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Coherent states for general potentials. III. Nonconfining one-dimensional examples
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We apply our minimum-uncertainty coherent-states (MUCS) formalism to two one-dimensional systems that

have continua-. the symmetric Rosen-Morse potential and the Morse potential. The coherent states are
.discussed analytically in great detail, ,and the connections to annihilation-operator and displacement-operator

coherent states are given. For the Rosen-Morse system the existence of a continuum does not prevent one

from obtaining the coherent states in analytic, closed form. The Morse system, with its energy-dependent

natural classical variable X„has a natural quantum operator X which is Hamiltonian-dependent. This
Hamiltonian dependence is complicated and prevents an easy analytic solution for the MUCS. However,

approximate MUCS can be obtained by analytic approximation techniques.

I. INTRODUCTION

In this paper we apply our minimum-uncertain-
ty coherent-states (MUCS) formalism" to two
nonconfining one-dimensional potentials (poten-
tails that have both a discrete and a continuous
spectrum). Even though there are continua, the
coherent states can be found in the same manner
as in the case of confining potentials. ' In the dis-
cussion that follows we shall make extensive re-
ferences to the results of the preceding two pa-
pers,"referencing equations from them as Eq.
(I-x.x) and Eq. (II-x.x).

Our first example, in Sec. II, is the symmetric
Rosen-Morse (RM) potential" '

V(x) = U, tanh'ax . (1.1)
This potential has a finite number of bound states
whose eigenenergies are proportional to a quad-
ratic function of n, and it also has a continuous
spectrum. In Sec. IG we study the one-dimension-
al Morse potentials "

V(x) = V,(I e- ")'. (1.2)

This potential is asymmetric. It rises to infinity
at the left, but has a continuum since it only rises
to U, on the right. Here, there are also a finite
number of bound states proportional to a different
quadratic function of n.

For each of these potentials we discuss (a) the
classical motion and the natural classical vari-
ables, (b) the natural quantum operators and the
MUCS, (c) the natural quantum operators in terms
of the n-dependent raising and lowering operators,
(d) the time dependence of the MUCS and of the
natural quantum operators, (e) the limits in which
these systems reduce to the harmonic oscillator,
and (f) n-independent raising and lowering oper
ators and their use in defining annihilation-oper-
ator coherent states (AOCS) and displacement-op-
erator coherent states (DOCS). These AOCS-
DOCS are inequivalent to our MUCS and are not in
unitary-exponential-operator DOCS form. (Partial

results on our MUCS have already been given else-
where for the Rosen-Morse' and Morse" systems. )

The Morse potential has the. feature that the nat-
ural classical variable X, is a function of the en-
ergy. Therefore, its quantum counterpart X is a
function of the quantum Hamiltonian. Unfortunately
this function is not simple. As a result the MUCS
for the Morse potential are obtained only in a cer-
tain analytic approximation. However, this does
provide a specific example of how our MUCS tech-
niques can be used approximately.

Finally, we remark on the choice of the raising
and lowering operators that occur in our formal-
ism. The well-known factorization method of
Schrodinger, "as expounded by Infeld and Hull, '~

produces a factorization of a second-order differ-
ential operator as a product of two first-order dif-
ferential operators. These first-order differential
operators are raising and lowering operators.

However, as has been observed for both the
Rosen-Morse' and Morse" potentials, the stand-
ard Infeld-Hull factorization yields raising and
lowering operators that affect both the potential
and the eigenstate number n. For instance, in the
Hosen-Morse potential the Infeld-Hull raising and
lowering operators take one from the nth eigen-
state in a potential labeled by s [see Eq. (2.2)] to
the (n+I) eigenstate in a potential labeled by
(s+ I). Such operators do not have a simple phys-
ical interpretation. In contrast, the raising and
lowering operators that occur in our formalism
affect only the eigenstates in a fixed potential and
have a simple connection to the natural quantum
operators. The choice of the correct raising and
lowering operators will also be crucial in dealing
with the multidimensional examples of paper IV.

