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Massless quantum chromodynamics cannot be renormalized on-shell; various possible off-shell

renormalization prescriptions yield different definitions of a scale-dependent coupling constant g. We show

how to relate physical predictions computed in different renormalization schemes. In particular, we compute
the dimensionally regularized two- and three-point functions at the symmetric point in momentum space
through one-loop order, and deduce the relation between g;„defined by minimal subtraction and g, defined

by momentum-space subtraction, We find that g, is fairly insensitive to which vertex one chooses to define

it, and only weakly gauge dependent. g in is shown to depend strongly on the dimensional-regularization

procedure, and can therefore differ quite dramatically from g„„.The scale dependence of g is conventionally

parametrized by a scale-invariant mass A; the ratio of A s defined by any two renormalization schemes is a
pure number which we show is exactly deducible from our one-loop results.

I. INTRODUCTION

I

coupling constant. %e have

In an asymptotically free theory the scaling be-
havior of Green's functions in the deep Euclidean
region can be computed in perturbation theory.
This was first used to obtain the now classic
predictions of quantum chromodynamics (QCD)'
for scale breaking in deep-inelastic lepton-hadron
scattering, which are in substantial agreement
with experiment. The domain of applicability of
perturbation theory has since been shown to in-
clude e'e annihilation to h3drons, deep-inelastic
photon-. photon scattering, various properties of
heavy-quark systems, and, through the proof of
factorization, a number of inclusive single-particl. e
and jet cross sections. ' All of these predictions
should be testable in the near future.

Typical of the predictions of perturbative QCD
are those for the structure functions of deep-in-
elastic scattering processes. The nth moment of
a nonsinglet structure function can be expanded in
a power series in the scale-dependent QCD coupling
constant g as follows:

M„=g'"Il + b„g'+ O(g ')]A„.

a„and b„are calculable numbers. The overall
normalization A„cannot be calculated within the
framework of perturbation theory, but is scale
independent. The next-to-leading-order coeffi-
cients have recently been computed for deep-in-
elastic scattering off hadron. s and photons, and
this development has sparked interest in the ques-
tion of how predictions such as (1) depend on the
way in which QCD is renormalized. ' To exhibit
explicitly the renormalization-prescription depen-
dence of Eq. (1), consider a different renormaliza-
tion scheme from the one we shall suppose has
been used to compute the coefficients in (1). This
scheme will lead to a different definition g' of the

where a is a calculable constant. Physically
measurable quantities such as M„are, of course,
independent of a renormalization scheme. There-
fore, since g is the only free parameter in mass-
less QCD, the prediction for M„got by using
the second scheme is obtained by substituting Eq.
(2) in Eq. (1):

M„= (g')"[1+(b„+aa„)g" + O(g")]2„
-=(g')"[1+b„'g" + O(g")]4„.

Thus, the coefficients b„are renormalization-
prescription dependent. It should be emphasized
that if the perturbation series in Eqs. (1) and (3)
were known to all orders, the renormalization
convention dependence of g would have absolutely
no physical consequences. In practice, however,
one can only compute the first two or three orders
of the expansion. The truncated series therefore
differ from each other by terms of the first un-
computed order in g. Since g'/4m-0. 3—0. 6 at
currently accessible energies, these uncomputed
terms are almost as important 3s the leading
terms and different renormalization schemes
yield quantitatively different predictions for
physical processes.

This convention dependence of the coupling does
not generally arise in QED for two reasons.
First, because &Q~D &(1 the convergence properties
of QED expansions do not much depend on the con-
vention used to define the coupling. Second, there
is a "natural definition" of &QgD based on a low-
energy theorem for Compton scattering. That
theorem tells us that &QED can be measured
"directly. "' Unfortunately, in QCD there are no
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convenient low-energy theorems, and the running
coupling constant vanishes as q' —~ [hence an ex-
pansion in g(~) is not possible], so it follows that
there is no natural definition of g. It thus comes
as no surprise to find in the literature that not all
physicists define g in the sa.me way —different
definitions are con0enient for different purposes.
Clearly, it is important to be able to relate th' e
various definitions to one a,nother.

We will in what follows describe a number of
ways in which massless QCD can be renormalized.
One class of methods is known as momentum-
apace subtraction. This kind of renormalization
defines (in a way to be made precise later) g,
by-incorporating into it certain radiative correc-
tions of a given vertex. The definition depends
(among other things) on which choice of vertex is
made. For instance, one can (and we do) consider
either the trigluon, the ghost-ghost-gluon, or the
fermion-fermion-gluon vertex. Each of these is
related to the others through Wa, rd identities"
which we shall explicitly verify in the course of
the paper. Each vertex leads to a different g, ,
although, as we shall see, the dependence turns
out to be weak. It has been conjectured"'' (and
checked in some examples" ) that because momen-
tum-space subtraction is a "physical" method of
renormalization we should expect reasonable con-
vergence from expansions of physical quantities in
terms of g, . This feature is very important be-
cause at currently accessible energies g'/4z is
not very small; therefore, low-order predictions
are meaningless unless coefficients of a, g expan-
sion are small (as they are conjectured to be for
momentum-space subtraction). Most high-order
results have for reasons of technical simplicity
been computed' by renorma. lizing via, "minimal
subtra, ction. " This technique depends on how the
field theory is regularized. For dimensional
regula. rization, "which we will be using, the min-
imal-subtra. ction renormalization is done by sub-
traction of poles in (N —4). There is some arbi-
trariness depending on how diagra, ms are analyti-
cally continued away from four dimensions, but
since minimal subtraction is not physical it is not
expected'" that expansions in g „will converge
well. Another possible disadvantage of using g „
is that there may be some cases where it is not
convenient to regularize dimensionally. Such a
situation may occur when. computing processes in
the presence of instantons" or in a curved back-

,ground manifold. "
We see that although minimal subtraction is

usually convenient for calculating, there may be
some advantages to writing the results in terms of
g rather than g „. By means of a one-loop
calculation we. shall derive relations of the form

g =g g+c™+0 g

Then by imitating Eqs. (1)-(3) it is possible for
any prediction made through next-to-leading order
in g „to be rewritten as an expansion in g, .
The methods described can of course be general-
ized to higher orders.

