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This paper is a continuation of a previous paper on strong-coupling expansions in quantum field theory. We
are concerned here with one-dimensional quantum field theories {quantum-mechanical models). Our general
approach is to derive graphical rules for constructing the strong-coupling expansion from a Lagrangian path
integral in the presence of external sources. After reviewing the normalization of one-dimensional path
integrals, we examine in detail the model Hamiltonian H =

IpI + IgI. We show that in the strong-
coupling expansion the graphs are constructed from multilegged propagators attached to multilegged vertices.
We use these graphical rules to calculate the ground-state energy for this Hamiltonian. One motivation for
examining expansions involving multilegged propagators is provided by the Lagrangian for quantum
chromodynamics whose strong-coupling expansion also involves multilegged propagators.

I. INTRODUCTION

In a previous paper' we showed how to construct
the strong-coupling expansion of a quantum field
theory from its Lagrangian path-integral repre-
sentation. The models we examined (self-inter-
acting scalar boson fi:eld theories) have graphical
strong-coupling expansions whose graphs are
constructed from propagators joined to vertices.
Interactions such as gP', gp'", icos/, g(1+ P') ',
gP(P), where &(x) =pa„x'", and so on, give rise
to graphs which have vertices having any even
number of connections and propagators having two
legs. Thus, propagators are represented by lines
whose two ends (legs) are connected to vertices.

In this paper, we consider models having a more
general graphical strong-coupling expansion. In
this more general expansion, propagators may
have more than two legs. We represent a multi-.
legged propagator as a head (circle) from which
many legs (lines) emerge These li.nes are joined
to the multivertices of the theory (see Fig. 1).

To develop the theory of multilegged propagators
we study a simple quantum-mechanical model
characterized by the Hamiltonian

H= Ip I
+ I~I ~

This Hamiltonian is of interest because it repre-
sents a massless particle in a linearly rising po-
tential (a massless quark on a string). We have

chosen to study this particular Hamiltonian be-
cause its graphical strong-coupling expansion
consists of propagators having any even number of
legs and vertices having any even number of con-
-nections. After developing the graphical rules for
this theory, we use them to calculate the ground-
state energy to ninth order and obtain fair numeri-
cal results.

In a separate p3per' we examine the. . large-or-
der behavior of this strong-coupling perturbation
expansion. Using methods similar to those of
Lipatov' we obtain this behavior from the func-
tional integral representation of the theory. Lip-
atov showed that the large-order behavior of a
weak-coupling perturbation series is controlled
by an instanton. We show that the large-order
behavior of the strong-coupling series is also
controlled by an instantonlike object. However,
since the strong-coupling expansion is necessarily
defined on a lattice, this object is a discrete func-
tion defined on the integers.

One motivation for investigating these multi-
legged propagators in such detail is that they occur

FIG. 1. Graphical representation of multilegged prop-
agators. The number in each circle indicates the num-
ber of legs on that propagator.
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II. NORMALIZATION OF FUNCTIONAL INTEGRALS

In this section we review the normalization of
functiona. l integrals.

The vacuum persistence function of a one-di-
mensional quantum theory iri the presence of an
external source J(t) can be represented as a Eu-
clidean functional integral (in which time t is re-
placed by it):

r/2
(o (og~=»im f»»oe»»o — . »(»}o»

g~ 00 —T/2

If the Hamiltonian for the theory is

H = ~ P + ~ nt q +Io'F (q),

(2 1)

(2.2)

then the Lagrangian L, in the q representation is
given by

I.= ,'q'+-2m'q'+ -gz(q) -J(t)q, (2, 3)

where we have inserted the external source J.
If the functional integral is properly normalized

(that is, if Dq is properly defined), then a direct
evaluation of the integral in (2.1) with J'=0 gives
the ground-state energy E,

E= hm --In&0, loll, ,1

P~ oo

A. Normalization-independent calculation of E

(2.4)

In our previous paper' we were able to calculate
the derivative of the ground-state energy of a (p'
theory with respect to the coupling constant g
without ever specifying the normalization of the
functional integral. For this theory the formula
for dE/dg is

—G-'(P) l~.(P) —G(p)],
dE dp
dg 277

naturally in the strong-coupling expansion of
quantum chromodynamics. At the end of tRs pa-
per we make some brief remarks explaining why
this is so.

