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We first review the properties of the harmonic-oscillator coherent states which can be equivalently defined

as (a) a specific subset of the x-p minimum-uncertainty states, (b) eigenstates of the annihilation operator, or
(c) states created by a certain unitary exponential displacement operator. Then we present a new method for
finding coherent states for particles in general potentials. Its basis is the desire to fmd those states which

most nearly follow the classical motion, but it is most nearly a generalization of the minimum-uncertainty

method. The properties of these states are discussed in detail. Next we show that the annihilation operator
and displacement operator methods, as heretofore defined, cannot be applied to general potentials (whose
eigenvalues are not equally spaced). We define a generalization of these methods but show that the states so
defined are not, in general, equivalent to the minimum-uncertainty coherent states. We discuss a number of
properties of our coherent states and the procedures we have used.

I. INTRODVCTION

In 1926 Schrodinger' discovered what have come
to be called the coherent states of the harmonic
oscillator. ' 5 In his paper, ' the third' of the series
of articles which dealt with his discovery of wave
mechanics, Schrodinger was interested in finding
quantum-mechanical states which followed the mo-
tion of a classical particle in a given potential.
Studying the harmonic oscillator, Schrodinger
found such states, commenting at the end, ' "We
can definitely foresee that, in a similar way, wave
groups can be constructed which move around high-
ly quantized Kepler ellipses and are the represen-
tation by wave mechanics of the hydrogen electron.
But the technical difficulties in the calculation are
greater than in the especially simple case which we
have treated here. "

Schrodinger s states, which are a special set of
Gaussians, became popular during the 1960's for
their usefulness in describing the radiation field' '
and by now hive become known to a wide segment
of the physics community. Except for a few stud-
ies,"whichwe will discuss in paper IV, Schro-
dinger's prediction that classical states could be
found for other systems has, until recently, "
mainly been implemented for systems whose eigen-
spectra are equally spaced. " ' Vfe will see below
that it is precisely because the harmonic-oscillator
eigenvalues are equally spaced that the harmonic-
oscillator coherent states can follow the classical
motion and cohere forever.

The coherent states of the ha~rnonic oscillato~
are defined in one of three equivalent ways: (a)
Minimum-uncertainty coherent states (MUCS) are
that two-parameter set of states which minimize
the position-momentum uncertainty relation, ' sub-
ject to the restriction that the ground state be in

the set. (b) Annihilation-operator coherent states
(AOCS) are the eigenstates of the annihilation op-
erator and are parametrized by a complex eigen-
value. (c) Displacement-operator coherent states
(DOCS) are those states which are created from
the ground state by a particular unitary displace-
ment operator. Generalizations of the AOCS' and
the DOCS' have been proposed from the group-
theory point of view, but only rigorously applied
to systems with equally spaced eigenvalues. Re-
cently we proposed '0 a method that is most close-
ly a generalization of the MUCS, but which has as
its physical basis the original motivation of Schro-
dinger: to find states which follow the classical
motion. This method applies to more general sys-
tems having unequally spaced levels and a continu-
um,

The present series of papers describes in detail
and extends the results of our first paper~ and gives
a more complete discussion. The motivation for
this work is to find coherent states for systems
with unequally spaced levels. One can use these
states to describe more general coherent quantum-
mechanical systems. Ultimately one can hope to
generalize this work for use in quantum field theo-
ry. In both of the above types of physical applica-
tions, past discussions have essentially been lim-
ited to equally spaced level systems. This has
been emphasized by Shelepin, "If the coherent
states of oscillators have been discussed extensive-
ly and found a wide range of applications, then the
attempt to generalize them to nonequidistant sys-
tems has encountered a number of difficulties. "
It is the primary object of this series to focus on
how these difficulties can be overcome. The new

coherent states we obtain can be used directly
with coherent quantum systems. Further, the
raising and lowering operator techniques which we
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discuss point the way towards the use of our tech-
niques in quantum field theory.

In Sec. II of this paper we review the harmonic-
oscillator coherent states, showing how they are
derived from the MUCS, AOCS, and DOCS points
of view mentioned above. Section III contains a
description of our method for obtaining general co-
herent states and some properties of these states.
.Our method is to seek those states which most
closely approximate the classical motion of a par-
ticle. Therefore, we require that the states be
well localized in position and momentum. To ob-
tain our coherent states we use a generalization of
the minimum-uncertainty method for more com-
plicated uncertainty relations. Therefore, for
simplicity we will call our states MUCS. (Appen-
dix A describes how to find states which minimize
generalized uncertainty relations. )

The time evolution of our coherent states and of
the operators associated with them is discussed in
Sec. IV. In Sec. V we point out that, to be useful
for general systems, the annihilation operator"
and displacement operator' methods must be gen-
eralized further. We do this, showing that the re-
sulting AOCS and DOCS are not of necessity equiv-
alent to the MUCS. In Sec. VI we discuss our co-
herent states and the procedures we have used,
closing- in Sec. VII with a summation of the results
and goals of this series.