The scale dependence of the renormalized cou-
pling constant is usually explicitly exhibited by
writing QCD predictions as expansions in
1/ln (Q'/A'), where A is a scale-invariant mass
parameter. Since A is a, well-defined function (to
be specified later) of g, it too depends on the re-
normalization scheme. However, a. particularly
a,ttractive feature of the A parameter is that dif-
ferent renormalizations of it can be related to one
another through all orders by means of one-loop
calculations. We will show how that comes about
and will compute the ratios of A's defined by dif-
ferent schemes.

II. PROCEDURE

Here we shall detail the procedure to be fol-
lowed for relating g's and illustrate it by perform-
ing subtractions on the gluon propagator and tri-
gluon vertex.

A. Bare and renormalized parameters: definitions and
identities

where

—(s q~) ~ (3 q sg+~A~ xmas)

+ C (i ps+ g A~eT)4's, (4)

F~"= 8"A~ —8" A~ +g~ A~ &(A~ .
We have used the notation A „A„=A;A'„, (A„xA„)'
=f'"'A~ A„', where f '~' are the structure constants
of SU(3). gs is the bare coupling constant, A~ is
an SU(3) color field, qs are ghost fields, (s
represents n~ flavors of massless quarks, and &~
is the gauge parameter. [We will often state our
results for a general group rather than for SU(3).]
This Lagrangian is rewritten in terms of renor-
malized quantities (zvithout the subscript B) and
multiplicative factors Z, :

It is necessary to begin by defining the QCD
Lagrangian expressed first in terms of unrenor-
malized quantities (subscripted with a. B) and then
in terms of renormalized quantities and renormal-
ization, constants Z. Written in the general covar-
iant gauge it is" '
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g = ——,
' Z, (8,A„—8,A„)' ——,

' Z, g(8, A„—8„A,) (A' xA") ——,
' Z g'(A xA, )' ——(8, A")'+Z, q~

+Z, gq' 8,(A' xq)+iz, g/(p+gz, (/)1' Tg.

a —(z. 'Z3" ) a'a, a — 3&.
(6)

By equating Eqs. (4) and (5) we find that the
parameters are constrained by (Ward identities)

Z,' a,nd Z,' by

Z,'= Z, (1+ag')

and

z,'=z, (1+bg') .

From Eq. (6)

(7)

Apart from these constraints, the Z's are in
principle completely arbitrary. In practice, be-
cause QCD needs regularizing, the arbitrariness
of the Z's is only in the finite pa, rts. To be spe-
cific, we choose to regularize QCD dimensionally
following the rules of 't Hooft and Veltman. " In
that case the infinities of perturbation theory are
manifest as poles in (b/ —4) and these are canceled
by choosing some of the Z, to also have poles
(thus Z's are made & dependent). Those poles are
not arbitrary but the finite parts are (up to Ward
identities). It is this arbitrariness which leads to
the different possible definitions of the coupling
constant. To demonstrate that, consider defining

So

s/J'ag= Z~ Z3 g~

z -lz s/z(z)-s/2zt)
3 3

= (I+g'q)(1+g'b) '"g'.

(8)g= [I +Z"(~ ——', » la'+ O(Ã") .
Equations (7) and (8) are then the prototypes of
the relations to be derived. Differences in re-
normalization prescription simply amount to dif-
ferences in the definitions of the Z's [Eq. (7)] and
hence in the definition of the coupling constant
[Eq. (8)].

In order to define Z, we calculate,
O(g')], the propagator II„(p). The
through O(g )—are computed in N=

B. The gluon propagator and Z3's

in one loop [since we are only going to be interested in Z's through
Feynman diagrams of Fig. 1—these include the (Z, —1) counterterm
4+ e dimensions" to give

where

'C, G 13 2
h(p') = 1+ ', ———+ y~ —In(47/) + ln, + —"

16))' 6 .e

fl 2 p', l, 1+a( — —+y, -e(cw)+)n, + ' (+ * —
}(2,e ~] 4

2 4 2+ — T(R)nz — —+ y~ —In(4m) +ln, —'o —(Z, p
' —1) .16' + 3 6

E (10)

g is a mass parameter chosen arbitrarily, "C, (G)
is the (adjoint representation) Casimir operator
[for SU(3), C,(G)=3], &(R)= —,

' for SU(3) (Ref. 17),
and yE is Euler's constant=0. 577215664
Notice that Z, is not yet defined. In Eq. (10) we
see that the longitudinal piece of the propagator

(op "p"/p') has no O(g') corrections. This is a
well-known consequence of the Ward identities. "

Now we define Z, . For the propagator to be
finite the counterterm must cancel the pole part of
II. Min:mal subtraction defines the renormaliza-
tion constants so that they cancel only the pole part
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P)F P~"
l

2

(Zq- p, 'j
+ n + D(24)

b, q, v

+

FIG. 1. Graphs contributing to II~~ {P).

of the relevant Green's function. Hence

g 13
Zmin(~) +2 1+ min, G (G)16g2

+n T()t) I. —8

It should be observed that there is an explicit de-
pendence on the arbitrary mass p, and, in fact,
if Z, "(e) were rewritten as (g')'[1+ g'f(&)] where

f is dimensionless, then f would involve a nonpole
part. We see thus that Z,"is actually p. depen-
dent and so should be written Z, "(e, g)." Like-
wise, g should be written as g „(p,).