This paper is primarily concerned with function-
al integrals in one-dimensional space-time. In
Sec. II we discuss the normalization of such func-
tional integrals. (In our previous paper' we left
the normalization unspecified. ) In Sec. III we de-
velop the graphical rules for the strong-coupling
expansion of the theory defined by (1.1). In Sec. IV
we use these rules to calculate the first nine terms
in the expansion of the ground-state energy. From
these terms we obtain a numerical approximation
to the ground-state energy which is in reasonable
agreement with the exact value. Finally, in Sec.
V we comment on why multilegged propagators oc-
cur in the strong-coupling expansion of quantum
chromodynamic s.

where G(p) is the free propagator and W, (p) j,s
the exact two-point Green's function. In the gen-
eral case where E(q) in (2.2) and (2.3) is a mono-
mial

F(q) = lql"

dE jdg satisfies the formula

Ng"=
2
' ~P- P

(2.5)

(2.6)

The result in (2.6) is easily derived froin the
field equation satisfied by the operator q(t),

-q+m'q+gP'(q) -J =0, (2.7)

=6(t -t'), (2 9)

where W', (t, t') is the connected two-point Green's
function of the theory.

Now we assume tha, t

&0, lq(t) log l, ,= o.
In higher space-time dimensions this is the analog
of ruling out symmetry breaking. In one dimen-
sion it assumes merely that I' is an even function
of q. Noting that the free propagator G(t, t ') in
Euclidean space satisfies

l —,, +m' G(t, t )=6(t —t'),d'

G(t, t') =2 exp(-mlt —t'I)1

o- (», » ) =(,~ *)o(»» ),

we set t =t' and write (2.9) as

dt'C-' t, t' S; t', t —G t', t

&0, lF (q(t))q(t) lo3 l...
&0.103 I, =.

Finally, (2.5) yields F'(q(t)g(t) =NF(q(t)} and
translation invariance implies that

(2.10)

which is obtained by varying the Lagrangian in
(2.3). If we take the expectation value of (2.V) be-
tween the states ~&0, l

and l0$~ and divide by
&0+l0$~ then we obtain

(
, &o, lq(t)lo &, &o, lP'(q(t))lo &,

&o, log, &o, log,
1

(2.6)

Next, we take a functional derivative of (2.8) with
respect to J(t ') and set J= 0:

&0, lF'(q(t))I0&
dt' ' '( ) '~6J(t')
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Thus, using (2.4), (2.10) becomes~ ~

dt'G '(t, t')[W, (t', t) —G(t', t)]=gtq
dE

which in momentum space is (2.6).
We can calculate W, (p) using graphical tech-

niques. Since the graphical rules do not depend
on the normalization of the functional integral in
(2.1), the formula in (2.6) shows that we can cal-
culate dE/dg without specifying this normalization.

B. Normalization of functional integrals

However, to calculate E directly we must know the normalization. We now proceed to derive the nor-
malization. To do this we merely observe that the normalization of (2.1), that is, the definition of Dq, is
independent of J and q. Indeed, we can reduce the integral in (2.1) to a functional differential operator
acting on a much simpler functional integral:

f /
Dq exp — L(t)dt = exp—

T/2
dt Dq exp—

Z'/2

(—,'q'+-,' m'q' —J'q )dt
Igl 2 I

T/2 g i

" T/2 T/2

=exp -g F dt exp —,
' dt dt'J(t)G(t, t') J(t')

-r) n 6J t & rta -rt. -

T/2

Dq exp —
2j + 2m q2 dt

-T/2

Thus, to determine the normalization associated
with Dq we may examine the right side of this
expression with g and J set equal to zero. This
reduces the problem to the harmonic oscillator.
The ground-state energy E in this case is known

to be m(2.
We will show that if we define the functional in-

tegral (2.1) on a lattice, then the proper normali-
zation is obtained by the transcription

D„=xD„,—D„2, 9, =x, D, =x' —1.
The exact solution of this difference equation is

( x+(x' —4)'~')""
n (&

& 4))l'

sian integral in (2.12) gives I/(DetA)' '.
By expanding in minors, it is easy to show that

the determinant D„of the nxn matrix A. satisfies
the constant-coefficient difference equation

f ~
tt .(2.a) &" (2.11) ~- (x'-4)'~' ""

2

where a is the lattice spacing, n is the number of
lattice points, and u:~ = T is the volume of space.

