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A new calculational procedure for polynomial lattice field theories is discussed that utilizes an anharmonic
basis and a general orthogonal transformation of coordinates. The standard blocking procedure is shown to
correspond to a discrete Haar transform of the field coordinates. Some generalizations of the Haar transform
are given which allow one to block an arbitrary number of sites. This is applied to both the energy density
and to the correlation functions. In th&s paper only an "unperturbed" problem will be discussed, but the
unperturbed Hamiltonian will be chosen using a variational principle —it includes couplings and nonharmonic
effects in a very nontrivial way. Numerical results will be given for certain criticai indices for a 4i' theory in
one space dimension.

I. INTRODUCTION

In this series of papers, we shall develop a
variation-perturbation approach to lattice field
theories. The fundamental idea is to formulate
such theories in an anharmonic-oscillator basis
(actually a quartic oscillator with arbitrary mass
term for the particular applications in this paper).

.In order to carry out this program in a conven-
ient way it is necessary to consider the effects of
a general orthogonal transformation on the Hamil-
tonian. We shall find that some quite simple
transformations have a remarkable analog to the
well-discussed "blocking" procedures' ' and that
generalizations (with hopefully higher accuracy)
are easy to generate.

Since.we use an anharmonic-oscillator basis in
our calculation, we expect (but have not been able
to prove) that the resultant perturbation theory has
a finite radius of convergence. That is, since we
are expanding in what is effectively a M' type of
perturbation on an unperturbed Hamiltonian with
an x' term, the series in A. should be convergent
with a unit radius of convergence. In fact, we
use a standard variational principle to choose the
optimum unperturbed Hamiltonian. In this paper,
only the optimum "unperturbed" results will be
discussed —corrections will be dealt with in a
later note.

First, a brief review of the properties of a
single general quartic oscillator is given. In the
subsequent applications to lattice' theories, all
we shall actually need are the energy and (xs) for
such an oscillator.

Second, a simple 2-site blocking procedure will
be discussed for a one-dimensional iIi'-type lat-
tice theory and conditions for a phase transition,
or a massless excitation, will be described. Both
the energy and correlation function will be evalu-
ated. Numerical results are then given, with
maps of the ordered and disordered phases, se-
lected critical indices, and the correlation func-

tion.
The 2-site blocking procedure is then reinter-

preted as a particular orthogonal transforma-
tion —the Haar transform. ' The Haar transform
is then generalized to blocking M sites at a time
and applied to M =4. This case leads naturally
to the introduction of the discrete %'alsh trans-
form' which will be fully discussed in the next
paper in the series.

Finally, some concluding remarks and a brief
discussion is given.

II. THE ANHARMONIC OSCILi.ATOR

In this section we present a brief summary of
known results for the one-dimensional anharmonic
oscillator and also establish our notation which
will be used heavily in subsequent sections. We
define the oscillator by its Hamiltonian

H(X, f') =P'+A(x'-f')', (2 1)

(2.3)

The moments Q~(A. ,f') are related to the energy
eigenvalues through the relations'~

4~HN+ 3)Q.""(~,f ') —2f '(N+ 2)Q.""(&,f ')

+f (N+ 1.)Q (X,f )] =4(N+ 1)E (X,f )Q"(A,f )

+ (N+ 1)N(N —1)Q" (A.,f ) ~

(2.4)

and its orthonormal eigenfunctions Q (A, f';x)
with eigenvalues E„(A.,f') that satisfy

&(&,f')4.(~,f';~) =E.(~,f')4.(~,f';x), (2 2)

where

E„„(z,f')o-E„(z,f'), n=0, 1, 2, . . . .
We also define the diagonal moments Q"(A.,f') by
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This equation for N= 0 is the familiar virial
theorem.

It is interesting to note that given the function
E,„(/,f'), all of the moments Q"(/Qlf') (evenf/))
are determined. An application of the Feynman-
HeHman theorem yields

V(x) = (x~-f~)~
I I I I

)
I I I I

[
I I I I ]TI I I ] I I I I

J
I I I I

(2.5)

z.(f') &f (( —
q .— -Q(=f .'))

