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Coherent states for general potentials. II. Confining one-dimensional examples
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We apply our minimum-uncertainty coherent-states formalism, which is physically motivated by the
classical motion, to two confining one-dimensional systems: the harmonic oscillator with centripetal barrier
and the symmetric Poschl-Teller potentials. The minimum-uncertainty coherent states are discussed in great
detail, and the connections 'to annihilation-operator coherent states and displacement-operator coherent states
are given. The first system discussed provides an excellent bridge between the harmonic oscillator and more
general potentials because, even though it is a nonharmonic potential; its energy eigenvalues are-equally
spaced. Thus, its coherent states have many, but not all, of the properties of the harmonic-oscillator
coherent states.

I. INTRODUCTION

has equally spaced eigenvalues, just as does the
harmonic oscillator. But because this potential
is not symmetric about its minimum at x= 1/a,
the coherence properties are not as complete. 'The

eigenvalues are equally spaced because by changes
of variables this problem can be transformed into
the eigenvalue problem for the wave function g„,
= (R„,r )of the -three-dimensional harmonic oscil-
lator, with l not restricted to be an integer. For
this reason we call Eq. (1.1) the harmonic oscil-
lator with centripetal barrier (HOCH) potential.
This potential has many of the features of the har-
monic-oscillator system, but not all of them. 'The

similarities and differences to the harmonic os-
cillator provide deep insights into the coher'ent
states for more general potentials.

In Sec. III we study the symmetric Poschl- Teller
(PT) potential, "

V(x) = U, tan'ax . (1.2)

This is a confining potential contained within an
infinite square well. It has a countable number of

In paper I of this series, ' we presented the
classical motion physical basis and the formalism
of our minimum-uncertainty cohe'rent states
(MUCS) method for obtaining coherent states for
general potentials. ' These states are a particular
subset of the minimum-uncertainty states for
generalized X and P operators, rather than for
the usual x-P operators. ' Here we apply our
formalism to two confining systems and exhibit
the results in detail.

Our first example, discussed in Sec. II, provides
an illuminating bridge between the one-dimensional
harmonic oscillator and more general one-dimen-
sional potentials. The potential

1 2

V(x)=U ax-—,x) 0
ax

bound states whose eigenenergies are proportional
to a quadratic function of n.

For both of the above potentials we discuss a
number of properties: the classical motion and
the natural classical variables; the quantum pro-
blem leading to the natural quantum operators and
the minimum-uncertainty coherent states; the
relation of the above to the n-dependent raising
and lowering operators; the ti.me dependence of the
minimum-uncertainty coherent states (MUCS) and
the natural quantum operators; the limit in which
these systems reduce to the harmonic, oscillator;
and n-independent raising and lowering operators
leading to other' ' coherent states. 'These other,
generally inequivalent states, are the annihilation-
operator coherent states (AOCS) and the displace-
ment-operator coherent states (DOCS).

The HOCB system is an example in which the
classical variable X, is energy dependent. There-
fore, the quantum operator X is Hamiltonian de-
pendent. Even so, one can solve the problem
exactly. We also find n-independent raising and
lowering operators A' that can be used to define
annihilation- operator or displacement- ope rator
coherent states equivalent to the MUCS. But these
states are not equivalent to Perelomov DOCS, "'
defined by a unitary exponential operator. The A'
are not the "simplest" in the sense that the Hamil-
tonian cannot be written as (A'4 6')

3C = const && (R'0, + 8 8'+ const) .
But related operators Q' do satisfy Eq. (1.3), and
these 8' canbe used to define AQCS-DOCS that are
of the unitary-exponential-operator DOCS form.

For the Poschl-Teller system, on the other hand,
the "simplest" MUCS and the "simplest" AOCS-
DOCS are obtained from the same n- independent
raising and lowering operators, but are not equi-
valent. Further, these DOCS do not have the uni-
tary-exponential-operator DOCS form.

The differences in the above two cases occur
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because the HOCH eigenvalues are equally spaced
and those for the I'T system are not. Further ex-
planation of this is given in the relevant subsections
of the text.