On such a lattice we may write
2tft 2 Pl g 2 ~Q

-T/2 2 i =1 2
q ~ ~ ~ 2

T/2 1/2
dt,'-j' = dt-,'q —

2 q
/, dt

1
q., 5, , , —25;, +5;,„y, .2Q

With these transcriptions, the functional integral
in (2.1) with @=J'=0 becomes

(2.12)

where A,. ~ is the tridiagonal matrix 5&+]
—6,. &+, +x5, , a.nd x=2+m'a'. Evaluating the Gaus-

Substituting x=2+m'g' and treating a as small
gives

[e {n+ ) ) )n {).+a m ) e &n+ 1 ) 1n {1-am ) ]
1

2Q Pl

e (n &)gm1 +

20m

for large n. Thus,

1 8-m T/2
(Detx)'~'

and therefore we have shown that

m
lim -—ln Dq exp — dt —,

' j'+—q'
T-- T T/2 2 2

which is indeed the ground-state energy of the
harmonic oscillator. This verifies that our choice
of normalization in (2.11) was correct. More-
over, it shows that the normalization in (2.11) is
correct even if J and g in (2.3) are nonvanishing.
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C. Strong-coupling expansion of E for the harmonic oscillator

Now that the normalization is specified correctly, we will try to calculate the ground-state energy I"- for
the harmonic oscillator from (2.1) using the strong-coupling expansion techniques developed in Ref. 1. We
will treat the mass m as a large parameter and expand in powers of I/m. Of course, the answer we hope
to get is E=m/2.

In the presence of an external source J, (2.1) reads

~ 2' 2

(D, ~lo ),= fogexp ~ -'" q'+zq e
le d', 5 m= exp —,.

'- dl dt '
6«(t —t '), Dq exp — 7'+ Jq dt

6Z t'
Following Ref. 1 we evaluate the remaining functional integral in (2.13) on the lattice as follows:

m 2 ' dg
Dq exp — q +.-Jq GU ~~2 exp — +J;q'0 =, —exp„(2ma)' '

1-e-""' "exp 2 J'(x)dx.2m'

Thus, using T=na, we have

2

2m'

(2.13)

(2.14)

From (2.14) we can read off the graphical rules for this theory. For each line we have (d'/dt')5(t t '). —
The vertices are all two-point vertices and we associate the number 1/m' with each vertex.

Setting J' = 0 in (2.14) we obtain

(0, ~0 )~,= e- &rt"~ & ' (1+all graphs having no external lines)

= e 'rt"~' "exp(all connected graphs having no external lines). (2.15)

The connected graphs in this expansion are closed polygons as shown in Fig. 2. The polygon having k
vertices has a symmetry number 1/(2k) and a factor of m "for the vertices. The integral becomes a sum
when evaluated on the lattice:

~ ~ ~

~

~ ~ ~

~n , (2k)~a-2«

T
(

)„(2k)!a-2«

a (k!)'

Combining these results (2.15) becomes

(P ~PP =e &r/a)ln(ma) exp (plQ)
2 (-1)»—1,(2k)! T

, , 2k (k!)' a (2.16)

Taking the logarithm of both sides of (2.16) and
dividing by T gives

In(0, ~0 ), ,
T Q

The right side of (2.17) then becomes

——-v»nx- ~x P —(-1)«x', ; . (2.16)
m

" 1, (2k)t
2 „, k (k!)'

1 ~ 1 (-1)' (2k)!
a «~ 2k (ma)" (k!)' ' (2.17)

Ultimately, since we will take a-0, the parame-
ter x will tend to ~. However, for the moment, we

In the limit of zero lattice spa, cing (a-0) the right
side of (2.17) should approach the exact value of
-Z = -m/2.

Following the approach of Ref. 1, we introduce
a dimensionless parameter x defined by

S=Pl Q

0 0
FIG. 2. The connected graphs contributing to the

strong-coupling expansion of the ground-state energy of
the harmonic oscillator [see (2.15)].
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treat x as a small parameter because m is large
and a is fixed.