II. ROSEN-MORSE POTENTIAL

A. Classical motion and the natural classical variables

The symmetric Rosen-Morse (RM) potential is

V(x) = U, tanh'z, z =- ax, (2.1)
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8'a'
U, = h,s(s+ I}, Taking the factor (ha') out of the definition (2.12)

to make I' dimensionless,

where our use of 8p and s presage definitions
which are usual for the quantum system. The nat-
ural classical variables which satisfy E(Is. (I-3.2)
to I-3.4) are

[X,P]=i cosh'z,

yielding the uncertainty relation

(nX}'(nP)' » —,
' (cosh'z)' .

(2.15)

(2.16)

X,= sinhz A(E) sin~, t,
P, =aP coshz =m(d, A(E) cos(d, t

= a[2mE]'i' cos&u, t,

A(U)=(
)

2a~
(Uo-E)

~4

The classical equations of motion are

X, =P,lm,

P, =-2a3(UO —E)X, =-m((),2X, .

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

2a2
P,(E& U, ) =a[2mE]'i'cosh (E- Uo) t .

)I«

(2.10)

B. Natural quantum operators and MUCS

The (Iuantum operator analogs of (2.3) and (2.4)
are

X = sinhz, (2.11)

Comparing E(ls. (II-3.1)-(II-3.8) for the P'oschl-
Teller (PT) potential with (2.1)-(2.8), the change
from the confining tan z potential to the tanh'z po-
tential manifests itself in the change of (U, +E) to
(U, —E) For the. RM potential, if E is greater
than U„ the classical particle is unconfined. The
equations of motion are still the same, however,
and the solutions (2.3) and (2.4) for X, and P, be-
come

2&2
X,(U & U, ) = ( sin)i (U —U, ) i,

pn

(2.9)

The normalized states which satisfy the equality
fn (2.16) are

y,„,=N(C, B)y„(z),
ai'(B+-,'+i u)I'(B+ 2—iu)

n' "1(B)I'(B+-.')

(2.17a)

(2.17i )

(t)„„(z)= (coshz) z exp [C sin '(tanhz) ],
1 (coshnz)
2 (a sinhz)'

d
C =-u+iv =B(sinhz)+ coshz-

dz

(2.17c)

(2.18)

(2.19)

'The bound-state eigenfunctions and eigenenergies
of the B,M potential are' '

)I)„=N(n, s)P„(z), n c [s]

a(s —n) I"(2s -n+ 1)
1(n+1)

y„(z) =P."'(tanhz),

(2.21a}

(2.21b)

(2.21c)

„E=8,( n2s - n+s) .
In (2.21), [ ] is the greatest integer function and

P," ' is the associated i,egendre function. " [We
use the notation N(, ) for all normalization con-
stants, but the context will make clear which is
meant. ] For C =0 the n =0 ground state is the
special case of the states (2.17}given by B =s.
Thus, according to the prescription of paper I,
our normalized MUCS are

(2.22)

An amusing mathematical resemblance to the
P'oschl- Teller minimum-uncertainty states
(II-3.15) can be obtained by observing that

1 - i sinhz 'cl'
exp[C sin '(tanhz)] = 1. . . (2.20)1+s sinhz

ka' I d dP = . i
coshz

d
+

d
coshz i.2z dz dz

Their equations of motion are

(2.12) (aM =4Us(B =s)

=N(C, s)Q„M (z, B=s) .
(2.23a)

(2.23b)

One can verify that for these coherent states
X= . [X,H]=Pim, (2.13)

Q)= P (2.24)

P =, [P,H]=-a2{UO —H —«80)X] . (2.14)

As for the PT case in paper H, again we have a
zero-point contribution +48p.