'The discussion that follows relies heavily on the
ideas and formalism developed' in paper I of this
series. Equations from that paper are denoted by
Eq. (I-x.x).

II. HARMONIC OSCILLATOR VATH
"CENTRIPETAL BARRIER"

A. Classical motion and the natural classical
variables

The potential that we term the harmonic os-
cillator with ' centripetal barrier" (HOCB) can
be written as

B. The quantum eigenvalue problem

This example is of special interest because it is
a, one-dimensional nonharmonic potential with
equally spaced eigenvalues and also because it
gives us a bridge between one-dimensional systems
and multidimensional systems. 'The reason for
both statements is that the one-dimensional Schro-
dinger equation for the potential of Eq. (2.1) can
be mapped into the radial equation for the quantity

(2.9)

of the three-dimensional harmonic oscillator by a
transformation similar to that used in the classical
case. 'The standard radial solutions of the three-
dimensional oscillator are given as'

1
V(~)=U, --z, z=a~,

U, = &,v' =- h, A. (/&+ I), 8, = h a'/2m,

(2 1)

(2.2)

)( le P /2L ~&+&/2~ ( 2)
~/2-~/2&P I y

m~i1/2pr )

= ra, , -
)

(2.10)

(2. iS)

X,=z' 1+ =A(E) si n&td,

0
(2 3)

where the definitions S„v, and A. are useful for
the quantum problem.

The origin of our terminology can be seen as
follows. In the three-dimensional classical Hamil-
tonian for the harmonic oscillator, interpret x and

P„as one-dimensional variables x and p. Let U, '
= &O'L'/2 and a' = m&d'/U„where L is the angular
momentum. 'Then, apart from a shift in the zero
of energy, the effective potential is given by Eq.
(2.1).

'The natural classical variables that satisfy Eqs.
(I-3.2) to (I-3.4) for this problem are

E„=5(u(N + —,
' ),

W=/, k+2, l+4, . . . .
(2.12)

(2.13)

(2. iS)

$„=N(n, X)P„

2av' 'I'(n+1) ' '
I"(X+ ~ +n)

(2.16a,)

(2.16b)

(2.17a)

'The mapping that connects the two problems is

(2.14)

I', =2aPz =m&o,A(E) cos&d, t && e-y/ 2y&x+&&/2L
&L+&/2) (y)n 7 (2.17b)

E= 20 2mE 1 + cos40ct,
0

(2.4)
E„=h [Ov(4n +2K +3) —2v'], n=0, 1, 2, . . . .

(2.18)

where

A(E)= —(1+ ) (2.5)

8U g2) 1/2
&u = '

~
=48 v/S.

m ) (2 6)

X,=~,/m, (2 'I)

+c= 8Uoa X= -m(uc X ~ (2.8)

As for the harmonic oscillator, e, is independent
of energy. The classical equations of motion are

Now a number of .interesting observations can be
made. First, this is a system where the levels
are equally spaced, as for the standard harmonic
oscillator. As has already been pointed out, the
reason is that the potential of Eq. (2.1) represents
a harmonic oscillator, but in three dimensions.
'This is also the reason the classical uc is inde-
pendent of energy.

Next, the quantum condition for the three-dimen-
sional radial equation is that (N —l)/2 be an integer.
However, for the three-dimensional problem E is
an integer, so N must be an integer. In the one-
dimensional interpretation X (the substitute for l)
need not be an integer, but the quantization condi-
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(2.19a)

tion that (N —X)/2 be an integer remains.
Finally, we make an important point on the

raising and lowering operators
1 d 1A' =-y+y ———(2n+ X+-,' ~ —,')2. dy. 2

We have

[X,P]= iG,

G=4 1+

(2.27)

(2.28)

1 d 1 3 1

2 dz 2
= -vz'+ —z ———(2n+ x+-+ -)? 2

with the properties

(2.19b)
From Appendix A of paper I, the minimum-un-
certainty states (MUS) are the solutions to the
eigenvalue equation

A'„g„= -D(n ——,
' a —,', X)g„„,

D (n, X) = [(n + 1)(n+ -', + X)]'I '.
(2.20)

(2.21)

C. Natural quantum operators and MUCS

From the natural classical variables (2.3) and

(2.4), we obtain the natural quantum operators

(2.22)

One naively would hope that these operators would
also be appropriate for the three-dimensional
radial probl. em. Ho'wever, this is not correct, as
will be discussed in paper IV. 'The operators of
(2. 19) raise and lower n= (N —I)/2 by one unit in
the function X», but have a very different effect
on the radial wave function R». We will see in

paper IV that the appropriate raising and lowering

operators, those that yield X and P ope rators that
vary properly between apsidal distances, are the
"l" raising and lowering operators.