Papers II and III of this series will describe in
detail the results for four exactly solvable one-di-
mensional potentials: two confining potentials, the
harmonic oscillator with centripetal barrier and

the symmetric Poschl- Teller potentials, in paper II
and two nonconfining examples, the symmetric
Rosen-Morse ' and the Morse potentials, in paper
III. One advantage of the MUCS here and elsewhere
is that, for solvable examples, the MUCS can
readily be put into analytic closed forms. Paper
IV will describe a generalization of our method to
spherically symmetric potentials, concentrating on
the radial portion of the problem. In paper V nu-
merical results will be shown for the time evolu-
tion22 of our analytic MUCS, and paper VI will give
a set of conclusions.

H. HARMONIC-OSCILLATOR COHERENT
STATES

A. Minimum-uncertainty coherent states

For the harmonic oscillator, with

x(t) =[2E/(m(u )]~~ sin(u)t+ p),
P(t) =[2mE] cos(u&t + (t)) .

(2.3)

(2.4)

The quantum operators whose uncertainty relation
is to be minimized are x and

Il d
p i dx' (2.5)

One has

[x,P] =i@,

implying that

(»)'(~i )"-&'/4.

(2.6)

(2.7)

The normalized states which satisfy the equality
in (2.7) are, from (A4) and (A5),

4..(x) =[»(~x)'] '"
x-(x) ' i" *p — e-„(()*I. (2.8)

If this set of coherent states (CS) is to be capable
of representing a classical particle with the mini-
mum allowable (quantum) energy, the set must
contain the ground state. The normalized eigen-
functions of the qua+turn harmonic oscillator are 3

1/2
s) =( (ss, exp( —-ae a )SS„(asa)

ao 1 2 2

7T 2 tl1

a, =-(m(u/8)'~'-=1/(2. '~'x, ) .

(2.9)

(2.10)

Demanding that the ground-state (n =0) wave func-
tion be a special case of (2.8} for (x) =(i)) = 0 yields
the restriction

(M/bp)' = I/(m(u)'; (2.11)

B. Annihilationwperator coherent states

Write x and P in terms of the usual annihilation
and creation operators,

or

(&x') =(2ao') ' =x()'. (2.12)
/

We emphasize this last restriction. With it the
coherent-state wave packets will follow the motion
of a classical particle and retain their shape. If a
different value of (bx/bP) were to be chosen, the
packet would not keep its shape. '4

We will discuss the properties and motion of these
states after making the connection to the equivalent
AOCS and DOCS definitions.

V(x) = —,'kx' =—~2(o'x',

the solutions to the classical problem

F. = ~'/m + V(x)

(2 1)

(2.2)

x=[5/(2m(u)]'~'(a +a ),
P =[ml~/2]'~'(a -a')/i,
a'=(2m@(d) '~'(m(dx+iP),

[a,a'] =1.

(2.13)

(2.14)

(2.15)

(2.16)
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Consider the eigenstates of the destruction opera, -
tor:

one has

D(n)10) =exp(--,' In I ) exp(na ) exp(- na)10)
a In) =n ln), (2.17)

&n
In) =exp(--,' Inl')

i i//In) .
„0 n! (2.18)

However, by using the fact that the Gaussian is
the generating function of the Hermite polynomials
H„(y),

where e =u+iv is any complex number. The solu-
tion can be written in terms of number states:

= exp(- -,'
I n I

') exp(na')10)

= exp(- —',
I n I

')
i

10)
n "(a')"

n=o

D. Properties of the coherent states

(2.26a)

(2.26b)

(2.26c)

{2.26d)

n

P—,exp(--'y')H. (y) = p(- &'+ 4 -2y') (
n=on'

Eqs. (2.9)-(2.12), (2.18), and (2.19) can be com-
bined to give

The harmonic oscillator has several related fea-
tures that are crucial to the special properties of
-its coherent states: The classical frequency is in-
dependent of the energy, the eigenenergi. es are
equally spaced

ln) =[2i/(&x)'] ' ' H In) =h(u(n+-,') In), (2.27)

x' xax exp
' — ., + ——(n + In I ) . (2.20)4(ax)' zx 2

Keeping the restrictions {2.11) and (2.12), and
taking the parameter e to be

n = +-(p)ax(x) i2'
d2 2H=-, +—m(u x =Iiiu(a a +-, ) .