1 Q
(X2) =

2(z —1) (s —1)(s --,') '+ l

(P}=v,

(2.25)

(2.26)
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(, [(s ——,
' )'+ u']

2(s —1) (2.27)

(2.28a)

[(s ——,')'+ uz]

2(s —1)

(nx)'(~P)' =-,'- (cosh'z)' .
Also,

(H)/8, =, ,', (u'+ v') + s .s(s+ )
+2

(2.28b)

(2.28c)

(2.29)

A new aspect of this problem is the continuum
contribution. The continuum is reached when n
~ s. This changes the form of the superscript of
the associated Legendre function in (2.21). In
units of h„(s —n)' is the difference in energy
from the bottom of the continuum to the nth eigen-
state. Therefore, ~n —s

i
is proportional to the

wave number. In the continuum region the super-
script becomes complex, and the solutions to the

Schr'odinger equation are P,""(tanhz), where k
= [(E—U, )/h, ]' '. This result is physically cor-
rect since, from p. 166 of Ref. 15, P,""
—exp(+ikz) as z —x~.

Thus, the continuum solutions to the problem
properly behave as a plane wave at +~, and for
large times their time development will be similar
to that of a plane wave. Therefore, the MUCS
overlap with the bound states will give the long-
time coherence properties. With time the con-
tinuum contributions will ultimately disperse as
plane waves. The pieces of interest are the
bound-state contributions, so we will just desig-
nate the rest as "continuum. "

The MUCS can be decomposed into the number
states as

S]
(Ru = —N(C, s) N(n, s)8(n, C, s)g„+continuumRM

(2.30)

8(n, C, s) =a(i „iy„„),

1T

6(n = even, C, s) =
I'js+ 1 —nj2" '" '

j

(s+-' —k n), (-kn),
(s + 1 —n)&(j !) (2s + 2j —n)22+

x [B(s +j + —,-'- ——,
'

n —i —,
' C, s +j + —,

' —-,'- n+ i —,
' C) ] ', (2.32)

I'(s+1 —n)2" '",„(s+1—n),.(j!)(2s+2j —n)2"

x[(s+j ——,'-n+i-,' C)B(s+j+1——,'n —i —.'. C, s+j ——,'-n+i ,' C)]'. -
(2.33)

The symbol (a), = I'(a+ 0)/I" (a) is Pochhammer's
symbol.

C. Natural quantum operators as n4ependent
raising and 1owering operators

d
(1 —x')zi' —p,"'( )

pn+ z -s(&) (2.37a)

—,'n(2s —n+ l)P," ' '(x) . (2.37b)

For the HM system, the n-dependent raising and

g op ato a

d
A„' = (sinhz)(s —n) vcoshz ——,

with the properties

From (2.34), X and P can be written as

X = ([~„-+(~„)z]+ [~„+(~„-)z] ),1

I = —.([~„-+(x„')']-[~„+(x„-)']).1

(2.38)

(2.39)

2'„g„=(s—n)D(n ——,
' ~-2, s)~Jr„„,

(n+ l)(2s —n)
(s —n)(s —n —1) J

(2.36)

(2.36)

This implies that

X$„=,' D(n, s)~!t„„+-,' —D(n—1,s)$„, ,

PP„=— . (s —n ——,')D(n, s)P„„

(2.40)

Ezluations (2.34)-(2.36) follow from the standard
recursion relations for associated Legendre func-
tions, which can be combined to yield" + . (s —n+-,')D(n —1,s)q„, . (2.41)
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p(x, t) =eg„(x, t)e„(x,t),

+sM(xs t) = e 4M(x)

(2.42)

$3
= —N(c, s) N(n, s)8(n, C, s)y„

n=

& exp[-ig, (2ns —n'+ s)t/h]

+ continuum . (2.43)

These packets have been studied numerically for
many cases, as will be described in paper V.

Defining h by

Again, observe that, comparing the defining
equation (I-A4) for the MUCS to (2.34), subject to
the appropriate restriction on nX/nP, the MUCS
can be defined as eigenstates of the ground-state
destruction operator A, .

D. Time dependence

The time evolution of the coherent-state wave
packets is

lar velocity (2.7), with E-H.
Actually, for all our one-dimensional examples

one can similarly calculate other operators, such
as X'-(t), by the same techniques. Here X'(t)
turns out to be

a~@,X'(t) = X'- — ' exp(-i4~, t) cos(2~st)

+ (X,P]+i(2X'+1)+
Iss

Up-@- ~p 0

xsxp( tttn— i(s(2ntts)s — 't ) .1 II+/,
U a0 0

(2.51)

This expression can be compared to the harmonic-
oscillator result (l-2.37) for x'(t).