Treating x as a small parameter, the series in
(2.18) may be summed exactly in closed form and
the limit x- ~ may be taken. If this is.done we
find that (2.18) approaches -m/2, as desired.

Suppose, however, that only a few terms in this
series are known. Then how well do the extrapo-
lation procedures of Ref. 1 work? To answer this
question we replace lnx by ln(1+x). (No error is
introduced here because x will eventually tend to
~.) We then expand

ln(1+ x) =x- x'/2+x'/3 —~ ~ ~ .
The right side of (2.18) now becomes ——,'mA, where

(-1)"x" (2n+ 2)!,-1 . (2.19)
(n+ 1) (n+ 1)!(n+ 1)!

Proceeding as in Ref. 1, we extrapolate to the
value of A' '=x/(Z) '~'by truncating the Taylor
expansion of the ——', power of the series after two
terms and then taking the limit x- ~. This gives
A, ' ', the first extrapolant to A' '. Next, we

square this equation, truncate the series after
three terms, and let x-~. The square root of this
ratio gives A.,' ', the second approximant to A' '.
Proceeding in this manner, we have calculated the-
first 12 approximants to A' '. They are listed in
Table I. While these extrapolants appear to con-
verge to the correct limit 1, the convergence is
agonizingly slow.

We use a simple technique for improving the
rate of convergence of the approximants to the
ground-state energy. Instead of computing the
ground-state energy E directly we calculate
m(dE/dm). To do this, we return to the formula
in (2.17) and take md/dm. We, obtain the much
simpler series

(2.20)

Eliminating a in this series and replacing it with
m ' x '~' gives

(2n)!x "(-1)"

This series should converge to m(dE/dm) = -m/2-
as x- ~. Using the extrapolation procedure we
have just described, we find that every approxi-
mant gives exactly —m/2. This represents a

TABLE I. The first 12 approxixnants to the value of
A 3, where A is represented by the series in (2.19).
Observe the slow convergence to the correct answer
A2/3

nth approximant to A2

1
2

. 3
4

6
7

9
10
11
12

0.6000
0.8847
0.7937
0.8812
0.8681
0.9039
0.9037
0.9221
0.9246
0.9353
0.9382
0.9449

vast improvement in the information that can be
retrieved from the series in (2.17).

Why does the operator nM/dm so improve the
summability of the series in (2.17)? A heuristic
answer is suggested by a theorem in Hille' which
we paraphrase: If a linear method of summability
M sums the geometric series 1-z+z'-z'+ ~ to
the limit (1+x) ' for every z in a domain S, star-
like with respect to the origin and containing the
disk ~z ~

& 1, and the limit exists uniformly on com-
pact subsets of S, then M a:iso sums the series
f(z) =Q„",C„Z", which must be regular at the ori-
gin, to the function f(z) in the star SAN, uniformly
with respect to z on compact sets.

The method of summability we have been using
is not linear so the theorem does not directly ap-
ply. However, it may be that the crucial restric-
tion is whether or not f is regular at the origin.
Observe that the operator md/dm removes the
branch cut at the origin from (2.17) and replaces
this expression by (2.20) which is regula. r at x=0
after it is squared. (Squaring is the first step in
our extrapolation procedure. )

The above remarks suggest that whether or not
the normalization of the functional integral in (2,1)
is known, the formula (2.6) that we used in Ref. 1
is likely to be superior to the direct calculation of
E in (2.4). Because of this, when we calculate the
ground-state energy E of the Hamiltonian P= ~p ~

+g~q~ in Sec. IV we will extrapolate the series for
g(dE/dg) rather than the series for E.