Momentum-space subtraction is implemented by
prescribing the values of divergent propagators
and vertices at some fixed configuration of exter-
nal momenta characterized by a scale M. More
precisely, a fully dressed, renormalized propa-
gator with momentum p is defined to be equal to
the bare propagator at P'= -M'. In the case of
vertices (which will be discussed in detail in the
following sections) a decomposition into invariant
amplitudes is first made. Renormalizability im-
plies that divergences (poles) occur only in the
amplitude multiplying the bare vertex; this ampli-

(y. '-Z ij g + 0 (g j

FIG. 2. Graphs contributing to l~+ {P q x).

tude is defined to be equal to 1 at scale M.
Referring to Eq. (10) we see that we must

choose the counterterm Z, ' (e, p, 2M/p) so that
Ii(—M') = 1. [Notice that terms of O(e) are dropped
in the definition of Z ' . ] We note that the renor-
malized amplitude

2(-p ).=1+2, xnnnntxln(, ) +G(2 ) (12).

depends only on M and not on p, . This can easily
be seen to be true of the other Green's functions
renormalized by momentum-space subtraction.
Since the set of renormalized Green's functions
defines the theory completely, and these depend
only on g, and M, we write g =g, (M) when
we wish to discuss its behavior under scale trans-
formations. The Z~ depend explicitly on the
ratio M/)(i, and so, in general, will the relation
between g „(p,) and g, (M). This will be dis-
cussed further in subsection E.

C. The trigluori vertex and Z& 's

The vertex function I "„(p,q, r) is defined to be the value of the trigluon vertex at the symmetric point
p'=q'=r = -M'. Feynman diagrams (Fig. 2) are computed to give

P'n„'„(p, q, r)=gf, ~, ([g„„(p-q)„+g,„(q r)„g „(r--p)„](G (n- M) +Z, p, ')

—(q —r)„(r-p), (p -q)„G,(-M') —(r„p„q„r„p„q„-)G,(-M')) p,
' + O(e),

where

2
G (—tt')= IC (G). ——+ ' I+ )+ n( ————'1———)

3$

2

(

+ cP(- —,
' +-', I)+ n'( ' ——,', I)]+T(R)n—(- —, + —G I)),

(14a)

(14b)
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2

+ n'(-' —' I)+ u'( —'}]+T(R)n~(-,'+ —", l)j. (14c)

In these equations"

lnxI= -2 2 =2, 3439072. . . ,x ~x+ 1

—. = -+
—,
' [y, —In(4v)+ in(M' ji 2}],

and Z, (as well as g) is yet to be defined.
Minimal subtraction as before defines Z, "to cancel only the poles in Eq. (14a) (and as for Z, "the

definition depends on the choice of scale, p,):

z '"(~ g)=g' 1 — " c,(G) ———(+r()()n -—},
gmg (9) 1 I 3n i 8

169( '
8g 36 (15)

We will define momentum-space subtraction by
choosing Z, ' to cancel G, at scale M [again we
drop the terms of O(e)]:

(~, V, M/V) = V'(I —G, (-M'))

with g-g, (M) in the expression for G, .
Observe that G, and G, are nonzero so there is

no way to remove all g' corrections to the vertex.
Because of that, there are alternative reasonable
ways to define the vertex counterterms (hence Z, )

by momentum-space subtraction and in Sec. III
we will explore some of these options.

D. A comment on the calculation of the propagators
and vertices

The computation of the diagrams in Fig. 1 and
especially in Fig. 2 is algebraically complex. It
was done by computer using the algebraic manipu-
lation program SCHOONSCHIP. ', Intermediate
step»n the calculation typically involved several
thousand terms. The three-point functions to be
discussed in Sec. III, as with the trigluon vertex
just described, were evaluated at the symmetric
Euclidean point P'= q'= x'= -M'. At the symme-
tric point it was found possible to reduce all Feyn-
man parametric integrals analytically to the single
integral I defined in the previous subsection.
These integrals were of the form

e(1-x-y)x 'y '
[x(1 -x) +y(1 -y) -xy]

yg =0, 1,2, 3, 4

or in some cases the numerator of the above inte-
grand was multiplied by ln[x(1 -x)+y(1 -y) —xy].
In the Appendix we describe methods used to reduce
these integrals and in Table IV we tabulate those

that were encountered in our calculation.
The transversality of the gluon propagator and

the known tensor structure of the trigluon vertex
were not used in the calculation (although momen-
tum conservation was), hence their emergence in
the output of the program provided a check on the
algebra. As a further nontrivial check it was
verified that our results satisfied the relevant
Ward identities (this will be demonstrated in Sec.
III).

E. Relating gmom to gmin

Returning to the results of subsections A-C we
can now relate g, (M) toy „(g). To do that, we
must first relate p, , the arbitrary mass intro-
duced in continuing Feynman integrals to 4+~ di-
mensions, and M, the subtraction point in the mo-
mentum- space subtraction scheme. We note that
the predictions of perturbative QCD such as
Eq. (1} are written as power series in a scale-
dependent coupling constant g „(g) or g, (M).
Since there are no other dimensional parame-
ters available, the scales p,

' and M' are clearly
proportional to the "Q'" at which the experi-
ment is done [e g , in e.le.ctroproduction,
Q= (-q')'~' is the mass of the virtual photon]. We
choose M' = Q' in order that all of the indeter-
minate radiative corrections in perturbation theory
are absorbed into the definition of the coupling
constant at the scale at which the experiment is
performed. In the case of minimal subtraction,
we refer to standard practice in which results are
written in terms of the coupling g „(Q). Thus,
in the following we shall set M = p. .

Following Eq. (8) we can relate g, to g „. We
use forthe Z's the results in Eqs. (11), (12), (15),
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and (16) and find that

2

g .(q') g=, (q.')((+ '& x(G., n, ) + o(g „'(q)l )I, (17)

A(c&, nz) = (—C, (G)Q- —"(ys —ln 4i&) + —", + II]+ n(-', —
e I) + c&'(-

4
+ —,', I) + n'( —'))

+ r(R)n„[a (ys —ln 4i&) - ~ —-' I]) . (16)

Notice that for notational convenience we suppress
the dependence of g, on & and n~. A tabulation
of A(o&, nz) for various values of n and nz is given
in Table I. Of particular interest are the Landau
and'Feynman gauge results for four flavors:
A(0, 4) =2.32, A(1, 4) =2 ~ 0't.