The expectation values of the time-dependent
operators X(t), P(t), X'(t), and P'(t) can be cal-
culated by using the decomposition of the MUCH
into eigenstates. The results are listed in Ap-
pendix A.

h -=(U, If)/8,—, (2.44)

[h, x]=q,
[h, q ]=X(4h —1)+ 2q,

(2.45)

the quantum equations of motion (2.13) and (2.14)
can be written as

E. Harmonic-oscillator limit

This time, taking the harmonic-oscillator (Ho)
limit as

llID =—llm fg ~ O

d
q = sinhz+ 2 cosh~ — = 2iI-'. (2.47)

HO sa'- tn~/h,

These can then be used as before to obtain X(t)
and P(t) as the sums of series of nested com-
mutators as was done in the example in paper II.
The results are

X(t) e iHt/((Xe-tst/ I(

(dp=Xe '"0' cos(d„t+i ' sinu Ht
(dg

all the results of this section again go over to the
harmonic-oscillator results discussed in paper I.
The techniques for showing this are the same as
for the PT case of paper II. As will also be dis-
cussed in the numerical results of paper P, the
coherence time for our MUCS is increased by de-
creasing the parameter (H)/U, and by increasing
the number of eigenstates that have a significant
overlap with the coherent state.

(dp+I'e '"o'2 - -' sin40gt,

p(t(=ps " ' nnsst„t —i("'.
)

sins t

-Xe '"(i'(h —4)2 ' sin~„t,
(da

where ~p is defined as

(d =8 /h,

(2.48)

(2.49)

(2.50a)

F. n-independent raising and lowering operators
and other coherent states

(sinhz)(s —n) —(sinhz)h'/2,

so that

(2.52)

Applied to the HM system, our n-independent
raising and lowering operators are obtained by
making the transformation

and ~H has the form

2g2 1/2
——-- (U, -H) =2[$,(U, —&))'/'/h .

dA'-A'=(sinhs)h'/'~ coshz
fl dZ

(2.53)

For the discrete spectrum one can then write the
Hamiltonian as

(2.50b)

This is the functional form of the classical angu-

a-x=-', s,(w'a-+a-a ),
since it gives

(2.54)
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Z in) =E„in) . (2.55)

The discrete spectrum contribution to the an-
nihilation-operator coherent states (AOCS) can be
constructed by demanding that

A(E) =
U —E

~ 2a~(U E)0
C yn

(3.5)

(3.6)

A $
S]

tt, -=N, u„t„+uunttnuutu) .
n=

Equations (2.56) and (2.57) yield

(s —n)a„(n + 1)(2s —n)(s —n —1)

so that the AOCS can be written as
"Lsi ( 1 r(2s) s 1 2

=N 0 ~tn! r(tn n) n- ~ )

(2.56)

(2.57)

(2.58)

The classical equations of motion are thus"

X, =P,/in,

P, =-2a (Uo —E)X,=-m+, 2X, .
(3.7)

(3.8)

As with the RM potential, when E) U, the equa-
tions of motion remain the same, but the sin and
cos in (3.3) and (3.4) become sinh and cosh of
(t[2a'(E —U, )/m]'('j. This represents the motion
of a particle which is free to travel to the right,
but is confined at the left by the exponentially ris-
ing potential.

+ continuum (2.59)

(s —n)
n(s —n+ 1)(2s —n+ 1)

(s —n) r(2s)
s I'(2s —n)n!

- ii2
A'$„, (2.60a)

(2.60b)

These states are not as easy to handle analytically
as our MUCS, to which they are inequivalent. We
will discuss a numerical example of these states,
in paper V.