D. . Strong-coupling expansion of E for the anharmonic oscillator

C

Before concluding this section we show how to incorporate the normalization of the functional integral
into a direct strong-coupling expansion for the ground-state energy of the anharmonic oscillator. Follow-
ing Ref. 1 we write



20 MULTILEGGED PROPAGATORS IN STRONG-COUPLING. . .

T/2

Dq exp — (2q'+ 2m'-q'+ ,'gq-'-Zq)/ft
—Z/2

T/2 T/2 T/2
=exp --,' dt dt', G ' t, t' „Dqexp — &gq'-~q dt- T/2 —T/2 5J t')J t')

where G '(t, t ') = (-d'/dt'+m')5(t —t ').
Next, we evaluate the remaining functional integral on.a lattice:

~ -" ~ dq a, & ~ a ~ I'(1/4)
(2 )2/ exp gq +/kJlq I ."~ ~ /cg/2

F (g +3/4~-2/o)

F(0)

I'(I/4) 1 ' F(a' 'g ' 'Z(t))=exp min 2-,/, /, exp — dt lnv&a g Q F 0

where F (x) = f"„dt exp(-t'/4+ xt ) and F(0) = I'(1/4)/v 2 .
Using the graphical rules derived in Ref. 1, we obtain from this result that

g=lim — to[2 c o' 'g'r'p(1/e)] ——(all connected graphs having no external lines)},, a T

where we have not needed to calculate the two-point Green's function as an intermediate step.

III. THE MODELH= [pi+ iqi

In this section we develop the strong-coupling (large g) expansion of the model defined by the Hamilto-
nian

II= IP I+glqI

At the end of the calculation we set g=1 to recover the symmetrical Hamiltonian in (1.1).
Following the prescription in Euclidean space that

I.=iPj -H,
we define the vacuum persistence function for this model as

' Z/2

(o, lo ), = ffDppqexp f dt (ipq —Ipl-glqlvdq)- r/2

where the normalization. is chosen so that on a lattice

(3.1)

(3.2)

DP Dq

Note that this choice of normalization is consistent with that in (2.11) for Hamiltonians in which p appears
quadratically. For example, for the harmonic oscillator the p integral is Gaussian and can be evaluated
in closed form

g/2
(O]pg ffDPDqe, xp =di(idq P'/2-m'q'/2)-

- r/2

it oo oo

' exp(tap;q, . —ap /2 —a~' /q)=2, [ '2/gexp(-aq, '/2 —am'q, '/2),
,", (2wa

which agrees with the normalization used in (2.11).
Returning to (3.2) we evaluate the p integral (which now is not Gaussian) in closed form on the lattice:
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d
(0+~0 )/ ' ' exp(iap, q; —a(p, ( -ga~q, (+ad', q, )

1 2V

dq,. exp(-ga lq,. l+ aJ,q,). .

'c'='i 1 +Q' ~

( 1» ~' exp g — q,.
" exp(-galq; I+ aJ,q;)„na

T/2 1 qq

( 1)»
Dgexp dt — q t "-gq t +J t q t

-T/2 0 =1
(3.3)

where in the final step we have returned to the continuum representation.
As we did in Ref. 1 we factor out the derivative terms from the functional integral and replace them by

derivatives with respect to J. To do this we use the following identity:

q(t)' = fdt, dt, D (t, —t) '~ D'(t, —t)q(t, ) q(t, ),
T/2 1 qq

( 1)» 2» r/2
( D, (DDt=exp f dt —Q dl, D'(t, —t) ttqexp d(t- (qq+(d)q

rg/2

Now we can evaluate the remaining functional integral easily because it is a product of ordinary inte-
grals on the lattice:

1 2 fl P J 2~ -2~1=' e 'I'l'+~'" = ' = exp„wa;, )).a'g 1-J,.'t/g' n z'gt;. ; », k

Thus, in continuum language,

T/2 1 "
( 1)»,2P

(0+~0 ) = lim (. ' "~"'2 "exp dt —g dt, 6'(t, —t)
T T/, .a» ] k ', ; ' ' M(t,)'

1'/2 J2A ~-2A
xe~l—

-T/' 0 =1 ~ )
(3.4)

(3.5)

From this result we can immediately read off
the graphical rules of the theory:

I'r opagators. Multilegged pr opagators having
any even number of legs can occur. The 2kth
propagator is

"""-"fdt "D(t, t)
ak j s&

Using (2.4) we can now express the ground-
state energy E of FI in (3.1):

E = lim —ln()Ta g/2)
1 2

~ Q

1 all connected graphs having&~
T no external lines )

(3.7)

(2k)!
ak&' (3.6)

Vertices. Vertices with any even number of
connections occur. The 2kth vertex has associated
with it the factor

The specific calculation of E in (3.1) will be post-
poned to Sec. IV.