(2.29)

f(G)(P)
C = n + IV = (X) +

( )2

These states give

(hX)'(»)' = —.'(G)'

One can verify that for the ground state

(G) hX 1

2(hP)' » 2v '

(2.30)

(2.31)

(2.32)

and that the ground state is a, minimum-uncertainty
state with C =0. According to the criterion esta-
blished in I, we demand that our MUCS satisfy
Eq. (2.29) subject to Eq. (2.32); that is, these
states are the solutions to

p p
0 y 2+ (2 +y) + y + 1 C

dg 4 y 2

(2.33)
Taking the sample solution

and

(2.23)

4ocB =NAOS=Ne"

gives the equation for g
0 =yg" + (X+—,')g' —(v/2)Cg.

(2.34)

(2.35)
Now observe that, in this equally spaced eigen-

energy system, (A'„)~ =A„. Therefore, A trial power-series solution yields the result

E„1X =z' — 1+ —" = —(A +A')
tl 2U 0

(2.24 a)
~ (vC/2)"y"
~o n! (X+-', )„

(2.36)

P = —. (A„-A'„)(Na') . (2.24b)

Using the definition of the modified Bessel function
I, (y) given below in Eq. (3.66), y'""~"~'g is pro-
portional to I„„&,(2 v (C/y2)' )I. Therefore, the
normalized MUCS are

'Thus, our natural quantum operators are in agree-
ment with those obtained from the raising and

lowering operators.
Even though X is Hamiltonian-dependent we can

still proceed to solve the problem exactly. The
quantum equations of motion are

(HOCB N(Ct ~ A)HOCB 1

QHoc B = e ' 'y' 'I...I,(2 (VCy/2)' '),

N(C, X) = [2av'I']' 'e "" '[I„,„(vIC I)]

(2.37)

(2.38)

(2.39)

[X,H] =P/m,

[P H]=-8U a'X
ih

(2.25) One of the standard generating functions for the
Laguerre polynomials is

«&(x)e'(zx) . I'J (2(zx)'~') =Q " z . (2.40)„., I'(n+n+ 1)
= -m(d, 'X. (2.26)

In the remaining discussion we drop (Aa') in P.
Changing the J to an I allows our MUCS to be
decomposed into- the number states as
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efllv(p)i+I/ 2 ) I/2

4ocs I (2lpl)

(-p)"0.
~0 [1'(n+1)r(x+2+n)]'" '

where

P =- vC/2.

This decomposition, and the relations

vs„= -[n(n+ -', + X)]"'q„,
-[(n+ 1)(n+-', + X))'/'P„„,

(i/2}Pq„= -[n(n+-,'+ ~)] / y„,
+ [(n+ 1)(n + 2 + X)]' 'P„„,

(2.41)

(2.42)

(2.43)

(2.44)

I~ s/2(2 p }
I„„/2(2 p )

'

~ = (~+-')+ 2
I
p IIt

one has

(2.45)

(2.46)

=(»+3 —2v)+4l plIt,
~0&

(2.47)

obtained from Eq. (2.24), allow expectation values
of interest to be calculated. In particular, defining

(i) the wave packet remains localized in position
and momentum, (ii) it does not change shape with

time, (i!.i) its mean oscill. ation in position has the
classical frequency, and (iv) the amplitude of the
oscillation is the classical amplitude. For the
harmonic oscillator all the above are true. For
the HOCB .(i) is satisfied since (&X)' is constant
in time. As we shall see below, property (iii) is
also satisfied but properties (ii) and (iv) only hold
approximately.