P. Defining A and finding Amom /A m

At this stage we should explain how our g(ii')
compares to the usual running cogpling constant"
g(g, ln(p, '/p, )}. In fact, they are the same. g is
defined to be the value of the coupling constant re-
normalized at ii' [what we call g(U, ')] if it is known
to have the value g when renormalized at i( [ what
we call g(p, )]. We simply continue, however, to
refer to the running coupling constant as g(ii). It
satisfies"'o the renormalization-group equation

=&(g(V)}= P,g' -P, g'+o-(g'). (19)

(for some chosen Q, ) by measuring the momentum
dependence of the calculated physical quantity and
using Eq.

' (l9}to relate g( q ) to g(Q, ).
One convenient way to keep track of the momen-

tum dependence of g(p, ) is to integrate Eq. (19) in
terms of a p, -independent mass parameter A,

g&)))

, =in(,((/A), (20)

and solve for g as an explicit function of (ii/A).
To do this one must first fix the arbitrary inte-
gration constant in Eq. (20). There is at present
no universally agreed upon convention for doing
so. One could, for instance, use some particular
fixed numerical value of the coupling constant as
a lower limit on the integral in Eq. (20), but this
leads to an awkward expression for g(p, ). We
shall follow the convention used, for example, in
Refs. 3 and 4 by fixing the integration constant in
Eq. (20) so that

Through the renormalization group the q' depend-
ence of Green's functions is given implicitly by the
dependence on the momenta of the (running) cou-
pling constant g(~q ). We can determine g(Qe)

Pi 2ln
A

——2P-, ( } +2~, in[p, g (ii)]

+ o(g'(u)) ~ (21)

TABLE 1. Values of A{n,ni, ) and A /A i, . These
quantities are defined in Sec. D [Eqs. {17)and {23)j.

This equation can be solved for g({&,} when i&, » A:

1 P,ln ln(ii'/A')g, i
P j (~2/AR) P 3h 2(~2/A2)

A{o.', n~) A m/A ia +3 2 A2 (22)

0
0
0
0
0
0
1
1
1
1
3
3

~2

3.82
3.44
3.07
2.69
2.32
1.94
3.57
2.44
2.07
1.69
2.27-
1.90
2.53

8.86
8.11
7.34
6.55
5.73
4.91
7.69
5.51
4.76
4.01
4.89
4.18
6.76

and it is easily verified that g(,(() satisfies Eq. (19}
provided that dA/dpi = 0. We see that the particu-
lar choice of integration constant implicit in Eq.
(21) leads to an expression for g(i&,) that contains
no term of the form const/in'(p'/A'). The phe-
nomenological implications of this choice are

.discussed, for example, in Refs. 3, 4, and 10.
Clearly any other choice of integration constant
leads to a definition of A which differs from the
one used here by a multiplicative constant.

Using Eq. (21) to define A and A „in terms
of g~ (p, ) and g „(i&,), respectively, we derive that
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2~a g '(&) Z,.'(V)

= exp A(&, n~) + O(g')1
8m pa

(23)

where A(o', nz) is given by Eqs. (17) and (18).
Note that the ratio A, /A „is independent of the
choice of integration constant in Eq. (20), pro-
vided that the same convention for relating A to g
is used in both renormalization schemes. Since
A is scale invariant, we can let p —~ in Eq. (23)
so that

A, /A „=limexp ' ~ +O(g „'(p.))A(n, n~)
4 Io r 0

A(n, n~)= exp (24)

where 5,'", ' are calculable numbers. Most of the

5,", ' are renormalizable -prescription dependent
[as was described by Eqs. (1)-(3) of the Introduc-
tion]. For technical convenience the calculation
of the b's is probably best done in the minimal
subtraction scheme. But since we know A, /A „
through all orders, the above series for M„can be
completely written (with almost no effort) in terms
of quantities renormalized by momentum-space
subtraction. All we need to know is the one-loop
value of A /A „. For various gauges and
flavors these are given in Table I alongside the

since lim„„„g „(p.) = 0 by asymptotic freedom.
This is just the assertion that A, /A „is com-
putable through all orders by means of a one-loop
calculation. The importance of that observation is
the following: @CD predictions for the high-energy
limit of cross sections are often written as func-
tions of the single parameter A, e.g. , in deep-
inelastic scattering,

values of A(n, n~). With four flavors in the Lan-
dau gauge Am m/A )„—5. 73; ln the Feynman gauge
A, /A, „=4.76.

III. DEPENDENCE OF RESULTS ON VARIOUS
RENORMALIZATION PRESCRIPTIONS:

REI.ATIONS AMONG THREE-POINT FUNCTIONS

In this section we shall compute the ghost and
fermion propagators, ghost-ghost-gluon vertices,
and the fermion-fermion-gluon vertex. It will be
shown how these obey Ward identities which we
shall describe. Next we shall define the renormal-
ization constants according to subtraction pro-
cedures appropriate to those vertices. The result-
ing values of g, will be related to one another
(and to the g, defined in Sec. II) and to g „.
Finally, we shall describe the dependence of g „
on the regularization scheme used and comment
on differences between g and g „.

A. Ward identities

Checking the Ward identities"" provided a check
on our computations (see Sec. II, part D). We
shall discuss these identities very briefly follow-
ing the notation of Kluberg-Stern and Zuber' and
refer the reader to their paper for a more detailed
discussion.