We conclude this section with some remarks on
the lattice representation of the multilegged prop-
agators in this theory. On the lattice the 2kth
propagator has the form

We must integrate over the position of every ver-
tex.

We observe that the two-legged propagator is
just proportional to

(2k)!(-1)» ~
ka (6, —6 . )

=1
(3.8)

which is just G '(t„t,) with TdP=0. Thus, our
multilegged propagators are natural, totally sym-
metric generalizations of the ordinary propagator
that was used in Ref. 1.'

where for simplicity we have chosen to use a for-
ward difference definition of the derivative of a
5 function. It is interesting that the forward- dif-
ference scheme used here is consistent with the
symmetric difference scheme used in Ref. 1 for
the two-legged propagator. To see this, we cal-
culate the sum over i in (3.8) for the case k=1:
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Observe that this object is a symmetric difference
representation of a second derivative of a 5 func-
tion.

IV. COMPUTATION OF THE GROUND-STATE
ENERGY

In this section we evaluate (3.7). To do this we
must draw every diagram having no external lines
in each order in powers of 1/g' [see (3.5)]. For
each diagram we must compute the symmetry num-
ber, the graphical integral, and multiply by the
numerical weights for each multilegged propagator
and vertex. Summing over all diagrams in Nth
order gives the Nth term in the perturbation series
for the ground-state energy.

A. First-order calculation

In first order there is only one diagram having
no external lines. It consists of a two-vertex tied
to a two-propagator (see Fig. 3).

The symmetry number for this graph is —,'. The
numerical weight for the two-vertex is 2g 'g ' and
the numerical weight for the two-propagator is
—2a ' [see (3.8)]. The lattice sum to be performed
is a double sum, one sum over the head of the
propagator and one sum over the position of the
vertex:

84Tg g (4.2)

C. Third-, fourth-, and fifth-order calculations

There are 10 connected graphs in third order.
These are displayed along with their symmetry
numbers, in Fig. 5. The sum over these graphs
gives

The numerical weights for the graphs are
(a) 144a 'g ',
(b) 16a ' g
(c) 48a "g ',
(d) 48a-'g '.
The results of evaluating lattice integrals are

(a) 2T,
(b) 6Ta,
(c) 4Ta,
(d) 4T.
Multiplying all of these numerical results to-

gether for each graph, we obtain
(a) 12Tg a ',
(b) 12Tg 'a ',
(c) 24Tg a 9,

(d) 24Tg 'a '.
Observe from Fig. 4 that graphs (c) and (d) are

dual in the sense that they interchange under the
operation of exchanging heads of propagators for
vertices having the same number of connections.
Graphs (a) and (b) are self-dual. In any order all
dual pairs of graphs contribute equally to the
ground-state energy.

The final step is to sum over all graphs. The
result is

=a 2=2ng =27.
$'=1

-12 832 6 y3~g Q (4.3)

(-,')(2a 'g ')(-2a ')(2T) =-4Tg 'a ". (4.1)

Multiplying all of these numerical results together,
we obtain

for the third-order contribution to the ground-
state energy.

There are 45 connected graphs in fourth order

B. Second-order calculation

There are four connected graphs in second or-
der. These are shown on Fig. 4.

The symmetry numbers for the graphs are
(a) ~24,

(b) l,
(c) k,
(d) k.

(a)

(c)

(d)

FIG. 3. The only graph contributing to the leading-or-
der (1/g2) term in the expansion of the ground-state en-
ergy «&=Ip I+glq I.