Ql(f') f*- (2+2(*+=)(f ))(, '
(2 7)

whereas for f'« —I, the relevant expansions are

~,(i'i f' ~&lfl()+=, -Q(f ')),
(2.8)

3&2)=
2Q2(fl, 8(f)' '

which determines Q'(A, , f') from E (A.,f-'). Using
these and the fact that Q'(1,f') = I, is sufficient
to determine all of the moments from K(I. (2.4).
Even though there are no "closed-form" expres-
sions (at the time of this writing) for the E (/(, f'),
there exist techniques'" for their practical com-
putation to any desired accuracy (i.e. , at least
to twice the precision to which the reader has the
decimal digits of v committed to memory).

Even though the energy eigenvalues and the
moments appear to depend on tzoa parameters, A.

and f', this can be simplified to one through the
scaling relations"

(X f )-A / E (I f I(. / )

(2 6)

Q))((y f2) —y-///6QE(I f2yl/3)

In Fig. I we have plotted E (l,f') and Q'(l, f')
for yn =0 and 1. These were computed using the
methods of Ref. 10.

Asymptotic expansions for E and Q' in limiting
regimes are easily computed from perturbation
theory using the techniques of Swenson and Dan-
forth. ' For f'»I and A. =l, the result is

O I I I I ] I I I I I I I I I I I I I I I I I I I I I I I I

0 I 2 3 4 5

tions, improved and generalized. Consider a one-
dimensional periodic chain of %= 2" coupled an-
harmonic oscillators, whose Hamiltonian is given
by

N-s
H = Q [p, '+ X(x,' f')'+/). (x—„, —x,)'], (3.l)

with x,=x,.
Our procedure will be to perform a transforma-

tion on pairs of coordinates and to "integrate" or
"'freeze out" the resulting oscillators which have
the highest frequencies. This procedure is then
repeated, and after each such iteration, the num-
ber of "active" oscillators is decreased by a fac-
tor of 2. After m such iterations, there are 2"
oscillators remaining, and the, effective Hamil-
tonian takes the form

l=o

I'IG. 1. A Plot of E(f2) and q~(f2) for the double oscil-
lator potential for the ground and first (odd) excited
state.

For notational simplicity we shall sometimes omit
the subscript m when referring to the ground state
m =0, and omission of the argument A, will imply
A, = l.

III. AN EXAMPLE

with

co=0,

+ a.[x,'„(m) —x', (m)]'), (3.2)

In this section a simple calculation scheme will
be developed that is analogous to blocking two

sites at a time. In latter sections this mill be re-
interpreted in terms of orthogonal transforma-

x', (0) =x, .

The notation used here is somewhat cumbersome
but will prove convenient when generalizations are
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considered in later sections of the paper.
The procedure for obtaining H „from 0 is as

follows. Write H in terms of the "slow" and
"fast" coordinates

x', , (m) +x'„„(m)
42

l = 0, 1, . . . , 2" -' —1, (3.3)

,
( )

x„(m) x„„(m)
v2

The four parameters A, ,(m + 1),F, ,'(m+ I) are
determined by minimizing (g, H g). One finds
easily that

~,(m+1) = ~,(m+1) =/. /2=-/. „,

F,'(m + 1) = 2f " —3Q'(Z „,F,'(m + 1))

with x', (0) =x„and the corresponding momenta
p& (m + 1),p,'(m + 1). The next step is to find the
variationally best wave function of the form

2n m- 1

F, (m+1)=2f —3Q'(X „,F (m+1)) —3

(3.5)

&f&(z,(m + 1),F,'(m + 1);x', (m + 1))
l=o

xg(X, (m+1), F,'(m+1);x', (m+1)). (3.4)

where r /A, =a,/X, =a/X.
Finally, one determines 0 „by freezing out

the fast coordinates xf(m+ 1),

&m+ l—
2n m l 2n m l ]

w+ ~

dx,'(m -," I)Q(A „,F,'(m+1);x', (m+1)) H ... P(A.„„,F,'(m+ I);x', (m+ 1))
l=0 l=O

(3.6)

This Hamiltonian achieves the same form as Eq. (3.2) with

f =F (m+1)+-—2 2 ~m ~m
m+ 1 0 2' " 2' (3.7)

„=2e + E(A„,F,'(m . + 1))+&~+,[4f~' f~+,' —F—,'(m + 1) —6Q'(A, „,F,'(m + l))Q'(X „,F,'(m + 1))] .