2m dx 2

Using (2.18) agd (2.27),

(2.28)

and the raising and lowering operators are inde-
pendent of n, allowing a unique factorization of
the Hamiltonian

1 (x) . (p)+
2 M bp

one obtains

(2.21) I n, ) =- exp(-iHt/fi) I n)

= ex (- —' In I 2)Q (n) exP(- i&t(&+ & )]
In)—exp —g n

( i )i/2

I n) = exp[i(p)(x)/(2h)]it'cs . (2.22)

Thus, the AOCS I n) are exactly the MUCS pcs, up
to the irrelevant phase factor in (2.22). The con-
nection can be seen another way. Equations (2.17)
and (2.21) are equivalent to the x, P minimum un-
certainty defining Eq. (A4) subject to (2.11) and
(2.12).

= exp(- i(dt/2) I n(t)),

n(t)=ne ' '.
(2.29a,)

(2.29b)

Thus, the coherent-state wave packets it,*g, have
the same shape, with the center evolving in time
from Re(n] to Re[n exp(-i&et)]. Trivially, of
course, they retain the same energy:

C. Displacementwperator coherent states

These states are defined as those states which
are created by the unitary displacement operator

(n IH In) =hid(l n I
'+ —,') =(n, IH In, ) .

Using the operator equations of motion,

ihx = (x,H] =ihp/m,

imp = [p, H] = Nm(u'x—,

(2.30)

(2.31)

(2.32)
D(n} =exp(na' —n*a ) . (2.23)

one can calculate
That D(n) is unitary follows since (na' —n a ) is
anti-He rmitian.

The equivalence of the displacement-operator
coherent states to the annihilation-operator coher-
ent states can be shown with the aid of the Baker-
Campbell-Hausdorff identity,

(t) i H t /h i//t /1t-
n

=Z(q) —„,if&, )"x(1)
'

=x cos~t + sin&st .p
m(d

(2.33)

(2.34)

(2.35)

exp(A) exp(8 ) = exp(A + 8 + —,'[A, 8])
if 0 = (A, (A, Bj]= [8,[A, 8]] .

Using (2.24) and

.a'In) =(n+2 +~}'/'In+I),

(2.24)

(2.25)

The notation in Eq. (2.34) is that'0 ( )" means the
quantity in the parentheses is to be written out n
times, yielding an n-fold iterated commutator
which is easily evaluated to give the well-known
results (2.35) for the harmonic oscillator. In Sec.
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IV we shall explain these nested commutators more
fully for use with general potentials. Similarly,

from R in the expression for the amplitude of
(n I x(t) I o.).

p(t) =p cos~t —m&ux sin~t . (2.36)
III. GENERALIZED COHERENT STATES

+ ' cos~~t sinet,xpp (2.37b)

p'(t) = (p —mH) cos(2~t) +mH

——,'m~(x, p] sin(2&et)

=p'cos'(dt+m (d x sin &t

m~—(x,p].cos~t sin&et .

(2.38a)

(2.38b)

Then, by using (2.13)-(2.17) in the above, one finds

1/2
(o' I x(t) I &)= (u cosset+ v sin&et),me (2.39)

x (t) and p (t) can'be calculated in the same man-
ner, or simply by squaring (2.35) and (2.36). The
results are

x'(t) = [x' -H/(mu) ')] cos(2&et} +H/(m ~')

x,p]+ ' ~ sin(2(ut), (2.37a)
2m(d

2

=x cos et+ —»sin t~t
2 2 P 2

m (d

In obtaining generalized coherent states, ' '"
our goal was to find states which are localized,
follow the classical motion, and disperse as little
as possible with time. To do this we first con-
sidered the bound-motion problem of a conserved
one-dimensional classical Hamiltonian

E = P'+ V(x) =—x + V(x),
2m 2

(3.1)

where V(x) has only one minimum. Because the
problem is one dimensional, the bound motion is a
simple closed orbit in a P-x phase-space plot.
Therefore, there exists a one-to-one mapping of
this orbit onto general coordinates, X, and P„
such that the orbit is an ellipse. In particular,
with these transformations X, and P, will vary
sinusoidally with time.