For a system with equally spaced levels, any
wave packet will return to its original shape after
a time corresponding to one classical oscillation.
That is simply because the eigenfunctions in the
decomposition have time dependence exp(-in~, t),
which is unity at the end of every classical os-
cillation. One wants to minimize the change of
shape in the meantime. The harmonic-oscillator
coherent states do not change shape at all. . But for
the HOCB system the wave packets must change
shape because the HOCB potential is asymmetric
about its minimum. A wave packet which could re-
tain its shape near the right-hand turning point
would be distorted near the left-hand turning point.

'This is also true for our MUCS. Even though
(&X)' is constant with time, (&x)' is not.

(X) =u,

(X ) =—2K+u2=1

(P) = 2vv,

(P )=4v'v +4K,

so that

(&X)'(nP}' = —,'(G)',

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

v I„„/,(v lC l)

a(x& = [v"e""I„.„,(v l
c l)]-'

, lpl""/'r(~+2)
r'(x+-,')

(P*)"(P)"(&+ 2)..„' ~ n!m! (X+-.')„(X+-',)„'

(2.55)

(2.56)

(2.57)

(G) =-x.4
V

(2.53)

D. Time dependence of the MUCS, X, and P
Because the eigenenergies are equally spaced

and /so~ has the form (2.41), up to a phase fac-
tor one has

t)HOGB e (HocB

= exp[-i8, v(2X+ 3 —2v)t/h]

x )Hoes(C C exp(-ih04vt/I)). (2.54)

Thus, the wave packet evolves from that of a co-
herent state labeled by C, to that of a coherent
state labeled by C exp(-i8, 4vt/5) = C exp(-i~, t).
Further, (H), (&X)', and (4P)' depend only on

l
C l,

and thus are constant in time for our evolving
MUCS. Our MUCS remain coherent states for all
time.

However, this does not mean that our MUCS are
as fully coherent as the MUCS for the simple har-
monic oscillator. By full coherence we mean that

g, the confluent hypergeometric series of two
variables. For small C, the first-order expansion
shows that

P
X(t) = X cost@,t+ sin&a, t,

m(oc
(2.59}

V

exhibiting a larger width on the right (positive u}
and a, smaller width on the(left (negative u}. How

ever, (&X)' being a constant is our criterion for
asserting that these states satisfy property (jj)
about as well as can be expected.

Property (iii) is easy to show. Because the
eigenvalues are equally spaced [and hence the
equations of motion (2.7) and (2.8) are similar to
those for the harmonic oscillator], X(t) and P(t)
can be calculated as were x(t) and p(t) for the har-
monic oscillator [see Eqs. (1-2.35) and (1-2.36)].
In fact the answers are identical,
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P(f) =P cos&d t —mm, Xsin&() t, (2.60)

where in this paragraph alone we reintroduce
(ha') in P T.aking the expectation value of (2.59)
in a coherent state gives

'Then all the quantities we have discussed approach
those for the harmonic oscillator. In the next
section we will discuss this limit extensively for
the Poschl-'Teller potential.

2vv
(X(t)& =u cost@,t+ sin&@,t

PÃ CO

= fC
f

sin(&u, t+(t)),

(=tan' u( ')

(2.61a)

(2.61b)

(2.62)

F. n-independent raising and lowering operators
and other coherent states

By defining

0+ 2U, v II
(2.67)

Comparing this to the classical equation (2.3), we
see that a coherent state has the classical angular
velocity m, .

Finally we inquire about property (iv): Is the
quantum analog of the classical amplitude A(E) in

Eq. (2.5) equal to fC
f

&n Eq. (2.6lb)? The quantum
analog of A(E) is obtained by replacing E with

(H& —E„where Eo is the ground-state energy.
Doing this one has

(2.63 a)

A* =
dy

Defining the AOCS by

(2.68)

A 0, =PS, =P+~„4„,
a~0

one finds the solution is given by

(2.69)

the n-dependent raising and lowering operators
of Eq. (2.19) can be changed into the n-independent
operators,

a„„
a„[(n+ 1)(n + -', + X)]'~ ' ' (2.70)

(2.63b)

In the limit of large C, Eq. (2.63) is exactly equal
to fC f. This holds because for large C, 8 given
by Eq. (2.45) is equal to unity.

