=Ec„.
Setting c„.=K"/n! we obtain

N 3NK 13E + —+0 g
which has the solution
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E=-XZ

~ p& = expI-s rr ( ) I&
p&,

Of course, the above analogy can only be taken
as a schematic indication of what the field-theory
vacuum looks like, since we have ignored com-
pletely the dependence on p and i. But the ex-
ample does indicate that a trial vacuum must
describe some kind of condensate of rings of
gluons. In the realproblem atrial vacuum inustbe
found for which the terms in the last two sets of braces

in (2.11) are replaced by numbers. Then, using
the new vacuum, one can attempt to form states
such as (2.9) and attempt an approximate treat-
ment of the Schrodinger equation for excited
states.

An alternative approach, mhich holds the prom-
ise of a more systematic treatment, is to formu-
late the whole problem in an infinite-momentum
frame. Then the troublesome terms are not
present and one can completely remove the ex-
plicit N, dependence from the problem. For in
this ease, in leading order, the Hamiltonian P
acts independently on each trace, so, without loss
of generality, we may consider only states mith
a single trace:

4.(p, , f„p., t.; ";p., g„), N .. »l.~'t, (p, )a,', (p.) "tt,'„(p„)ll0&, . (2.14)

Furthermore, when we write out the Schrodinger
equation, g P,~=O for each n .

i=a
(2.16)

I' It&=P le&,

to mhieh we add the constraint,

(2.15a) Then solving the eigenvalue problem (2.15a) will
give us directly the (mass)' values of the gluonic
particle spectrum:

P'
lie&

= P'lit&, (2.15b) M =2PP (2.19)

we can make the replacement

t 0& (+ I 0& ) nearest-neighbor contractions ~ (2.16)

Constraint (2.15b) is easily enforced by requiring

I", =p' for each' . (2.17)

We may similarly. restrict ourselves to the "trans-
verse center-of-mass" system by imposing

It is a straightforward matter to work out the
nearest-neighbor contractions required in (2.16).
Then, since the states Tr[at~ ~ a „]~0&~ are or
thogonal for different values of n, (2.15a) becomes
a set of coupled integral equations for the ampli-
tudes g„(p„i„~;p„,i„) Since.we are not going
to do any detailed analysis in this article, there is
no point in presenting explicitly these equations.
Instead we mill simply describe their qualitative
structure. The general form of the equation is
(very symbolically)

( p 2

P P„(1 ' 'n) =
~

", g„(1 ' n)+X 'aKt(i)tr&„(1' ''n)+kg Kog(i, i+1)g„(1~ n)
=1

+ K t(i, j)g„„(1, ' ', i —1,(j},(j}-(i},i 1,+. . . , n) A. +K"(i,i+1)g„ t(l, . . . ,i, i+2, . . . , n)
y}

K g(t'; j,k) t&&„.g (1, . . . , i —1(j},(k},(i}-(j}-(k},s+ 1, . . . , n)

+Zg K"(t,a+1, a+2)g„,(1, . . . , z, i+3, . . . , n).
-"1

(2.20)

The K's are integral operators in the momentum
variables which are inferredby performing the
contractions in (2.16), and X =gv'N, is the fixed
coupling constant.

Thus the combination of the N, - ~ limit and the
choice of infinite-momentum frame has reduced
the problem to a many-body problem of a special
type. The particles (gluons) are ordered on a ring
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and only nearest neighbors on 'the ring can inter-
act. However, the riumber of particles is not
fixed: A gluon can fission into 2 or 3 gluons, and

2 or 3 gluons can fuse into one. In the next section
we shall discuss attempts to gain some insight
into the implications of Eq. (2.20).

III. CONCLUDING REMARKS
'

In this article we have presented a Pock-space
formalism adapted to spectrum calculations in the
Large-N, limit. We have not addressed here the
difficult problem of how to solve Eq. (2.20). Some
ideas on approaching this problem have been pre-
sented by us in a previous article, ' where we tried
to exploit the only simplification of the Large-N,
limit which is the presence of only nearest-neigh-
bor interactions in Eq. (2.20). We attempted a
type of Tamm-Dancoff' approximation where we
assumed a fixed mean number n of particles which
fluctuates only by occasional single-particle ex-
change between nearest neighbors. Replacing this
single-particle exchange by an effective potential,
we were able to gain some insight into the dynam-
ics of the system for n - , in which the level
spacing approaches that of the relativistic string
model. ' In particular, a formula relating the
slope of Regge trajectories to the microscopic
dynamics described by the effective gluon-gluon
potential was obtained.