To be explicit, for potentials with one confining
region, there exist variables X,(x) and P, =mX,
= {m[X'(x)]x) which are solutions of (3.1) and
whose time variations are given by

(o I x'(t) I n) = (2u' cos'cut + 2v' sin'et

+ 4uv sin(dt coscot + 2 ) ~

(a ip(t) I o) =(2m@(u)'~ (v cosset —u sin&et),

(o Ip'(t} In) =(m~uh)(2v cos (ut+2u'si (ant

—4uv sin&et cos~t + —,'),

(2.41)

(2.42)

X, =A(E ) sin[(u, (E )t],
P, =mA(E)cu, (E) cos[~,(E)t] .

Because

x =2(E —V)/m,

X,(x) is the solution of the equation

d m(A2 —X ') 't2

dx ' ' 2[E —V(x)]

(3.2)

(3.3)

(3.4a)

(3.4b)

[&x(t)]'=-,'h/(m(u). ,

[ap(t)]' = —,'m(eh .
(2.43)

(2.44) (3.5)

Equations (3.2) and (3.3) imply that the classical
equations of motion are

X,=P,/m,

tang =u/v, (2.45)

Eq. (2.39) becomes

2(hu) In I )
'i'

(n Ix(t) In) =
q sin(~t + g) . (2.46)

m(d

Therefore, the shape and the minimum-uncertainty
property of the wave packet are preserved in time.

Finally, from (2.39) we can also see that the
center of the coherent-state wave packet follows
the motion of a classical particle. Defining P by

~ ~

X, =—'=-u), (E)X, .
m

(3.6)

Note that we are not employing a Hamiltonian
formalism. In particular, P, is a generalized ve-
locity times mass, not the momentum canonically
conjugate to X, (see Appendix B).

Thus, Eq. (3.1) is replaced by a form which is
similar to the harmonic-oscillator equation for a
given energy. That is, this transformation is
equivalent to rewriting (3.1) as

her I u I
' = (n IH I n) —(0IHI 0) . (2.47)

That is, one subtracts the ground-state energy

This is exactly the Eq. (2.3) for the classical mo-
tion, except that the classical energy F. has been
replaced by

—mv, (E)A (E)= P, + m&e, X, —
2m

Now define the quantum operators

X -=X,(x),
p -=-.'(Xp+px,'),

(3.7)

(3.8).

(3 9)
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whose commutator is

[X,P] =iG . (3.10)

The generalized uncertainty relation for X and P
1S5,25, 26

(~)'(~)'i«)"- —.'. (3.11)

Next, as described in Appendix A, obtain those
states which minimize this uncertainty relation.

Our physical ansatz is that for the generalized
coherent states one should take that two-parame-
ter subset of the above set of minimum-uncertainty
states specified by a certain value of AX/thP. This
value is chosen such that the ground state belongs
to the set of coherent states. The rationale is that
if the coherent states are to approximate the mo-
tion of a classical particle, the states should be
localized. Therefore, we start with minimum-un-
certainty states and demand that one be able to
represent a particle of any energy, including the
minimum or ground-state energy.

In the one-dimensional examples treated in Ref.
9, X, was independent of the classical constant of
the motion E. As Eq. (3.4) demonstrates, this is
not generally true. If X,=x,(x,E), to obtain the
appropriate quantum operator X one must make
the replacement E -H, possibly allowing for a
zero-point energy contribution, and symmetrize.
(The Morse potential' provides an example of this
situation. )

Just as for the harmonic oscillator, for our ex-
amples it turns out that one can exactly express the
generalized operators X and P in terms of the
raising and lowering operators of the discrete en-
ergy eigenstates. However, because energy levels
are not in general equally spaced, the raising and
lowering operators can be n dependent and (A„')

w(A„). Thus, the general representations of the
operators X and P are of the more complicated.
forms

IV. TIME EVOLUTION OF THE COHERENT STATES

After obtaining these minimum-uncertainty co-
herent states for a given system, one wants to
understand their properties, especially their co-
herence with time. One way to do this is to de-
compose the coherent states into energy eigen-
states. In particular, write

it cs(x) =pa„g„(x)+ continuum, (4 1)

pcs(x, t) = exp(- iHt/h)pcs(x)

a„exp —iE„t 6 „x

+ continuum . (4.2)

X=(- i/@)[X,H] =P/m,

P =(—i/h)[P, H) =XBi(H) +iPBO,

(4.3)

(4.4)

where B&(H) is a, simple polynomial in H and Bo
is a constant.

With the aid of (4.3) and (4.4) one can calculate

X(t) iHt /h X iHt /h-

.The continuum contributions, if they exist, will
become plane waves in the far continuum region.
They will, therefore, not contribute to the oscil-
latory part of itIcs. (We will give an example in
paper III.) For our examples, "0 the bound-state
decompositions (4.2) can always be done analytic-
ally.