One continues this procedure until n iterations have been achieved. The "mass" of the lightest excitation
at the rnth stage is determined by

p =E (A. , F (m)) —E (X,F (m)).

where the X, 's and the F»(k)'s are given by the
above equations.

Matrix elements depending on the original co-
ordinates x, are easy to compute by expressing
the x, 's in terms of the "fast," and "slow" coordi-
nates. This will be done in general in Sec. VI.
Using the formula (to be derived in detail later)
one finds that after m iterations

r' (-1)"-', , xr~/. -«m)
xi ~ & /2

xiii/2/

j (2) 2m/2
g=l

(3.10)

where fa] is the largest integer not exceeding a,
and l, is the jth binary digit (0 or 1) of the integer

m

l = g l, 2' or l, = [l/2'] —2[l/2" '] .
)=0

We notice that this entire "pruning" procedure is
iteration that is given by

m 2n-&

q.(x„.. . ,x„,)= '„,.
' '[[ y(~„,F, (k);x, (k))

-A=l l=o

2n-m

l=o
Q P. , F,'(m); x', (m)), (3.9)

r
As a simple example, let us compute the two-
point correlation function (g, x2x, g ) at the mth
level. Using Eqs. (3.9) and (3.10) we find that

m

(g~, x2xipm) = Q(—1) -' ' —
5[2/&1, ig/zi i

1 =- l

Q'-(X, , F,'( j)) Q2(X, F,'(m))

(s.11)

If f and a in Eq. (3.1) are sufficiently positive,
then the solutions to Eq. (3.5) have a. simple be-
havi'or —F,'(m) becomes large and positive while
F,'(m) becomes la.rge and negative. In fact, the
behavior of I'p for large L is

equivalent to choosing a trial wave function at the mth
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E (n + l )- 2'E '(n) + (2' —1)6/& .
Thus for very large distances, the correlation
function, Eq (.3.11) is dominated by the last term
Using the scaling relation and (2.7) one finds the
leading behavior '

(3.12)

Numerical results will be given in the next sec-
tion.

IV. NUMERICAL RESULTS

Let us first make a simple numerical check of
the transformation procedure by discussing X
uncoup/ed anharmonic oscillators. That is, if one
sets b, = 0, Eq. (3.6) has degenerate solutions,
5', '(m+ I) =&,'(m+1). The perturbation that is
neglected at each stage in the procedure is of the
form

x [x,'(m)' —Q2(x, F,'(m))] .

This perturbation vanishes in the ground state
. (by design) but does contribute to second order
via the excitation of both anharmonic oscillators
to their second excited state (it is only the first
excited state that can become degenerate with the
ground state as &'-~). This energy shift will be
computed shortly for one illustrative case.

Let us denote the energy per site in the m th
level of blocking by e(m). At the zeroth level,
since no transformation has been made, e(0) is
the exact energy of one oscillator. The question
is how do the errors in e(m) build up as m —~?
We find that e(m) grows and saturates as m in-
creases. The numerical results for f'=0 and A.

=1 are e(0) = 1.0604, e(1) = 1.0758, e(2) = 1.0779,
e(4) = 1.0782, and e(20) = 1.0782. Thus the error
after 20 stages is only-1. 7/o. For f'=1, the error
is somewhat larger: e(0) = 1.1378, e(1) = 1.2204,
e(2) = 1.2306, e(4) = 1.2322, and e(20) =1.2323, a
final error of -8.3%%uo, whereas for f'= —1, the
error is smaller: e(0) =2.6778, e(1) =2.6823,
e(2) =2.6830, e(4) =2.6831, and e(20) =2.6831, a
final error on only 0.2%. We therefore conclude
that there is no tendency for the error in the en-
ergy to continue to grow as m -~. In fact, as one
adds in a coupling between the sites, most of the
J'(m)'s become more negative, and the error
probably even decreases.