By observing that

Uo

U, H g /4
(3.9)

B. Natural quantum operators and minimum-
uncertainty coherent states

The Morse potential is a more complicated sys-
tem to discuss since X, depends upon E. There-
fore, when going to the quantum system, one
makes the transformation E-(H plus some zero-
point contribution). This zero-point contribution
turns out to be 8,/4, as we will see in Eq. (3.42).
For now we simply give the natural quantum op-
erators

Eq. (2.59) can be put in the DOCS form

S i (~A n)tt

d dP = —. e' —+ —e'i(Iia') .
22 dz dz j

Their equations of motion are

(3.io)

+ continuum (2.61) X= —. [X,H]=P/m, (3.11)

III. ONE-DIMENSIONAL MORSE POTENTIAL

A. Classical motion and the natural classical variables

The one-dimensional Morse (M) potential is

V(x) =U, (1 —e ')2, z —= ax,
Q

Uo ——x'80, h 0 2'

(3.1)

(3.2)

However, because the sum goes only to [s] and
also because the gamma function is I"(2s —n) in-
stead of I'(2s+n), the above DOCS operator can-
not be put in the simple modified Bessel function
form of Eq. (II-3.68) for the PT-DOCS.

[X,P]=tC (3.i3)

is not easy to calculate analytically. Since this
operator is needed to calculate the exact MUCS,
we revert to an approximate analytic technique.
This technique'2 is to consider the operators P and

P =-a' (U, —H —ts, /4, X]+
Uo —H —$04j'

(3.12)

Again dropping (Ia') in P, we observe that since
X functionally involves & in a denominator, the
operator G in the commutator

The natural classical variables which satisfy Eqs.
(I-3.2)-(I-3.4) are

Uo

U E g/4 (3.14)

X, = e' —U, /(U, —E) =A(E) sin+, t, (3 3)
where E =(H). This expectation value of the Ham-
iltonian in the approximate MUCS we obtain below.

2mU EP, =ape'=m&, A(E) cos~, t =a ' cosv,t,
0

(3.4)

With

[X,P]=ie2'-=tG (3.i5)
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implying the uncertainty relation

(nX)'(n p)"- -' «)', (3.16)

the MUS that satisfy the equality in (3.16}are

&MUB =N(C B)&M(2)

(tM(2) =e ' 9'"exp(—Ce *)

(3.17)

(3.18)

(e28)
' 2(~x)' '

C =B(e')+i(P) —= u+iv .

(3.18)

(3.20)

The normalized number eigenstates and eigenener-
gies for the Morse potential are"'"

(„=N(n, )(.)$„(y), 0~n~ [&--,'] (3.2la)

a(2& —2n —1)f'(n+ 1) t 2 I 2

1"(2Z n)—

6(n, C, )(.) =a((t)„](t)u)

r 11 (22-rt —1 2 )*
-.

=o jl ( n-j $
1+C/

x I'(2)). —n —1+j) . (3.34)

C. Natural quantum operators as n-dependent raising
and lowering operators

For the ground state C =u+iv =X, yielding the
ground-state energy $,(X ——,').

The MUCS can be decomposed into number states
as

1 [X-1 2 ]
&M= —N(C, X) N(n, X)6(n, C, X)g„+continuum,M g n=

(3.33)

)& y~-2»- tte- 3'~2f (»-2tt-2)(y)
n

y=—2Xe ',
E„=$,[2X(n+-2') —(n+-,')'],

(3.21b)

(3.22)

(3.23)

For the Morse system, the n-dependent raising
and lowering operators are"

e'()). —n ——,') p e'—
2x dg

where L'„' are the generalized Laguerre poly-
nomials. " Comparing (3.21) to (3.18), one sees
that for the MUS to contain the ground state as a
special case, one needs the special value for the
complex parameter C =BR/()(. —1) and one has to
restrict the parameter B to be (X —1). Changing
variables to y,"and with N(C, X —1)=N(C, X)—
=N(C, X)(2X)~ ' our MUCS are

y2

X —(n+-,')+ —,
' (3.35)

1x —n ——, d

dg

with the properties
1

2X
(3.37)

, (3.36}
2[~ —(n+2)+ 21

=N(C, A.)(t)

(t)„=y" '~2 exp(-2cy/X),

N(C y) =a't [u/Z]2 2/[Z'(2)(. —1)]' '

C =- ()). —1)(2 X/y )+ i (P) = u+ iv .