Similarly, one can derive the time-dependent op-
erators. X(t), P(t), and thei. r squares, and calculate
their expectation values in the coherent states.
This is a generalized version of the calculations
described in (2.33)-(2.38). Again, for our exam-
ples, this calculation can be done exactly.

Start with the quantum analogs of the classical
equations of motion (3.5) —(3.6). These turn out to
be of the form

X=K,(n)][A„+(A „)t]+ [A„+(A„)t]),

J'= —.K,(n)][A„+(A„)']-[A„+(A„)']),

(3.12)

(3.13)

=Xe' "'[cos&uHt+ij, (H) sin+Ht]

+P e""j',(H) sin(u„t, (4.5)

where Ki(n) and K2(n) are n-dependent c numbers.
The above is exactly true even for an energy-de-
pendent example, ' if the appropriate zero-point
energy is inserted along with the Hamiltonian in
the substitution for the classical energy.

The forms of (3.12) and (3.13) imply that, just as
the classical variables X, and P, are the "natural"
ones in that they vary sinusoidally as (&d,t), the
quantum generalizations X and P are the "natural"
operators because they have nonzero matrix ele-
ments only between adjacent eigenstates:

P(t) =Pe'~" [cosidHt —ij&(H) sinidHt]

+Xe""j'4(H) sin~„t, (4.6)

where &„ is an operator that has the functional
form of the classical frequency with F. replaced by
H, Q(t) is a real function of t, and j,(H), j,(H),
js(H), and j4(H) are explicit operator functions of
H. These expressions are obtained as follows.

Consider the general relation
n

e'"Qe "=g—,([V, )"Q(])"-=—,Q„, (4.7)
„()nf n +

(n IX 1m) =(nl P 1m) =0 if m en+1 . (3.14) where, in the iterateQ commutator Q„, the symbol
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Qp=

Q, =[I,Q],
Q2=[I' [l' Q])

(4.8a)

and generally

( ~ )" means that the quantity enclosed in the paren-
thesis is to be repeated n times. Specifically,

Then

xn.) = X'.&(h) + qg:((h)
=X[g.(h) b&(h)] +qlf. (h) + bpg. (h)]

Comparing the two lines of (4.20),

f„,,(h) =g „(h)b, (h),

and hence

g„.,(h) =by „(h)+g„,b, (h).

(4.20a)

(4.20b)

(4.21)

(4.22)
(4.8b)

Now observe that one can simplify the equations
by reducing them to dimensionless form. I et 1/a
be a characteristic length specified-by the poten-
tial and define

gp -=@'a'/2m . (4 q)

Measuring distance and energy in these units, the
equations can be rewritten easily in terms of di-
mensionless variables and operators:

From (4.22) one finds two roots

,'b, + ,'[—b,' —-4b, (h)]' ",
so g„has the form

g„=Ax,"+Dx ".

(4.24)

(4.25)

The recurrence relation (4.22) can be solved with
a trial solution

(4.23)

~=8 pt/8, (4.10) However, gp ——0 implies A =-B, and g&
——bp implies

h = (H + const—)/8 p,

q=const(ha ) 'P.

(4.11)

(4.12)

(4.13)

—H=A=(bp +4h) 'i

Thus,

x(f) =p, [xf„(h)+qg„(h)],
n=p

(4.26)

(4.27)

(Specific use of this will be made in the examples
treated in papers II and III.)

With these definitions, one can write

X(f) =e'"'Xe '"'

where g„(h) and f„(h) are given by (4.24)-(4.26) and

(4.21). Straightforward algebra then allows the
final form (4.5) to be obtained. A similar calcula-
tion can be done for P(t).

g (i~)"
n ~

~p
(4.14)

Using the dimensionless versions of the equations
of motion (4.3) and (4.4),

V. OTHER GENERALIZED COHERENT STATES

A. Annihilation-operator coherent states

It is possible to generalize the annihilation-oper-
ator definition' to systems without equally spaced
levels. For our exactly solvable examples, '
the raising and lowering operators can be written
in the form

[h, x] =q,
[h, q] = qbp + Xb~(h),

(4.15)

(4.16)
A„' =Xc((n) vc2X' —. (5.1)

one has

Xp ——X)

X, =q,
X, =Xb(h) + qbp .

(4.17a)

(4.17b)

(4.17c)

We find for all our examples that bp is a constant
and b&(h) is a first-order polynomial in h,

b~(h) =(const)h+ const. (4.18)

Because of (4.17c), the iterated commutators in
(4.14) close on themselves in the following sense:

E„=g(n),
n=g '(E„).