However, even for small
f
C f, the equality holds

almost exactly. To show this, we give some
numerical examples. Let ho be given by the value'
for the HF-Morse system that Walker and Pre-
ston'"" studied numerically, and the value of
(E„—E„.,) be given by the Walker-Preston value
for (E, —E,)M,„„.Then X=10.94. For ease of
comparison with tables, ' we modify this to X

= 9.5. Also define an effective ri by

3
P(2 +~)

( A+) ,
'))

) (2.71)

meaning our MUCS-AOCS can be put in the DOCS
form

But this is exactly the relation satisfied by our
MUCS of (2.41) with P given by Eq. (2.42). There-
fore, for this equally-spaced-eigenvalues example,
the AOCS defined by the n-independent operator
A are the same as our MUCS. [The reason is
simply that the operator A given in Eq. (2.68) is
identical to (v/2)(X+iP/2v) of Eqs. (2.29) and
(2.32).] Further, by repeated use of (2.20), )1)„

can be written as

eff 4+$

'Then numerical calculations yield

(2.64) e-'"'))"*r(-' x))'*
I,.„.(2 fp f)

o.95v fc
f

A((H)) = 0.965 fC
f

o.9vv fc f,

0.489

&.95O

5.98 .

(2.65)

E. Harmomc-oscillator limit

It is not too surprising that one can define a
limit in which this system reduces to the simple
harmonic oscillator (HO). It is

&& (PA+)-&&+~? 2)I (2(PA+)&)'2)q (2.72)

Observe that our coherent states are not in the
Perelomov unitary-exponential-operator DOCS
form, although one expects this could be done for
an equally spaced eigenvalue problem. The re-
solution is that there are other coherent states,
defined by related operators, which can be put in
the Perelomov form. The key is to find those n-
independent raising and lowering operators which
can yield the results

lim = lim
HO

xa' -m(u/I.

(2.66)
K= 2vS, [8'8"+ 8 8'+ (A. + —,

' —v)],

X f~&=E„fn&.

These turn out to be

(2.73)

(2.74)
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ft (8+4) 27+1 d I [I
&' & 1)])(2' (2 75)

They are obtained from

2a'(U, +E) '~'

The classical equations of motion are thus

(3 6)

~„'= -&'„n+ X+

just as (2.68) is obtained from (2.20).
Because these operators satisfy

(2.76) X,=P,/m,

P, = -2a'(U, +E)X,= -m&u, 'X, .
B. Natural quantum operators and MUCS

(3.7)

(3 8)

8'~n) = (n+-,'+-,')' '~n+ 1), (2.77) The operators that are the quantum analogs of
(2.3) and (2.4) are'

the formalism used for the simple harmonic os-
cillator in paper I goes through exactly for this
system. Therefore, we can define AOCS-DOCS
which are eigenstates of 8 given by

(2.78)

(2.79)

X= sim,

dP = —.—cosz+ cosz —(Sa') .
2i dg dg

Their equations of motion are

1X=—. [X ff]=P/m
ih

(3.9)

(3.10)

(3.11)

= exp(o.8' —o.*8 )g, . (2.80) P = -a {U of+f —~ h o, X] . (3.12)

III. POSCHL-TELLER POTENTIAL

A. Classical motion and the natural classical variables

The symmetric Poschl- Teller potential is

V(x)=U, tan'z, z=-a~, (3 1)

However, because these g„are not those of the
harmonic oscillator, the reader should not be con-
fused into thinking the (, are the ordinary coherent
states.

Thus, we have found that for HOCH the "simp-
lest" MUCS are not the same as the "simplest"
AOCS-DOCS, as they were for the harmonic os-
cillator. In our next (PT) example they are the
same, but then they do not satisfy the unitary-
exponential. -operator DOCS form. This is because
there the eigenvalues are not equally spaced. With
unequally spaced eigenvalues any 8' which can
yield a Hamiltonian equation like (2.74) cannot al. so
yield a raising-lowering equation like (2.77), with
a c-number on the right varying as z' ',

[X,P] = i cos'z,

implying the uncertainty relation

(&X)'(&P)' ~ —,'(cos'z)'.