FIG. 4. The four connected graphs contributing to the
second-order (1/g ) term in the expansion of the ground-
state energy of H= Ip I+glq I ~
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and 177 graphs in fifth order. Their respective
contributions to the expansion of the ground-state
energy are

(a) .N. =—I

365 096Tg g- 7

228 603 264 -1o

D. Sixth- through ninth-order calculations

(4 4)

(4.5)

(c)

I

.N. =
7~O

I

.N. =4

After calculating the first five orders by hand,
we programmed a computer to draw all distinct
connected diagrams in a given order, compute the
symmetry number for each diagram, evaluate the
lattice sums for each diagram, and sum over all
diagrams to obtain the final result. Using the
DEC-10 computer at the University of Pittsburgh
we reproduced the first five perturbation coeffi-
cients in (4.1)—(4.5) in 2 seconds. We then used
the computer to calculate the next four coeffi-
cients. We find that in sixth order there are 995
distinct graphs. The computer took a total of 9
seconds to obtain the sixth-order coefficient:

I.N. =4

I.N =4

I

.N.
=

4

I

N
=—

7851 727232Tg "a ". (4.6)

12 406 189 231 104 14 23

7
(4.7)

In seventh, eighth, and ninth orders there are
5785, 39 758, and 297 345 distinct graphs, respec-
tively. To find and evaluate these graphs the com-
puter required 72 seconds, 11.5 minutes, and 4
hours; the perturbation coefficients are

.N. =—l
6

FIG. 5. All connected graphs contributing to the third-
order (1/g ) term in the expansion of the ground-state
energy. To the right of each graph is given the symme-
try number for the graph. Graphs (a), (b), (i), and (j)
are self-dual, and (c) and (d), (e) and (f), and (g) and

(h) are dual pairs of graphs.

509842931459904TI. "g ",
1 641 635 326 2 19 761 664 18 3y

9

(4.8)

(4.9)

The perturbation coefficients in (4.1)—(4.9) are
exact. No approximations have been made. Sub-
stituting (4.1)-(4.9) into (3.7) and canceling T
gives the following expansion for E:

1, 4 84 12 832 365 096 228 603 264 7 851 727 232

VFg2u4g4g83g6z128u1 65g 104120'121224
12 406 189 231 104 509 842 931 459 904 1 641 635 326 21 9 761 664

7g 14g28 . , g 16g32 9g 18 36
~ ~ ~ (4.10)

We will shortly extrapolate this formula to zero
lattice spacing.

E. Some comments on graph counting

Before we proceed with the caIculation of E, we
make two remarks which are very useful for

checking that no graphs have been omitted and that
the symmetry numbers have been correctly cal-
culated.

The first is that if we take the set of all graphs
of order k (disconnected, as well as connected),
sum over all symmetry numbers and weights, but
set every lattice integral contribution equal to 1,
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and also set the lattice spacing a =1, we obtain in
kth order

(2k)! )„
g2k (4.11)

3792 65562
2& 4~ 4& 6~ 6y 8~ 8r 10f 10 (4.12)

To prove the first property of graphs, we mere-
ly restrict the integral in (3.3) to one lattice point
and set J= 0 and a = 1. This reduces the quantum

Second, for the same class of graphs, if we
sum over all symmetry numbers in kth order (and
ignore all other weight factors except for g), we
obtain a perfect square integer divided by (2k)!.
For example, for the first five orders we have

theory to a zero-space-time-dimensional theory
and effectively replaces all lattice integrals by 1.
If there is just one lattice point q„ then j,'=q, '.
Thus, (3.3) becomes

"d e 't'tq e
&0+I». lattice point . , 2

g-0 ~ 7l'9 1+q

2 ~ (-1)'(2a)!
2!!t

&g ~=p

The factor 2/wg corresponds to the In(wa'g/2)
term in (4.10). The remaining series is precisely
(4.11). This verifies the first property

To prove the second property we argue that if
all vertices and multilegged propagators have
weights one, then in zero space-time dimension
the vacuum persistence function has the form

exp —, , —, 4+—, , + exp~, , +, 4+, ,+ ~ ~ =exp -1+cosh —~exp -1+cosh-
dx) x=p

If we Taylor expand exp( —1+coshx) we obtain

exp(-1+ coshx) =1+ Q a„x'"/(2n)!,
n=1

where a, = 1, a2 = 4, a, = 31, a4= 379, a, = 6556. Thus, the vacuum persistence function is
oo 2' ~

Q tt2n X 2'

„, (2n)! dx . „, (2n)! g i „, „, (2n)!' de g
. 9„= 1+ .=i (2n)'g'"'

The coefficients in this series are precisely those in (4.12).