(5.2)

(5.3)

By substituting g (H) for n in Eq. (5.1), one ob-
tains operators which raise or lower any eigen-
state:

[Equations (3.12) and (3.13) follow from this form. ]
These operators are n dependent, and raise or
lower the nth eigenstate only. A„' applied to I rn en)
does not produce a pure state. 8„ is an invertible
function of n,

x„=xf„(h)+ qg„(h) . (4.19)
A' =Xc&[g (H)] wc2X'— (5.4)
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A'In) =C„'In+1) . (5.5) V(x) = 80K(A. —1)tan z —= f/, tan z, (5.11)

Thus, a possible definition for generalized AOCS
is those states which are eigenfunctions of the gen-
erali. zed annihilation operator A:

@'2 2

a=ax, $0=
2m

with

(5.12)

A In)=nln). (5.6) X= slQz y (5.13)
In papers II and III we will investigate examples

of such AOCS and will find for unequally spaced
systems that they are more difficult to deal with
analytically than are the minimum-uncertainty co-
herent states (For example, the normalization
constant or the continuum contribution is not ob-
tained in analytic closed form. ) They are not
equivalent to our minimum-uncertainty coherent
states. Moreover, in a numerical example dis-
cussed in paper V, they are found to be slightly
more spread out.

The use of the operators A' also allows a con-
nection to the harmonic-oscillator result

ea'
P = . cosz —+—cosz i.2i dz dr '] (5.14)

A in)=nln),
with

(5.15)

A' = sinz[(H + f/0)//80] +cosz— (5.16)

are

I n) =Na'/-'(cosz)'/'e ""(n)

We will demonstrate in paper II that the states de-
fined by

H = K&u(a'a + ~) = h~u-', {aa + a a ) . (5.7)

One might think that it is the first equality, giving
a number operator form to II, that is the property
to be generalized. However, we will observe in
papers II, III, and IV that for our solvable examples
there is an operator K such that for the discrete
portion of the spectrum

xJ„1/2(n cosz) 1

Inl i/2
N =

i

—', I"(2X + 1) I n I dyI „(2y)
0

These are equivalent to the states defined by

(5.17)

(5.18)

30 I n) =8„In),

R =- const x (8'8 + 8 8'),
(5 6)

(5.9)

D(n)10) = In), (5.19)

D(n) =Nl (2x)(nA+) ~+' ' I (2(nA')'/'), (5.20)

where E„ is either the eigenvalue E„or differs
from E„by a constant, and 8' is either A' or simp-
ly related to it.

B. Displacement-operator coherent states

In an attempt to generalize the definition' of co-
herent states from systems with equally spaced
levels to systems with unequally spaced levels, one
might first attempt to modify (2.23} and (2.26} by
replacing a' by the operator A' defined in (5.4):

D(n) = exp(nA' —n*A ) =exp(- ~g In I') exp(nA') .
(5.10)

However, in general (A") tA, so in general D(n)
will not be unitary and the last equality will not
hold.

Further, by specific example, one c'an show that
the appropriate displacement operator is not al-
ways an exponential operator. In papers II and III
we will discuss examples in which annihilation-
operator coherent states defined by (5.6) can also
be created by displacement operators which are
not exponential operators.

We briefly mention one of these examples here,
the symmetric POschl-Teller potential

where J and I are the standard Bessel functions.
This example demonstrates that in general (a) the

DOCS are not the same as the minimum-uncertainty
coherent states, and (b) the appropriate displace-
ment operator D(n) is not in general an exponen-
tial, but can be a more complicated functional.

VI. DISCUSSION

before proceeding in the following two papers
to investigate four systems in detail, we make a
number of comments here on our coherent states
and on the procedures we have used.

First, we point out that the construction of the
minimum-uncertainty coherent states can be car-
ried through approximately, if necessary. Equa-
tion (3.4) is amenable to analytic or numerical
perturbation methods, as are the defining equa™
tions (A3) and (A4) for the uncertainty relation
(3.11). In fact, given the operators X and P for
the Morse oscillator, we obtained approximate
analytic solutions, as described in Ref. 10 and in
paper III.

Second, observe that the classical transforma-
tion from x and p to the variables X, and P, is not
a canonical transformation. I', =Px', is not the
canonically conjugate momentum.
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+c&canan&=P/ (6.1)

If (6.1}is symmetrized to obtain an appropriate
quantum operator, the set of states which mini-
mizes the uncertainty product defined by the com-
mutatorr

(6.2)

A„=(n+X) sinz +cosz —.
dz

(6 2)

One could multiply the above operators by any ran-
dom function of n, obtain new A„', and hence entire-
ly different A'. The eigenfunctions of the new op-
erators A would be different possible definitions
of annihilation-operator coherent. states and simi-
larly one could use these operators to obtain dif-
ferent displacement-operator coherent states.
Clearly, some criterion must be used to decide
among the various possibilities.