One cari easily estimate the second-order energy
shift due to the &, given above by using standard
closure arguments. The result for A. =1, f'=0,

which reduces the zeroth-order error of 1.5/o to
an error of only 0.3%. Details of this simple cal-
culation will be given later. The analogous calcu-
lation for f'=1 is

E(m = 1) = 1.220 44 —0.096 52

= 1.123 92,

an error reduction from 7.3/o to 1 2% and for
f'= —1 the result is

E(m = 1) = 2.6823 —0.005 12

= 2.6772,

an error reduction from 0.2% to 0.02%.
In this section we examine the general numeri-

cal behavior of the recursion relations which were
derived in the previous section. Given a pair of
coupling constants f', b, we investigate the large-
m behavior of X and f '. It is sufficient to con-
sider the case A, = 1 since other values of A, may be
handled by the scaling relations used in Sec. II.
We find two distinct behaviors of the f ' as m
—~ which depends on the A and f' values: in case
one we find that

whereas in case takeo we find that

In case one, since f 2-+~, we see that the mass
gap Ey Ep is going to zero. We call this the
ordered phase. It is analogous to the magnetized
phase of a ferromagnet for T &T, . In case tycho,

f ' becomes large and negative (at the same time
that A. decreases), so that the physical mass p
is finite and is given by

p'= lim (-4Z f '). (4.1)

Numerically we find that this converges to a con-
stant independent of rn for large rn. This phase
is analogous to the disordered phase of a ferro-
magnet with 7 &7.'„ in which the correlation length
is finite.

The two phases are separated by a one-dimen-
sional critical surface (a line). We have computed
the approximate location of this line (the dashed
line in Fig. 2) using the method described in the
previous section. Note that this line behaves in-
correctly in the region a-0, f &0. 2This is be-

and m = 1 is a negative correction to e(1) given by

E(m = 1) = 1.075 76 —0.018 26

= 1.0575,
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cause it is variationally disadvantageous to trans-
form to the "fast" and "slow" coordinates in this
region. Indeed, here it is better to use a local
wave function.

This leads to another possible criterion for de-
termining the phase of the system. One deter-
mines the best wave function g for which

(t), Hg ) is a minimum. If this minima is reached
only when m -~ (that is, the best variational wave
function correlates oscillators which are infinitely
separated) then we call the system ordered. On

the other hand, if the best wave function is at-
tained for a finite m, then oscillators which are
infinitely far apart are not correlated; the correla-
tion length is finite, and we call the system dis-
ordered. This is shown in the solid curve in Fig.
2.

In the region b. -0, f'-~ one may alternatively
invoke a spin--, approximation which involves a
diagonalization of H within the restricted basis
spanned by states of the form

N-Z

..„P,(X,f' ~;x,), -
l=o

where m, = 0, 1. Following Stoeckly and Scalapino'
one writes

N-y

H = Z fP, '+ (x,' —(f '- ~)]' —2~x, x,+,
l=o

+f' —(f'-&)'] .
and with respect to this restricted basis, the
Ham iltonian' be comes

(g +g

H(f, k) = Z [p&+
10

8

6

4

.:Disorder

0 I I I I

0 0.5

X) t + 6 X( I X)

I.p

f 2

l. 5 2.0

We have used this form for large f,3 and the "ex-
act" numerical results (cf., Ref. 10) in Eq. (4.2)
to yield the dotted line in Fig. 2.

Using Eqs. (3.11) and (3.12), we have also com-
puted the magnetization, M, which is defined in
terms of the correlation function as the limit

(4.3)

The number of iterations (or "prunings") was
chosen sufficiently large so that the numerical
result had converged to several significant deci-
mal digits.

For f near its critical value f„ the magnetiza-
tion behaves as

I"IG. 2. A plot of the boundary between the ordered
and disordered phases as a function off2 and 4 for
g= 1. The solid curve is using the criteria of comparing
the rotated to the local energy. The dashed line is a
straight iteration of the equations. The dotted line is
the result of the spin-2 approximation.

N -z
F., -F.o'

c( )I+2~To, (I)o,(I+I) I,
l=o I

where T is the square of the transition matrix
element between m, = 0 and 1,

T =
I &0IxI 1& I'.