(3.13)

(3.14)

The normalized states that satisfy the equality in
this uncertainty rela, tion are

)t'NUB (~) Bi z) =tt(&~ B))It)vT(z)

a 1 (B+ ,')I'(B+ 1)—
w'~' I'(8+-', ~ )I(B+-',M-u))'

~ y+sinz l~~'
&f&» (z) = (cosz)s 1- sins)

B =- —,
' [-1+(cos'z) /(& sinz )'],

(3.15a)

(3.15c)

(3.16)

Because (3.12) is the symmetrized version of (3.8)
with E - (H ——,'h, ), --,'h, being a zero-point con-
tribution, these are the quantum analogs of the
classical equations of motion (3.7) and (3.8).

Taking the factor (ha') out of the definition (3.10)
to make P dimensionless, one has

(3.2)
C =—++ i& = B(sinz)+ ((cosz)(d/dz)) . (3.17)

where b0 and X are useful for the quantum system.
This is a confining potential contained within an
infinite square well with sides at x=+d =+ @/(2a).

The natural classical variables that satisfy
Eqs. (I-3.2) to (I-3.4) are

tl)„=- t)t(n, X))t)„(z),

a(X+n)I" (2X+n) '~'
I'(n+ 1)

(3.18a)

The eigenfunctions and eigenenergies of the PT
potential are" ' "

X, = sinz =A(E) sine, t,
P, = ap cosz = m&u, A(E) cosv, t

= a[2mE)'" cos&u,t,

(3.3)

(3.4)

(3.5)

„'P, ~2&, ( iszn),

E„=h, (2nX+ n'+ x) .
(3.18b)

(3.19)

So, for C =0, the n=0 ground state is a special
case of the states (3.15) with B= X. Thus, our
MUCS, complete with normalization constants, are
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APT = 4MUS (C, B= X; z )

=N(C, X)gvT(z) .
(3.20a)

(3.20b)

(n+ 1) (2X+n)Dn, x -=

(X+n) (Z+n+1) (3.31)

One can verify that for the MUCS, '

(Xj =
X+2

1 n2

2(X+ 1) (X+1)(X+-') ~'

(P) =v,

(,) (X+ —,')' —u'
2(~+ 1)

so that

(3.21)

(3.22)

(3.23)

(3.24)

Equations (3.29)-(3.31) follow from the standard
recursion relations for associated Legendre poly-
nomials, which can be combined to yield'

(1 —t') P„"—(t) = (v+ 1)tP„'(t) —(v —V, + 1)P„"„(t)
(3.32)

= -vtP„"(t)+ (v+ v, )P„',(t) . (3.33)

From (3.29) X and P can be written as the sum and
difference of the quantities [A„-+ (A'„)t] and [A'
+ (A„-)t], which are the adjointsof eachother. Speci-
fically,

1 2 2 y 1 2 2

(»)'(&P)'= ' ' (3 25 )2(&+1)(~+—,')' 2(~+1)
X = ([A-„+ (A„)t]+[A„+ (A-„P]], (s.s4)

Also,

= —(cos z) (S.25b) P =—.([A-„+ (A„)J —[A'„+ (A-„)]] .

This i~plies that

(3.35)

I
(8)ll, =(,, ',) (u'+ v') + Z . (3.28)

The MUCS can be decomposed into the number
states by the use of integrals involving special
functions. " The result is

Xg„=-,'D(n, X)g„„+ D2(n —1, X)g„, ,

P(„=——.(n+ X+-', )D(n, X)tj„.,22

+—.(n+ X - -,')D(n —1, X)g„,.2z

(3.36)

(3.37)

1
(vT = —N(C, A)QN(n, X)8(n, C, A. )g„,

n 0

6(n, C, z)=-a(y„~y„)

1
I'(y+ —')2& ~ ~&2

(- (n+ X ——,')), (—n), (-1)'
(~+ —,'), (y! )

(3.27) Finally, observe that by writing the defining
Eq. (I-A4) for the MUCS in terms of these opera, -
tors, again subject to the restriction on &X/&P
that emerges from B = A. , the MUCS can be defined
as eigenstates of the ground-state destruction
operator, A, .