We will see that for the AOCS-DOCS, "simplici-
ty" amounts to using those A'„which in their n-in-
dependent forms can describe the Hamiltonian X
as in Eq. (5.9).

Finally, for potentials with more than one mini-

in general will not include the ground state as a
special case. (We discuss this in Appendix B.)
That is, this set of minimum-uncertainty states
does not provide a satisfactory quantum approxi-
mation to the classical problem because it does
not have a state corresponding to a particle at
rest at the minimum of the potential.

Next, notice that there is an ambiguity in the
definitions of X, and P,. If X, and P, vary as
sin&up and casu j, then F&(E)X, and F2(E)t'„where
I', and I"

2 are arbitrary functions of energy, mill
also vary as sin+, f and coeur. [This can be seen
from (3.2) since A depends upon E to begin with. ]
Therefore, in effect, we make the further physical
ansatz that one. should consider an X, which has
the "simplest" possible E dependence.

We choose the "simplest" X and P operators as
the basis of our MUCS, instead of more compli-
cated operators. This is entirely consistent with
the harmonic-oscillator solution. There is nothing
in that system which requires one to choose x and

p as the natural variables over, say, F. ' x and
E p. On esthetic and physical grounds one
chooses x and P and these variables yield the most
classical coherent states.

Grounds of "simplicity" are also important in
choosing the A. ', and hence the AOCS and DOCS.
The A' are obtained from the 4„' which are appro-
priate for the eigenfunctions of the potential at
hand. For instance, the A„' for the symmetric
Poschl-Teller potential are, from Eq. (5.16),

V(x}= U —2(UR)' x'+Ax,
whj. ch has two minima

(6.4)

and a maximum

V(x=0) = U.

(6.5)

(6 6)

Classically, there are three possibilities. For F.
& U, the particle is confined either to the left or
right of x=0. For 8 & U, the particle will travel
through both regions. Thus, for the classical
problem, there are three different types of solu-
tions (in terms of elliptic integrals), each with its
corresponding X, and P,. Each of these will pro-
duce, by the techniques described above, its own
set of coherent states. But we know that one of
those packets, say for E & U and x & 0, should
eventually tunnel to the region x & 0.

By anticipating the numerical time-evolution so-
lutions that will be discussed in paper V, one can
understand this process. In general, at t =0 the
coherent states start off as minimum-uncertainty
wave packets and'eventually disperse. The coher-
ent states are a superposition of eigenstates care-
fuliy chosen to cancel each other out except in a
limited region. However, as the superposition
evolves in time the cancellat;ion gradually gets
worse (because the eigenvalues are not equally
spaced), until finally the wave packet is spread out.

For the quartic potential tunneling can simply
be viewed as part of the process by which the co-
herent superposition of eigenstates slowly evolves
out of the proper phase relationships.

Thus, this double-well dispersion is not funda-
mentally different from a single-well dispersion.
Quantum mechanically there is no difference be-
tween an originally coherent packet dispersing with
time to a position away from the classical position
that is in the same well or in a different well it
has "tunneled" to. It still has dispersed.

VII. CONCLUSIONS

This paper has described our minimum-uncer-
tainty method for obtaining coherent states for
general potentials. The reader should be aware
that we have made two physical Ansatze. They
have not been rigorously proven to be correct. But
in the numerous examples we describe in this ser-
ies they always work.

Our first ansatz came from our search for the
classical motion. We began by looking for vari-

mum, it is in principle possible to obtain mini-
mum-uncertainty coherent states, although in gen-
eral it is mathematically intractable. For explicit-
ness, consider the confining potential
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ables X, and I', which vary sinusoidally as the
classical (&u,t). The classical motion is an ellipse
in the X,-I', plane, and in terms of X, and I', the
classical problem is similar to the harmonic os-
cillator. This is why we made the first physical
ansatz of taking the variables X, and P, to be the,
"natural classical variables" of the problem, and
the ones on which to concentrate.

Our second physical ansatz is to take these var-
iables and form "natural quantum operators" out
of them. Just as the natural classical variables
describe the classical motion most simply, the
natural quantum operators are chosen as those op-
erators which can best define a classical motion
for the quantum system. Hence, the associated
uncertainty relation should best define classical
motion in an expectation value sense. This second
ansatz can be further justified by the facts that the
MUCS always turn out to include the ground state
as a special case, and further that the natural
quantum operators can always be obtained from
Hermitian sums and differences of the quantum
raising and lowering operators.