(3.24)

(3.25a)

(3.25b)

(3.26)

(n+ 1)(2X —n —1)
X 3

(X - n - -, )(X - n - —,)
(3.38)

One can verify that

(3.27)

E(luations (3.35)-(3.38) follow from the standard
recurrence relations for generalized Laguerre
polynomials, which can bp combined to yield"

Q(x') =
(X-1)(X—3/2) '

(P) =v,
Q(P)-

2( .
)

+

Q Q

2(x-1)'() --', ) .2(X--,')
(G)2

(3.28)

(3.28)

(3.30)

(3.31)

(3.40)

Calculating the natural quantum operators in
terms of the n-dependent raising and lowering op-
erators,

(n+ 1)(n+ e()L, '„;,2'(t) = [n(o —1) —t(n+n)]L'„"(t)

r (rt —1)t( —L'„''(t)), (3.39)

dtt„";"(t) rtL„"'(t) —(tt.+1) —L„"='-(t)).

The Hamiltonian expectation value in these states,
which also gives E, is

(B)/g = E/g

~+ ——1 +x —~2 Q Q

Uo

V, -Z„-S,/4 (3.42)

x„=,][A-„+(A„')']+ [A„'+ (A-)']f

(3.41}

(3.32)
. {[A-„+(A„)t]-[A.„+(A-„)']]. (3.43)
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Equation (3.42) shows why the zero-point contri-
bution 8,/4 was chosen in the definition (3.9) of
X . It is only with this choice that one obtains
agreement between (3.9) and the raising and low-
ering operator construction of X„ in (3.41).

Using the forms (3.41) and (3.43) for X and P,
one has

Xg =-', D(n, ))$ „+-,D(n —I, X)$„,, (3.44)

PP„= . (X —n —1)D(n, X)|tt„,~

1
+ . (X-n)D(n —1, X)g„, .22

(3.45)

The ground-state destruction operator A, can
again be used as a basis for defining the approxi-
mate MUCS, with the proper value for nX/nP.

D. Time dependence

The time evolution of the coherent-state wave
packets is

p(x, t) =O'M*(x, t)4 M(x, t),
O'M(x, t) =e '"'~ "(M(x)

1 p)t-1 /2 1-

= —x(c, ~) g iq(n, ~)e(n, c, ~)g„
g=0

& exp[-tgo[2X(n+ ~) —(n+2)2]].

(3.46)

+ continuum . (3.47)

h =(U, -e)/g, , (3.48)

the quantum equations of motion (3.11) and (3.12)
can be written as

[h,x]=q,
fh, q] =x(4h - 1)+2q,

q =2iP .
(3.50)

(3.51)

As before, these equations can be used to solve
the nested sums of commutators for the time-de-
pendent operators X(t) and P(t). The results are

40OX(t) =Xe '"o' cos~„t+i ' sine„t
H

These packets have also been studied numerically
for many cases, as will be described in paper V.

Defi.ning h to be

2g U ~ »2 2~2
- i/2

c, m

(3.55)

We emphasize that if the definition (3.9) for X
had not had the zero-point factor 8,/4 in it, then
the result (3.52) would not have had the now stan-
dard form. This is another verification that the
insertion of this zero-point factor in Eq. (3.9) is
physically correct.

The expectation values of the time-dependent
operators X(t), P(t), X'(t), and P'(t) in the MUCS
are given in Appendix A.

B„(x/~2=. (-I)"2" 'I'(n+ 1)lim [o " L'~'(v ox+ o)]

(3.56)

on p. 251 of Ref. 15 to show that the generalized
Laguerre polynomial eigenfunctions go over to the
harmonic-oscillator eigenfunctions.

Once again, as will be discussed in the numer-
ical results of paper V, the coherence time for
these approximate MUGS is increased by decreas-
ing the parameter (H)/U, and by increasing the
number of eigenstates that have a significant over-
lap with the coherent state.