Our argument that the Large-n components of the
amplitude g„are important was very heuristic and

crude. We argued that the fact that the effective
gluon-gluon potential was attractive, at least at
large distances, might make it energetically favor-
able for many gluons to be present. Now it is
clear that the att.ractive Coulomb potential will
only overcome the kinetic energy of massless par-
ticles if its strength is larger than a critical value:

of low-lying hadrons indicates that the structure
of low-lying hadrons is dominated by the smalL-n
components of g„.

Indeed, if one tries to apply our particular
Large-n ansatz' to the lowest-lying hadrons, the
result is that the lightest hadrons are tachyons.
We have given a simple physical explanation of
this tachyon instability 2 In our Large-n ansatz
we assumed that each of the many constituent glu-
ons had the same P', b. Our approximation to
Eq. (2.20) then became a nonrelativistic many-
body chain problem in the two transverse dimen-
sions. It is a general feature of nearest-neighbor
interactions that the ground-state energy of a
single closed chain is larger than the sum of the
ground-state energies of two smaller closed chains
with the same total number of particles. Thus our
N, - ~ closed string can decay with amplitude of
order l/N, into two smaller closed strings. This
explanation suggests an obvious cure t6 the insta-
bility: The bare vacuum should be replaced by
a condensate of closed gluonic chains at some
equilibrium density of order N, .

-Q fC

2 glttons

is negative only for o',«&1. Because of asymptotic
freedom, which says that n,., grows withe, this
requirement can be translated into the statement
A &B,. Deep-inelastic scattering indicates that
A, is a characteristic scale in hadronic physics,
say a half a fermi. Thus our Large-n ansatz should
be applicable only to the smalf momentum com-
ponents of the hadronic wave functions where
"small" means small compared to 100 MeV. These
components of the hadronic wave function certainly
play a dominant role in the structure of "big"
hadrons, e.g. , the hadrons that contribute to high-
energy low-momentum-transfer scattering and
hadrons which have a high angular momentum.
But the success of simple "valence-quark" models

X

(c)
FIG. 3. (a) One particular time ordering of the Feyn-

man graph in (b) which describes the scattering of a
vacuum fluctuation on a gluon. In the infinite-momentum
frame only one x+ ordering occurs as shown in (c).
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As we have seen in Sec. II, when the large-N,
limit is formulated in an ordinary reference
frame, the notion of a closed gluonic ring'conden-
sate is forced on one from the beginning. The
skeptical reader might ask what has happened to
this condensate in the infinite-momentum frame.
It is conceivable that in going to the infinite-mo-
mentum frame we have lost some essential in-
gredient in the dynamics. A partial answer to this
question is that at least some aspects of the con-
densate dynamics are present in the infinite-mo-
mentum frame. For example, consider the ele-
mentary process shown in Fig. 3. In Fig. 3(a) we
draw the old-fashioned perturbation-theory graph
which describes a ring of three gluons in the con-
densate scattering against a gluon. Of course, it
is well known that this is only one of many time
orderings which contribute to the single Feynman
graph drawn in Fig. 3(b), and it is also well known

that in the infinite-momentum frame this complete
Feynman graph is obtained by the single x' order-
ing of-Fig. 3(c). Thus what are condensate effects
in an ordinary ref er ence fr

arne

ar e disguis ed as
self-energy corrections in an infinite-momentum
fr arne.

For consistency of this interpretation we must
ask whether the approximations to Eq. (2.20) which
led to the tachyon instability do not include these
self-energy effects: If they are included and the
instability remains, the infinite-momentum frame
description is inadequate. Fortunately, the fixed-
n single-particle-exchange ansatz does exclude
the self-energy contributions in Fig. 3(c). Thus,
the instability we discovered could go away if the
infinite-momentum-frame dynamics is handled
more exactly. In this better treatment it would be
essential that g„'s for all values of n ranging from
a few to many be included: The true hadronic
wave function is a superposition of states of all
numbers of gluons. The g„'s for low values of n
are probed in short-distance experiments while
the („'s for high values of n are probed in long-
distance experiments (e.g. , peripheral high-energy
experiments).
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