Thus, one has a connected chain of steps: (a} the
classical problem; (b) the "natural classical vari-
ables, " (c) the "natural quantum operators, " (d)
the raising and lowering operators for the quantum
eigenvalue problem. A Priori one has no rigorous

. reason to believe that such a sequence exists.
Nonetheless, it does. In paper VI we will give an
explanation of how this chain can be understood.

We have also pointed out how the annihilation op-
erator and displacement operator methods can be
generalized to systems without equal level spacing.
One changes n-dependent raising and lowering op-
erators into n-independent raising and lowering op-
erators with the aid of functionals of the Hamiltoni-
an. In our examples we find that given a set of
AOCS, defined by operators which satisfy Eq. (5.9)
for the Hamiltonian, one can always find a set of
DOCS equivalent to them, "but these AOCS-DOCS
will not necessarily be defined by a unitary expo-
nential displacement operator, nor will they nec™
essarily be equivalent to our MUCS.

The methods we have used are analytic and serve
as a complement to the group-theoretic point of
view. ' ' ' ' Note that the operators A„' and (A„'},
which arise naturally in our approach, do not have
simple commutation relations. They do not appear
to belong to an elementary Lie algebra of the sort
heretofore employed in the construction of g ner-
alized coherent states. Nevertheless, we assume
that our method and the Lie-group methods are
related simply because of the connections of Lie-
group theory to the special functions of mathemat-
ical physics. It would be interesting to see our
special case results obtained from the group-the-

ory point of view.
As mentioned in the Introduction, these results

have immediate interesting applications to coherent
quantum-mechanical systems. "' ' Moreover, with
the results of this series, one might be able to ex-
tend studies 0' 6' ~ 4 of field-theoretic coherent
systems to general (nonharmonic-oscillator) back-
grounds. We have discussed this possibility with
many of our colleagues and hope such a study can
be implemented.
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APPENDIX A: MINIMUM-UNCERTAINTY STATES

(
i(G) i(G)

&+2(~)2B 0= &&)+2(nB)2(B),l(.

lf (G) is positive definite, Eq. (A4) can also be
written

(A4)

(A5)

Note that the four parameters (A), (A ), (B), and
(B ) are not independent because they satisfy the
equality in Eq. (A2). The remaining three indepen-
dent parameters may be reduced to two by impos-
ing another condition: that the set include the
ground state as a special case. This can be stated
as a restriction on (bA)'/(nB}', leading to the min-
imum-uncertainty coherent states (MUCS).

APPENDIX B: CANONICAL TRANSFORMATION

The classical canonical transformation from the
variables x, P to the variables X, and P,&„„,&, is
defined by the Poisson bracket relation

As is well known, ' ' given two Hermitian op-
erators A. and 8, whose commutation relation is
given by

(Al)

where G may also be an operator, there is an as-
sociated uncertainty relation

(A2)

(AS)

The three parameter set of states which minimize
Eq. (A2) is composed of the solutions to the eigen-
value equation
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[X„P,&„„,&]„2——1 .
If X, is only a function of x,

Pc&canon& IIX (82)

d d l+
2i coshz dz dz coshz

d j. sinhz
i coshz dz 2 cosh'z (89)

(plus a constant which can be dropped). Then the
canonical quantum operator P(„„„}will have the
form

and

&canon&1= f ' (810)

(83)
The defining equation for the minimum-uncertainty
states reduces to

giving

[Xh P& canon) 1

(~) (P& canon& )

(84)

(86)

8 8 d
sin& 1 —

2 hn
+

h d )MUs —C)MUscos z coshz dz
I

(811)

V(x) = bps($ +1}tanh z, z -=ax,

and X, is

(86)

Compare these expressions to the results in Sec.
III: P, =pX,' and see E&ls. (2.9), (3.10), and (3.11).

A specific example shows that in general the
minimum-uncertainty states for the relation (86)
do not contain the ground state as a special case.
For the symmetric Rosen-Morse pot'ential

28 =(~&canon&)

C =2&+iv =(sinhz) +iB(P&„„,&) .
The solution is

(812)

(813)

=N&hohh'i z& exh ——sinh z+ —sinned).2 C

X,=sinhz.

Therefore,

X=sinhz,

(87)

(88}

Clearly no choice of the three parameters B, g,
and v will reduce gMU2 to the ground-state wave '

function which is proportional to (coshz) ' (see
paper III).
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