Following Ref. 8 we add a term 8'„(x)D,"~q~(x) to
the Lagrangian where J'„ is a classical anticom-
muting source. Let I" be the generating functional
of connected one-particle irreducible (1PI) Green's
functions. The transverse part of the gluon propa-
gator can be written

$2P
, =5„(P'P"-g'"P')I(P')g '.
V

Using Bose symmetry and color-charge conjuga-
tion invariance it can be shown that the three-gluon
vertex atP'=q'=r'= -u can be parametrized
[cf. Eq. (13)]:

g3 p
6~. 6~&,~.——-~gf"''Lg. .(p -~), +g..(~ —~).+g,.(~ P).]G(p')-

-(v-~).(~-p).(p e), G,(p ) -(~.p.-~, -v.~.p. )G2(p')] &'. (26)

The three-point function with one 8 vertex and one external gluon and ghost [see Fig. 3(a)] can be parame-
trized at the symmetric point as follows:

3

6/, 6 y6g, =-gf'"[z &(P )+P,P, H (P )+P e, &2(p )+P.v,H (P )+0 Q, &4(p )] I' ~ (27)

Finally, we need the inverse ghost propagator

— =-P &„1(P )v .
5g] 57t~

(26)
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The Ward identity relating the invariant functions defined above is

[a+,' P'(H, +a,)]Z=[G,' P'G,]i. (29)

We list below our results for the invariants through order g' [for simplicity we shall sometimes omit
writing the counterterms and we shall drop all terms of O(e)]:

2 13 ].
I( u, ')=)—+, C (G) ———+ a ————. ——+ T(R)w —' ——„}.16m' ' 3e 36 2 i 4 3e

This result is just Eq. (10) rewritten; 1/~ is defined after Eq. (14) to be I/i= 1/e + —,
'

[y~ —ln(4v)] (as
discussed in Sec. IIE, p,

' and p' ha-ve been set equal in all these equations). G(-p, ')=1+G,(-g'),
G,(-p'), and G,(-(u') are all given in Eqs. (14). The remaining invariants are

(30)

H(-p, )=1+ ' (-+ —I)+ a — Ig'C, (G) 1 Q

16m' 4 .4
1»

(31a,)

'C G

(31b)

'C G
(31d)

'C G

where I was defined in Sec. II. Finally,

I(-V') =1+g'C (G) 3 a
16+ 26 26

(32)

satisfy Eq. (6). If they are not then we would not
be considering the La,grangian of Eq. (4).]

Nq b

(bI

a- b

(c)

FIG. 3. Vertices: p, q, r are momenta; a, 5, and c
are color indices: (a) gluon-source-ghost vertex, (b)
ghost-gluon vertex, (c) quark-gluon vertex.

These above equations are inserted into the two
sides of the Ward identity, Eq. (29), and it is
easily verified that the equality is satisfied through
O(g'). Although we have not written the counter-
terms, it can be immediately checked that be-
cause of the Ward identities for the counterterms
[Eq. (6)], these also satisfy Eq. (29). [This is
provided, of course, that the Z's are chosen to

B. Alternative momentum-space subtraction procedures

The three-gluon vertex discussed in Sec. II is
not the only Green's function that can be used to
define the coupling constant at a fixed point in mo-
mentum space. One could just as well use the
quark-gluon vertex, the ghost-gluon vertex, or the
four-gluon vertex fcr this purpose. Since there is
only one coupling constant in the theory, one can
in general specify the value of only one of these
Green's functions at the subtraction point; the
others are then determined by the Ward identities.
(The pole terms automatically satisfy the Ward
identities, "which is one of the technical advan-
tages of the minimal prescription. )

We have computed the quark-gluon and ghost-
gluon three-point functions at the symmetric point
[Figs. 3(b) and 3(c)] as well as the quark and ghost
propagators [the ghost propagator was given in the
preceding subsection as I '(P')]. In order to de-
fine the counterterms we follow the procedure de-
scribed ig, Sec. II. Z', ' and &, are defined to
cancel all radiative corrections to the propagator
at p'= -g'. Z, ' and Z» are defined to cancel
all radiative corrections to the term in the three-
point function proportional to the 0th order (skele-
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tal) vertex. (Remember, however, that because
of the Ward identities it is not possible to define
Z, 's independently of one another. More will be
said about this shortly. ) There is some arbitrari-
ness as to how the ghost-gluon vertex is parame-
trized at the symmetric point. Following Ref. 8
we define

(Z ' p ') '= O( 9'—)

=H( —p') —p'H, + —' g'H, ,

where H's are given by Eqs. (27) and (31).
The computed values of the Z ' 's are given

below. In these formulas C,(R) is the Casimir
operator in the funda, mental representation [C,(R)
= (1/2n)(n' 1) for SU(n), for SU(3), C, (R)= —, ].
[Also, we do not label the renormalized g's which
appear. This does not matter since any distinction
between two renormalizations of g appears only in
O(g ) in the equations below. ] We find that

z, ' (p)= 1+

Z,~ (V) =~ 1+

g 2

16@2, .c,(R)u = —() v, ',
2

C(H) (2 'I)+a 2+ 2I+=
]Qvj2

1

2

(33)

(34)

(35)

2

z ' (p)=((+,c, (G) (——— ', l)+ a ——+ -, I+ ——+ a — P.
' . (36)

We emphasize once again that the renormalization
constants above cannot be chosen all together. If,
for instance, we have defined Z3 p Z1 p and Z3'
then we are not free to choose Z, since it is re-
stricted by the Ward identities

Z = Zmom(Zmom/Zmom) (37)

Zmom
Zmom I/24om=Z3 Zmom g~

1F
(36)

It is easy to see by comparing the right-hand side
of Eq. (37) with Z,™[Eqs. (14a) and (16)] that
Z, cz, ' . (Notice that if we had used minimal
subtraction to define all Z's it would turn out that
Z "'s do satisfy the Ward identities, since the
pole terms do. Thus, . g „is independent of the
vertex chosen in doing the subtraction. ) There is
no inconsistency in the fact that the Z ' 's do not
satisfy Ward identities among themselves. It
simply means that only some of the Z's may be set
equal toZ ' 's. We see now the arbitrariness to
which we previously alluded. Momentum-space
subtraction can be done in a number of ways de-
pending on which of the renormalization constants
Z ' we choose to use. These allow new definitions
of the coupling constant. Following Eq. (6) we de-
fine g', and g", (the implicit dependence on g is
suppressed here):