F. Extrapolation to zero lattice spacmg

We argued in Sec. II C that the rate at which the extrapolants converge to E is vastly enhanced by con-
verting the strong-coupling expansion for E into the strong-coupling expansion for gdE/dg. Performing
this operation on (4.10) gives

dE . 1 8 336 25 664 2 920 768 457 206 528 94 220 726 784
10 2p

g 2+ g 4g8 g 6~ 2
g 8g16 g Q g 0

24 812 378 462 208 8 157 486 903 358 464 3 283 270 652 439 523 328
14 28 16' 32 18 36

By a purely dimensional analysis we know that E(g) = CMg, where C is a numerical constant. Further-
more, it is convenient to define x=g 'g '. Thus, in terms of the. dimensionless parameter x, we have from
(4.13) the following series representation for C:

C= lim 2x'~ (1 —8x+336x' —25664x + —3283270652439523328x + ~ ). (4.14)

Although this series is rapidly divergent, the coefficients appear to be all integers and to oscillate in sign.
To use the extrapolation procedure described in Ref. 1, we raise (4.14) to the fourth power:

C = lim 16x(1 —32x+ 1728x ' —136960x '+ 15 086 336x ' —2 243 933 184x ' + 440 649 545 728x '

—111689 038 635 008x '+ 35 708 919 509 594 112x ' —l4 091 209 469 426 417 664x'+ ~ ~ ~ ) . (4.15)
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To obtain the first extrapolant, we rewrite (4.15) as

,4 . 16x
C =lim 1+32@+''' Fa e ga e~b + +abc~b~c

Pv P v P u~

(5.1)

(5.2)
Truncating the denominator after two terms and
letting x- ~, we obtain the first extrapolant C, :

C, = ( )'i' = 0.840 896 42 (4.16)

C ='. 1.1041. (4.18)

The rate of convergence of the sequence of ex-
trapolants C„C„C„.. . can be improved by the
use of extrapolation procedures such as Richard-
son extrapolation. ' However, the rate of conver-
gence of the sequence C„C„C„.. . is still much
slower than we had anticipated on the basis of our
work on the anharmonic oscillator. ' We believe
that the reason for this sluggish convergence is
that the power series in (4.14) is so rapidly diver-
gent. The corresponding power series for the an-
harmonic oscillator is convergent.

V. MULTILEGGED PROPAGATORS IN QUANTUM

CHROMODYNAMICS

In this section we suggest that multilegged prop-
agators will play a role in quantum chromodynam-
ics. For simplicity we consider an SU(2) non-
Abelian gauge theory in the absence of fermion
fields. The sourceless Lagrangian for this model
ls

Unfortunately, the second extrapolant obtained
by using this procedure is complex. We bebeve
that this happens because the coefficients grow so
rapidly. Indeed, in Ref. 2 we show that the 4th
coefficient grows roughly like (20+ 1)!.

Therefore, we resort to the technique of con-
verting (4.15) into the (bb„,) Pade sequence and let-
ting x- ~ for each element of the sequence. Be-
cause (4.15) has 10 terms we can calculate four
more extrapolants, C, from the (',) Pade, C, from
the (',) Pade, and so on. We find that

C2 = 0.907 223 72,

C3= 0.936 779 64,

C~ = 0.954 129 03,

C, = 0.965 786 31.
The extrapolants C„C„C„.. . appear to be

slowly and monotonically converging to the exact
value of C which is'

and where we have set g=1.
We will express the vacuum persistence function

for this model in a gauge in which A, =O and ignore
any complications associated with gauge fixing. In
this gauge we have

+ L f~afl ~a &abc~b~c(e ga S ga)&l. j 4 j j i

+ —,
' [(w;~;:)' —(w;.w;. )']+u;.w;. ),

where J'; is an external source and D, , is the dif-
ferential operator 5, O' —B.B ..

The vacuum persistence function in Minkowski
space is

DA e'

This may be rewritten as

2 gJ.a ij ~a grab pic i pe .. j pej J

x DA exp —,
'

A;.A'j ' —A;A,.
' +M;A;.

Even in this very naive approach we see evi-
dence of multilegged propagators. The first term
in the functional differential operator is a two-
legged propagator and the second term is a three-
legged propagator. We conjecture that if the
gauge-fixing is correctly carried through, then
all multilegged propagators will occur.
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