D. Time dependence
x B(y+ —,'+ (-,'C —y), A+ —,

' —(-,'C —y)).
(3.28)

C. Natural quantum operators as n4ependent
raising and lowering operators

A„'= (sinz)(n+ X) + cosz
d
d

(3.29)

with the properties

That the operators X and P obtained from the
"natural quantum variables" X, and P, should be
considered the "natural quantum operators" can
also be seen by starting from the quantum system.
Recall that for the harmonic oscillator x and p can
be written as the sum and difference of the lowering
and raising operators a- and a'= (a-) . [See Eqs.
(I-2.13) to (I-2.15).)

For the PT system the raising and lowering
operators are n dependent, and are

The time dependence of these states can be
studied by following the evolution of the coherent-
state wave packets:

p(x, t) = +,*,(x, t)+„(x,t),

@vr (x, t) = e '"'t~ "yvT (x)-

(3.38)

a -=(H+ U, )/8„
~ =b,t/I,

(3.40)

(3.41)

1 OO

=-N(C, ~)g N(n, ~)6(n, C, X)q„
n 0

x exp[-iS, (n'+ 2nX+ A)t/+].
(3.39)

This has been done numerically for many cases,
as will be described in paper V.

The time-dependent operators are also of in-
terest. Defining h and & by

A~/„= (n+ X)D(n —2 + z, X)f„,~, (3.30) one has, in the notation of Sec. IV of paper I,
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X(t) cist/Axe-i Ht/h

, ([h, )"x(1}"=-g,x„. (3.42)

By rewriting the quaritum equations of motion
(3.11)-(3.12) as

[h, x]=q,
[h, q J = 2q+ X(4h —1),

d
q

=—sins —2 cosa —= -2iP
dz

(3.43)

(3.44)

(3.45)

Xo =X,

X~ =q,

X, = 2q+X(4h —1),

(3.46)

(3.47)

(3.48a)

the iterated commutators in (3.42) close in the
following sense:

re suits when acting on the eigens tate de corn posi-'
tion of the coherent states.

Specifically, taking the expectation values of
X(t) and P(t) between coherent states by using the
decomposition (3.27) and the other results of this
section one obtains closed-form results. 'They are
listed in Appendix A of the following paper III,'
for conciseness. Both (X(t)) and (P(t)) given in
Eqs. (III-A2) and (III-A3) are real, as they should
be if X(t) and P(t) are Hermitian operators.
Further, the phase factor exp(i&@,t) in the expres-
sions for X(t) and P(t) is required if (III-A2) and
(III-A3) are to be rea, l.

Finally, one can calculate (X'(t)) and (P'(t)) by,
for example, calculating (n ~x(t)

~
CS), taking the

absolute square, and summing over all n. The
results are al.so given in Appendix A of the follow-
ing paper. "

X„=qg„(h) + Xf„(h) . (3.48b)

E. Harmonic-oscillator limit

Defining the harmonic-oscillator (HO) limit as
/

One can then use the procedure described in Sec.
IV of paper I to evaluate the infinite sum in (3.42),
and obtain

X(t) =Xe-'"o' cos~„t —i —' sin~„t
{'dg

l.im =—lim a -0
HP

ACE PB (d/h,

(3.53)

where

+ Pe'"o'2 ' sin(d„t,
(d

H
(3.49)

(u, =8,/h, (3.50)

and (d„ is the operator analog of the classical fre-
quency ~„

20 1/2
(U, +II) = 2[8,(U, +II)]'/'/h. (3.51)

m

all our results go over to the harmonic-oscillator
case discussed in I. The eigenenergies (3.19)
trivially become those of the harmonic oscil. lator
(I-2.28). The eigenstate wave functions (3.18) also
become the HO eigenstate wave functions (I-2.9),
complete with the normalization constants. 'To see
this, write the associated Legendre functions of
(2.18) in terms of Gegenbauer polynomials and use
the known limiting rela, tionship between these poly-
nomials and Hermite polynomials. Also use