Zmom
tt ~mom 1/2 3gm~=Z3 Z-mg'

1

In analogy with Eq. (17) we define the constants
A'(c(, n~) and 2"(&, n~) which relate g', and g",
to g „. A', and A", are defined by analogy with

Expressions for all of these are easily ob-
tained from our equations for Z ' 's [cf. II E and
II F] and in Table II we list some numerical values
for these quantities. We can also relate g', and
g", to g, . For instance,

ZmomZmom
1g mom

=
Zmom Zm fly g mom ~

3 1F

The ratio of Z's measures, in effect, the degree
to which Z ' 's do not satisfy Ward identities
among themselves. We will write

and

g". '=g. ' &+ ' ' g . '+o g'

(g, g', and g are taken at the same (x and n„).
Some of these values as well as their correspond-
ing A values are listed in Table III. We also show
in that table ratios of A/[A, (&=0)] for four
flavors and various A' s. Figure 4 displays the
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I

TABLE II. Values of 4'(n, nz), A" (o.', nz), A~/A~„and A" /A;„. These quantities are
defined in Sec. IIIB.

np A'(G. , n~) A" (o. , n~)

0
0
0
0

- 1
1
1

~2
3

0

5
3

5
4

3.04
2.46
2.27
2.08
2.26
2.07
1.88
2.59
1.60

5.68
5.59
5.55
5.50
4.86
4.77
4.67
7.06
3.33

3.19
2.61
2.42
2.23
2.82
2.63
2.43
2 22
3.26

6.17
6.19
6.19
6.20
7.15
7.24
7.35
5.33

11.68

gauge dependence of g, for n&
—4.

Some features of Table IG are pa, rticularly worth
noting. First, we see that the g, 's (or A, 's)
are fairly insensitive to which vertex was used in
the subtraction. The ratio A', /A~ is typically
much closer to 1 than the ratio A, /A „. For
instance, for four flavors in the Landau gauge,
A', /A, =0.97 and A", /A, =1.08, whereas

(a)
B(e,n+) C(a, nz) A(n, n~) '

TABLE III. (a) Relationships between coupling con-
stants at equal & and n+. B(n, np) and C(n, n+), respec-
tively, relate gmmn to gmom and gmarn to gmom As be-
fore, A relates gm~ to g~, (see Sec. IIIB), (b) ratios
of A's at equal & and nz, (c) gauge dependence: ratios of
A 's to A~ (& = 0) =—A, n+= 4.

A „/A, = 0. 17. Second, we observe that the
gauge dependence [see Fig. 4 and Table III (c)] of
A's is quite weak in the vicinity of &=0. Of
course, because A(a', n~) depends cubically on n,
a,nd A' and A."depend quadratically on &, it must
eventually be the case that for large enough values
of & the dependence on gauge becomes rather
dramatic. The fa,ct that for small n there are no
such dramatic dependences holsters (somewhat)
the assumption" that for an "optimal' subtraction
prescription one ought to use a, small gauge param-
eter.

C. Arbitrariness of the minimal-subtraction prescription

In this subsection we wish to discuss the fact
that minimal subtraction leads to a, coupling con-
stant that depends crucially on the regularization
procedure, i.e., on how one chooses to continue

0
0
0
1
1

~2
3

0 -0.78
3 -0.23
4 -0.04
3

' -0.18
4 0.00
4 0.06
4 -0.30

-0.63
-0.08

0.10 '

0.37
0.56

-0.31
1.36

3.82
2.69
2.32
2.44
2.07
2.53
1.90

——A {~,4

- . . . . . . A'{.,4
A" {~,4

(b)
n A' /A A" gA A~a/'~~ '

0
0
0
1
1

-2
3

0
3
4

4
4
4

0.64
0.85
0.97
0.88
1.00
1.05
0.80

0.70
0.94

. 1.08
1.30
1.52
0.79
2.80

(c)
A' gA

0.11
0.15
0.17
0.18
0.21
0.15
0.24

/
(
-/
/

/

0 I I 1 I

-5 -4 -3 -2 - I

I I

2 3
I

4 5

~2
0
1
3

1.18
1.00
0.83
0.73

1.23
0.97
0.83 .

0.58

'These values also appear in Table I.

0.93
1.08
1.26
2.04

FIG. 4. Gauge dependence of gmoms glom s and gmom
defined by subtracting the trigluon, quark-gluon, and
ghost-gluon vertices, respectively, for four quark fla-
vors. The functions A, A', and A" measure the devia-
tion of g, g', and g" from g,.„ tsee Eqs. (17), (38),
and (39)]. a=0 corresponds to the Landau gauge.
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Feynman integrals away from four-dimensional
space. This is to be contrasted with momentum-
space subtraction which as we have seen leads to
a coupling constant that is completely independent
of the regularization procedure. In minimal sub-
traction the artifacts of the regularization pro-
cedure are shared between the renorma, lization
constants and the renormalized Green's functions.
In momentum-space subtraction all of these arti-
facts are relegated to the renormalization con-
stants while renormalized quantities depend only
on the point in momentum space at which the sub-
traction has been performed. While it is eminent-
ly reasonable (from the point of view of choosing a
coupling constant which optimizes the convergence
of S-matrix expansions) to identify the momentum-
space subtraction point with the Q' of the physical
process that one is computing, and while it may be
a,rgued" that there is a preferred va, lue of the
gauge parameter (et= 0), there can surely be no
a priori argument in favor of any particular con-
vention of dimensional regularization.