F. n-independent raising and lowering operators
and other coherent states

The Morse potential provides an interesting
example of how the A„'operators used to provide
the "simplest" X„ in Eq. (3.42) need not be the
"simplest" operators to use to construct AOCS
from the n-independent raising and lowering op-
erators.

In particular, multiplying Eq. (3.36) for A'„by
the denominator of the last term, we have

e'„-=A„'2 [~ —(n+ -,')+ —,'], (3.57)

E Harmonicwscillator limit

As discussed in Ref 12 in the limit defined by
Eq. (II-3.53), all our results once again go over
to the harmonic-oscillator results given in paper
I. The techniques for showing this are similar to
the PT case of paper II, except that one uses the
relation

h)O+Pe '"o' 2 . sin~Ht (3.52) yielding

P(t) =Pe '"o
cosine t —i o sm~ t(0O

H J

-Xe-'"o' (h ——,)2 sine„t, (3.53)
~H

(3.58)

One chooses these n-independent operators be-
cause

(do = So/h q (3.54) & -K = 2 $,(Q' 8 + 8 8'+ —,'), (3.59)
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Z ~n) =E„~n) . (3.60)

A$ =nP

g, =N, Q n" (
+ continuum

which gives the DOCS form

I'(2X —1)
r(2x —1 n)-

(3.61)
1 1/2

X —p —n

(3.62)

Note that using the 8'„on the g„amounts to using
the standard" raising and lowering operators on
the generalized Laguerre polynomials.

Employing 8'„, one defines the AOCS and DOCS
by proceeding exactly as in the last section for the
RM case, except that everywhere (X ——,') is sub-
stituted for s. W'riting out the results,

x exp(i2b m t) + (H.c.) (A2)

(P(t)) =
2 g b„N(n+ l, y)N(n, y)D(n, y)

i ~N(C, y) ~2

20 n=p

tively. Then the expectation values (X(t)), (P(t)),
(X'(t)), and (P'(t)) in the MUCS can all be written
in the same forms. Noting that for the RM and
Morse potentials the sums are finite (up to n

= [s —1] and n = [X —q] for (X(t)) and (P(t)), for
example) and that for these potentials we are leav-
ing out the continuum contributions, we have

(X(t))= '2 g N(n+ l, y)Ã(n, y)D(n, y)
IN(C, y)f'

n=O

x 8*(n+1,C,y)8(n, C,y)
L

+ continuum (3.63)

LX-1 23 (~+)n
q. =N. r(21.-1), ) y, x 8(n+ 1,C,y)8(n, C, y)

xexp(i2b cu, t) -(H.c.) (A3)

The same comments hold as for the RM case that
the finite sum in (3.63) does not yield the closed
form Bessel function for the DOCS operator as in

the PT case.
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q (t))- ""y'' p ~„*~„,

F„=N( n— l, y)8(n —1, C, y)D(n —l, y) exp(i2b„&uo t)

+N(n+ l, y)8(n+ 1, C, y)D(n, y) exp(-i2g„&uo t),
(A6)

&p'(t)) = ', g z+z,
n=0

(A6)

Z„=g„N(n l, y)8(n ——1, C,y)D(n- l, y) exp(i2b ~ t)

-b„N(n+ l,y)8(n+ 1, C,y)D(n, y) exp(-i2g ~ t),
(A7)

where
X+n+2, PT

APPENDIX A. TIME-DEPENDENT EXPECTATION
VALUES FOR THE POSCHL-TELLER,

ROSEN-MORSE AND MORSE COHERENT STATES

y =(1. or s), (Al)
and

b„= s —n —~, RM

X-n-1, M

X+n--,'=b„-1, PT

(A8)

where X and s are the strength parameters ex-
plicitly defined in Egs. (II-2.2), (2.2), and (3,2)
for the PT, RM, and Morse potentials, respec-

g = s —n+ —,'=b„+1, RM

x-n=b„+1, M.

(A9)
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