Similarly,
lim 1+— = e'. (3.54)

(dOP(t) =Pe '"o' cost@„t+i ' sin&a„t
h)H

-Xe'"o'(h ——,')2 ' sine„t .
COH

(3.52)

The above formulas for X(t) and P(t) are not
manifestly Hermitian, even though they follow
from (3.42). The operators X and P are written to
the left of operators that are functionals of the
Hamiltonian. These expressions could be made
manifestly Hermitian by writing them as one-half
the sum of the given forms plus the adjoints of the
given forms. [The adjoint forms emerge if one
chooses to write the factors in the iterated com-
mutators (3.42) in the opposite order. ] However,
it is more useful to write them in the forms above
because the functionals on the right produce simple

Finally, the P'oschl-Teller MUCS (3.20) become
the harmonic-oscillator coherent states (I-2.8)
in the limit (3.53), as can be shown by the use of
(3.54) and Stirling's approximation.

Because of the above properties and the simi-
larity of the operator formulas for X(t) and P(t)
when compared to the harmonic-oscillator opera-
tor formulas for x(t) and p(t), a first-order analy-
tic approximation to X(t) and P(t) in the HO limit
(3.53) shows that they will follow the same classi-
cal motion. This holds similarly for X'(t) and
P'(t). However, higher-order terms show that
this classical motion cannot proceed forever. As
shall be discussed in the numerical results of
paper V, a rough measure of the coherence time
is the time during which the wave packet remains
localized about x, (t). This time can be increased
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by decreasing the parameter (H)/U, or by in-
creasing the number of eigenstates that have a
significant overlap with the coherent state.

F. n-Independent raising and lowering operators,
and other coherent states

where

p 2l el
dxI,„,(x),

(3.64)

(3.65)

(sins)(n+X) - (sins)h'~',

so that

(3.55)

As we have emphasized, for systems whose
energy levels are not equally spaced one must
further generalize the known AOCS and DOCS
concepts. Applied to the PT system, the. proce-
dure we gave in Sec. V of paper I takes the I-
dependent raising and lowering operators (3.29)
and makes the transformation

and I is the modified Bessel function defined by'

Ip(y) = (y /2 )
P+ 2B

~n! I'(p+ n+ 1)
(3.66)

The g obtained above are not equivalent to the
MUCS as can be seen by direct comparison with
Eq. (3.27). Further, these AOCS axe equivalent
to a set of DOCS, which are not given by an ex-
-ponential displacement operator acting on the
ground state. Specifically, using (3.30) one has

A„'-A' = (sins)h'~ '
w coss —. (3.56)

Observe that one can then write the Hamiltonian

(z+ n)
(A, +n —1)(2X+n —1)n

X+n r(2Z)
I'(21+ n)n! (3.67)

H -R= —,'$, [A'A +A-A'], (3.57)
Putting (3.67) into (3.62) and using (3.66) one has

because
=N 1 (2X)[(oA')-~"~'I,„,(2[oA']'~')]P, . (3.68)

A g =g a„(n+a) (Dn —1, X)g„,
n~O

'(3.59)

—= ng = ng a„g„.
tt ~0

Therefore,

(3.60)

(3.58)

Defining the AOCS, i!I, as eigenstates of the
annihilation operator A yields

Thus, by example we have shown that in general
DOCS need not be defined in terms of exponential
displacement operators, and furthermore that the
DOCS as well as the AOCS need not be equivalent
to the MUCS. Also observe that, at least in the
form of (3.62), the AOCS-DOCS do not have the
relatively simple analytic forms of our MUCS of
Eq. (3.15). In addition to this reason, we have
chosen to emphasize the MUCS in our study be-
cause of their intuitive relationship to the classical
motion.

~„+, (1.+n)a„(n 1)(21 m)(x+n+1))

and g, can be written as

1"(2Z)

n~o

1
[~1'(»)S(l ~ I)]""

(3.61)

(3.63)
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