(4.4)

where one might expect 18-+. In Fig. 3, the mag-
netization to the .eighth power is plotted vs f' for
6 = 10. One sees that the series of points is es-
sentially linear, implying that P is v' ery close to

%e have not bothered to estimate an error.
A calculation for 6 = 1 yields a similar result.

The exact solution to this truncated problem is
well known. There is a second-order phase transi-
tion at the point where

(4.2)

If f'»1 then"
I./2

32 2 In6 3(3 ~3)3Z, -&0—— ' 'e

0.8 I I

0.6
CU

& 0.4

O
0.2

( MAGNET I Z ATION)

I I I I
I

I I I I
I

I I I I

fc = 0.46905058
Q= IO

~ ~
I I I I I I I I I I I I I I

and T =f' Thus the cr.itical value of A for f
=f, »1 behaves as

8 f I/2 '3tc l 3
c 3 2 ln6 c

—5 0 5 IO I5

I
08 ( f2 f2)

FIG. 3. A plot of the eighth power of the magnetization
vs f . The critical exponent for the magnetization seems
to be quite close to 8.
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V. A REINTERPRETATION —THE HAAR TRANSFORM

The preceding blocking procedure first involved
an orthogonal transformation (a 45 rotation and
inversion). This then allowed one to find in a
simple way the variationally opti'mum A, , F' values
for the unperturbed Hamiltonian for each variable
of the form H, =p'+A. (x' —E')'. The essential
point to be emphasized in this method is the ortho-
gonal transformation of coordinates given by Eq.
(3.3). Is there a useful characterization of such
transformations, and can they be generalized to
blocking larger number of sites together~ The
answer to both these questions is in the affirma-
tive as we shall now show.

Consider the case of four sites, ¹2"=4.The
2x 2 blocking procedure applied twice in this case
results in a transformation of the individual site
coordinates x, to the final coordinates, r„of the
following form

r =H4X,
—'&t&1,

(5.2)

mation. " This transformation follows naturally
from the expansion of an arbitrary function in
terms of the Haar functions, ' which are a com-
plete set of orthogonal functions in the interval
[0, 1] and which take on only the values, 0, +1,
a&2, +2, etc. They are defined as (for 0& t & 1, and
extended periodically outside this interval)

Haar(2" +j, t) =XO (t),
with n=1, 2, . . . and j=0, 1, . . . , 2" —1, where

1 1 1 1

& 2n/i

0 (5 1) 0, elsewhere .

.0 0

This is the well-known discrete Haar transfor-

As a further example, the discrete Haar trans-
form for eight sites can be written in the con-
venient product form

1 0 0 0 0 0 0 0 + + + + + + + +

01000000++++
0 0 v 2 0 0 0 0 0 + + — — 0 0 0 0

1 0 0 0 v2 0 0 0 0 0 0 0 0+ +
H8=

0 0 0 0 2 0 0 0 + — 0 0 0 0 0 0
(5.3)

0000020000+ —0000
0 0 0 0 0.0 2 0 0 0 0 0+ — 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 +

where ~ =+ 1. One notices that the top rows of the
matrix H look not unlike squared-off sinusoidal
waves but the bottom rows, the high-frequency
part, do not resemble such waves. This is as one
expects from any blocking procedure; the longest
wavelengths are treated more accurately than the
short wavelengths.

This transformation can be performed directly
on the Hamiltonian and then the expectation value

taken in a selected set of states. The most natural
one is a set diagonal in the ~'s with adjustable
parameters (A. , E'). Note that for N sites, there
are N independent coordinates and N independent
F's to choose. The 2 by 2 blocking scheme is
highly degenerate in choosing the F values —there
are N/2 degenerate E's at the first step, N/4 at
the second, N/8 at the third, etc. The last two
F's are not degenerate. This degeneracy pattern
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changes with the number of sites in the blocking
scheme.

In the 2-site blocking scheme of Sec. III, the
choice is made for the I"s at each stage or level
by neglecting the (further) couplings between the
slow modes. This is not necessarily the opti-
mum choice, as we shall see later, but is a
simple one and is in any event variational. . This
means that while the energy values. may be sat-
isfactory, other quantities, such as the correla-
tion function, may have considerably larger er-
rors. In a later paper we shall show how to com-
pute all such quantities with an accuracy that ap-
proaches that of the energy.