We first discuss the observation of Bardeen
et al." that factors of ln4m and y~ appear to be
largely responsible for the rather large second-
order coefficients in their deep-inelastic moment
predictions. They note that a, rescaling of A
—A „=A „exp[-,'ln(4m —yx)] removes the factors
of ln4n —y~ from their results and leads to smaller
coefficients. One way in which this rescaling of
A can be accomplished is to analytically continue
away from dimension 4 by letting, for instance
(in the dimensional continuation that we have been
using),

dk dk ' N —4

( )~ ( )~ exp (ln 4w —y~)
~e

Then minimal subtra, ction with respect to this new
method of regularization yields A rather than A.
We note that since A,„=2. 66 A,„, the fa,ctors of
ln 4m' and y~ account for roughly half the difference
between minimal and momentum-space subtrac-
tion. Although with some suitable analytic con-
tinuation we can arrive at a A equal to A, , we
would not know which continuation scheme to use
unless we had in fa,ct computed A

One dimensional continuation technique which
does in fact lead to a A roughly equal to ~, is
the one used originally by 't Hooft and Veltman. "
They di.ffer from our prescription in that the mea-
sure of their loop momentum integral is d k/(211)
rather than d~k/(2m)~ which we use (following
Refs. 3 and 4). This, as in the example above,
can be implemented trivially by multiplying all the
pole terms in our one-loop results by a, factor
(2 11)" = I + e ln 2 n + O(e'), and results in a change
of scale A „-A'„=2nA „-A (see Table II).

It should be noted that in these examples we are
describing only the modification that occurs in one
loop. As explained in Sec. IIE the renormaliza-
tion method need only be defined through one loop
in order to determine through all orders any
physical quantity expanded in terms of A. How-
ever, for expansions in the coupling constant it
would in general be necessary to show how to re-
late in higher orders the different methods of di-
mensional continuation.

As a final example let us define the trace of the
unit Dira, c matrix in & dimensions to be N instead
of 4. This modification only affects dia, grams with
fermion loops and is implemented by multiplying
the pole terms a,ssociated with these dia, gra, ms by
appropriate factors of (I+ —,

' e). This leads to a
change A, „-A",.„=A, „exp[n~/(66 -4n~)] one
which now depends explicitly on the number of
fermion flavors.

IV. CONCLUSIONS

The question of renormalization-prescription
dependence in QCD is a very important one be-
cause there does not yet exist a natura/ prescrip-
tion. W have shown in this paper how to relate
some frequently used renormalization techniques.
The methods described can be used to relate other
conventions and other expansions.

Specifically„we found the relation between var-
ious momentum-space subtractions at the symme-
tric Euclidean point and we further related these
to the minimal-subtraction scheme employed, for
instance in Bardeen et al.' As an example of our
results we computed in the Landau gauge and four
flavors

2

g, '=g „~ 1+2.32 - '" +O(g &„')

where g, is the coupling derived from subtrac-
tion at the trigluon vertex. This can be compared
to

gl 2
g

2 ] +2 27 @5lin +O g2

2

~1

where g' is the coupling derived from the quark-
gluon vertex and g» is the coupling associated with
the ghost-gluon vertex. We see that the coupling
is very insensitive to which vertex was used to
define the momentum-space subtraction but is very
dependent on whether momentum or minimal sub-
tra, etion is used. Furthermore, as we discussed
in Sec. IIIC, g, „depends critically on the par-
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ticular dimensional continuation method used in
the regularization scheme. In Table III we tabu-
late a, number of comparisons between different
g's, in particular, between g, 's. The fact that
for the Landau (and Feynman) gauge and four
flavors all g, 's are so similar is very striking.
Also, the weak dependence on gauge for small
gauge parameters is noteworthy. We have no ex-
planation for these weak dependences other than
the suggestion that this feature is related to the
conjecture made in the Introduction (see also Ref.
10) that momentum-space subtraction is somewhat
"physical' and so tends to optimize perturbation
expansions. (In this way of thinking, the Landau
gauge is the preferred covariant gauge because
the propagator does not, in that gauge, involve the
unphysical longitudinal degree of freedom. ) We
have also presented our results in terms of A, /A,
where ~ is the mass used to parametrize the run-
ning coupling constant and depends on the renor-
malization prescription only in lowest order (this
was described in Sec. IIF). From the tables we
see that whereas A /A „=5. 73, A, /A',
= 1.03. This just further emphasizes the points
made above.

In deriving our results we calculated analytically
the finite parts (as well as the poles) of a number
of propagators and vertices at the symmetric
point. This was done in general covariant gauge
and the results were checked by verifying, in
Sec. III, the Ward identities.

On. e immediate use of our calculation is to apply
it to two-loop calculations done using minimal
subtractions (which is technically simpler than
doing a direct calcula tion using momentum-space
subtraction). These can, with our results, be
immediately rewritten as expansions in g ~. As
explained above, such expansions are presumed to
converge quicker than those in g „. Examples of
that investigation are discussed in another paper
(Ref. 10).
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+ln (1-x)
where R„are roots of x(1 —x) +y(1 —x —y) = 0.
Change the variables to

(1+3x)'~'+ (1 -x)'~'&
(1+3x)"'—(1 —x) 'g'& ~

It can then be shown that

=2x(1.17195361934 )=I. -

The latter equality is to be found in Ref. 18, p.
533.

(2) f(1,0, 1): Note that

d—~= 1 -2x -y,
Wax

cf—~= 1 —2y -x,

so

(1-x)
y — ——b+

2 cfy . 2
(A1)

Notice (this is a trick we use over and over again)
that by symmetry between x and y, I(1,0, 1)
=I(0, 1,1), so

and

1

J(m„m, ) = dx dy 8(1 -x -y)x"&y"min(4),
0 0

(

where &(A)=x(1 —x)+y(1-y)-xy+A. and 4= d(0).
We are specifically interested in 0 &~«1. In

fact, the sums of 1's that actually occur in the
evaluation of vertices are convergent so that ~,
which is just a regularizing parameter in these
parametric integrals, is ultimately taken to be 0.
In what follows we describe some of the techniques
used in evaluating I and J. Table IV lists the re-
sults for those integrals we encountered.