Let us now turn to a generalization of the Haar
transf or m which cor responds to blocking M sites
together and retaining the "slowest" oscillator
coordinate.

gonal transformation T among M sites:
N-1

Tmj
xt (1) xu t+/(0) ~

/=o M
(6.3)

where we have normalized T to have all + 1's in
its top row, i.e., 7'~ = 1. The M —1 fastest os-
cillators are frozen out and only the slowest,
labeled m =0, is retained for the next level. At
a general level, we define

hf-I.
rpmJ

xP (k+ 1) = x'„.„,(k) .
M

(6.4)

T"T"=Ma ~ ~SJ (6.6)

The inverse transformation is also easily de-
rived by a recursive procedure. Since T is ortho-
gonal,

VI. M-SITE BLOCKS

In this section we will consider a more ambit-
ious blocking calculation in which M sites are
considered together and then the M —1 fastest
oscillators are frozen out. The remaining slow-
est oscillators are in turn coupled to each other
in blocks of M and the process repeated. In this
section we shall work out the general coordinate
transformation implied by this blocking, scheme
and its inverse. The explicit correlation function
will then be discussed.

The block size will be denoted by M and the total
number of lattice sites will be N, where N =M".
As the blocking process is carried out, one needs
a coordinate notation that provides three pieces
of information: rn, which is the position within
a block of M sites (0 &m & M —1); l, which denotes
which particular block the site is in; and k which
denotes the level or stage of the procedure. Thus
ave introduce

Thus, for example, the inverse of (6.3) is

x, =x', (0)
N-1

Tmlp 1
x [& / u] (1) + x [t /~] (1)

ma M fM
(6.6)

+M "/'xo[, /~a](k), (6 '])

where L, is the jth digit in base M of the integer t,,

1/ = [l/M'] -M[l/M~ "]. (6.8)

where /p is the zeroth-base M digit of the integer
l, or, in other words,

lo=l -M[l/M),

where [z] is again the greatest integer not ex-
ceeding z. After the repeated application of Eqs.
(6.6) and (6.4), one achieves

x = Q Q M '/'T "' &xP, /„;](j)-
g=l m=].

x, (k) (6.1)
Note that for M=2, and

x, =-x, (0) . (6.2)

At the first stage one performs a general ortho-
I

as the general coordinate notation, where 0 &

l ~M" —1. The original site variable x, is given

by
1 —1

~J

. we recover Eq. (3.9).
The generalization of Eq. (3.7) for the wave

function to blocks of size M is given by

k graf ~ g g5

4(xo. .x~,) = H ].I l][ 4'(~ (j) + '(j)'xp(j)) ~[l 4(~o(k), &o'(k);x;(k)).
j=l &=p m=1 l=p

(6.9)

The couplings at the stage j are determined recursively in terms of those of the previous stage (j —1) by
the variational principle [e.g. , the generalization of (2.9)].

In terms of these parameters, the correlation function is given by
k N-1

t

&kalxixi Ill &
= ++ M 'T " 'T " '6[(/~/], [r /N/]Q'(~~(a) &~'(j))+M '6[&/u~], [i /u~]Q'(~o(k) &o'(k)) (6 1o)

J —1 Nl=l
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These relations are easier to apply than to write.
One can easily apply these formulas to more

general blocking procedures. For example, after
coupling M sites together in a block, one could
freeze out M —2 variables and leave 2 oscillators
free to couple at the next stage. Further genera-
lizations are straightforward.

VII. FOUR-SITE BLOCKS

3

x ~ + —x ~ =2 J' +'v +41'
i=0

and the quartic term is
3 3

i=p l=o

and of course, since &, is orthogonal,
3 3

where

(7.1)

It is quite interesting to apply the previous dis-
cussion to the case M=4. In this case, there is
an orthogonal transformation that is very con-
venient to use since it diagonalizes the periodic
derivative term exactly and puts the quartic in-
teraction into a convenient form for our method.
This transform is called the discrete S'also trans-
form. " For example, for 4 sites, the coordinates
transform as

+ 2n (r,'+ r, '+ 2r, ') + 6r,r,r,r, . (7.6)

Using the anharmonic trial functions, one finds
A. =~ and

F,'= 4f' —3Z@'(-,', F, ') —a/X,

As a simple example, the transformed Hamil-
tonian of Eq. (3.1) for N=4 becomes (with A= 1)

3

+=P + — 9 l +3 'V 'Vi —8 Vi +4
l=o

1 1 1 1

1 1 1 —1 —1
4.