(A) Integxals I(mq, mq, I, 0)=- I(m„mz, I).
(1) We have

1 1 x 1
I(0, 0, 1)=

0 p x 1 x +y 1 y xy

dx ln
1 (1-x) -R,

0

APPENDIX: Parametric integrals involved in the
evaluation of one-loop vertices at the symmetric point

We here discuss the integrals

8(1 -x -y)x"&y"&

I(mlt m2tms A) = dx dy (~( ))0 0

a.nd by (A1)

y+ ~x
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I(mi 2 m ~)= kiln ~ + k2I + k3 + 0 (~)
m2 m ki k2 k3

TABLE IV. Values of the parametric integrals I(mi,
m2, m, ~) and J(mi, m2) encountered in the calculation of
the three-point functions at the symmetric point. These
integrals are defined in the Appendix. We only list val-
ues for mi g m2 since the integrals are symmetric in mi
and m2.

Therefore

The right-hand side is just
1 1-9

dy (in&) = 0
0

so

A2

. 1
2
2

1
3

1
3
7

27

1
27

1
3
8

27

6

1
54

2
3

2 2
3 3

8 5

80 . 50
8f

1
Y

then integrate the term involving d&/dy with re
spect to y. This, as above, gives 0, so we get

I(1,1,1)= ' ' —
—,
' I(2, 0, 1) ~ (A3)

(4) I(2, 0, 1): x'= -&+ (1 —x)y + x —y'. Using
x-y symmetry and (A3) we deduce that

I(1,0, 1)=I/3.

(3) I(1, 1, 1): In imitation of I(1,0, 1) rewrite xy
as

1
2

1
2

1
2

2

2
Y'

3

1
9

4
81
2
9
8

81

1
3
2
9

10
27
1
3
1
9
8

27

4
27

7
27
8

27

3

is
5

162
ii
18
22
81

2

1
2

3
8
9
79
108
1
3
1
18
61
108
11
27
7
7
1
2

8
27
22

27

and so finally I(2, 0, 1)= -', (I —1). Therefore by
(A3), I(1,1, 1)= -', .

(5) Other integrals, I(m, n, 1), can be evaluated
using tricks similar to those in (l)-(4) above.

. (B) An examPle of evaluating a J(m»m, ) We.
evaluate &(0, 0) as follows:

ln~= dxy ln&
0

yd& dy

0

1

(1-x)ln(x(1-x))
0

-2y +y —xy

The one-dimensional integral is easily calculated
and the other one is just a sum of I(m„m„1) which
we computed in (A) above. The result is J(0, 0)

+ -I.
(C) Integrals I(0, 0, m, A. ) u)here m & 1. We brief-

ly outline a proof of the following theorem. '

0

~(mi, m2) = E1I+ ~2

m2 Ei

3

9

2
27
1

54

3
2

1
2

65
216
43

432

1 — 3(n —2)/(n —1) 1
a".(x) 1+3X (&(~))" '

3 ' (1-x)
(n-l)(1+3@), [x(l -x)+X]" ' '

Proof (outline). Basically we use the tricks
shown in (A):

(a) We find that
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x13x+1,1
d& dx, 1

since

f(x) 9=1-x
dx

0 V=O

=0,

where we have abbreviated the notation for &(x)
and call it now &.

(b) By writing x' as -x[d&/dy + (-1+2y)] we can
show that

(c) Similarly,

1 2
bF 3(n —1)

1
y

1 ~ 2
LP ' 3(n —1)

1
gn-1 ~

g gn 3 n 1 gn-1 3 n 1 gn-1 '

(d) Also,

2x -2-x' -xy+g-

gn - n 1 X 1 X +gn-1 n 1. gn-1

by (a), (b), and (c). But the left-hand side is
f f 1/& ' so the theorem follows.

As an example, the above theorem gives

x 1-x +X 1+3k.

Then by iteration of the theorem I(0, 0, m, A.)
(for n & 1) is a sum of one-dimensional integrals
of the form f,'(1 -x)/[x(1 —x) + X]".

(D) Integrals f f [xyf(x, y)/(b(X))("], avhere f is
symmetric in x and y.

Theorem:
' I'f (f(x() (xff , 1

(
d

) ~ )
xf(x, y(

Proof. Write

x= —(-x+ 1 —2y) + 1 —2y

y = —-' (-x+ 1 —2y) + —' —-'x.
2 2 2

xy can be written first using the substitution for
x, then that for y. It is then easy to prove the
theorem by using the fact. that

x'~y =
~ x~y

(E) The rest of the integrals. In what follows

we say that an integra, l is of lower rank than
I(a', b', m', A) if it is a one-dimensional integral
of simply evaluated rational functions or if it is
of the form I(a, b, m, X) with a+b (a'+ b' and
m ~ m'. Our technique is to iteratively reduce
I(a, b, m, A. ) to integrals of the form I(a', b', 1), or
I(0, 0, m'), or one-parameter simple integrals. '

All of these are evaluated easily either directly or
by (A) and (C) above. As an example of how we do
this, suppose our integral is

~ xy(x' 'y' ')
I(a, a, m, X)=,

( ~)~
By the theorem of (D) this is reduced to a sum of
integrals of lower rank. If, on the other hand, we
have I(a, b, m, A) with b &a, then it is possible, by
rewriting x and x' in terms of derivatives of ~ or
of & itself, to express this in terms of I(a+ 1,
b —1,m, X) and integrals of lower rank. By doing
this we can eventually reduce such integrals to
symmetric ones, i.e., I(a, a, m, A.). [The third
possibility is I(a+ 1,a, m, A. ) but by x-y symmetry
it turns out to be easily shown directly that this
reduces to iritegrals of lower rank. ]

The procedure described is cumbersome and we
found it helpful to do the iteration above using the
symbolic manipulation program MACSYMA, of
the Mathlab group at the MIT Laboratory for
Computer Science.
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