1 —1 —1 1
(7.2)

F,'= 4f ' —3 Z Q'(», F,') —4A/A. ,
(7.6)

This transformation is defined with respect to the
discrete Walsh functions. It is straightforward
to define them in the continuum but the discrete
situation is all that we mill need here. For the
case of N = 2" points, we define the base 2 repre-
sentation of the integers 0 and j as

k2
(7.3)

These are easily solved.
To proceed to the N&4 case, one must include

the further coupling term in Eq. (2.3), freeze out
F,', F,', and F,', and then proceed to the next
stage by blocking the slowest oscillators with
coordinates rp . The coupling terms between the
blocks of 4 change the 4 terms and the equations
satisfied by the F's at the (j+ 1)st level take the
simple form (l =0, . . . , 3)

r=p
(7.4)

The label j is the position label and k is the analog
of the momentum or frequency label. Obviously
Wal(k, j) = Wal( j, k), and

[Wal(k, j)]'= 1.
With the orthogonal transformation given by

(7.2), the periodic derivative coupling term be-
comes (x, =-xa)

where k„and j„only take on the values 0 or 1. The
Walsh function on the interval [O, N] can then be
written as

f,„'=F,'(j +1)+b,/A. . (7.8)

Numerical results for this model will be pre-
sented in another paper.

To clarify the connection and differences be-
tween the M = 4 and the M = 2, or Haar transform,
cases, it is interesting to compare the N = 8 case
given by Eq. (5.3) to the 4-site blocking just dis-
cussed with N= 16. The orthogonal transformation

(7.7)

where A,.+, =A.,/4, b,,„=A&/4, and the f pa-
rameter for the ro coordinate in the pruned Hamil-
tonian is
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for this latter case is
r =M~+,

where Q Q Q Q

Q Q —Q -Q

Q —Q-1
4 2' 0

N -Q

0 0

with

0 2' 0 0

0 0 2~ 0

0 0 0 2~.

Q=(1 1 1 1)

-1 1 —1 —1

—1 —1 1

1 —1 1 —1

VIII. DISCUSSION

Since this is only the first paper in a series,
the conclusion will be kept brief. In this paper,
we have discussed a one-dimensional Q' lattice
theory using a general anharmonic basis with a
selected orthogonal transformation of variables.
Both the energy density and the correlation func-
tion were discussed and evaluated numerically. .

The calculation of other critical exponents and
order parameters can easily be carried out. The
choice of the parameters in II, were made by im-
posing a variational principle at each stage of the
"pruning" procedure which neglected higher-level
couplings of the "slow" coordinates. This pro-
cedure could clearly be improved.

Some good points of our procedure described
in this paper is that it is expected to be good for
large ~ and since an infinite number of states
(i.e. , a complete oscillator) are retained after
each "pruning" step, it should certainly be better
than truncating to a finite number of levels. It is
also possible to compute higher-order corrections
to the energy and correlation functions as will be
shown later. Among its deficiencies are those of
any finite blocking procedure, the high-frequency
part of the spectrum is poorly treated —the ultra-
violet arid renormalization properties are cer-
tainly wrong. This defect will be remedied in paper
II in this series. Another shortcoming is the fact
that the I'"'s are not chosen so as to minimize the
final energy, but for reasons of simplicity are
computed at each stage by neglecting further
couplings. One undesirable feature of our rather
extreme orthogonal transformations is that as
6- 0, the calculational procedure chooses either
a full transform or a local wave function (which
ever yields the best energy value). This poses
no problem but is not as smooth as one might wish.

In further papers we shall demonstrate how to
improve the lowest-order (but variational) results
given here by unusual versions of perturbation
theory to improve other observables, such as the
correlation functions, so that they are as accurate
as the energy. We shall also apply this approach
to treat other models, higher dimensions, and the
high-frequency part of the spectrum.
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