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Radiation corrections to quantum processes in an intense electromagnetic field
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A derivation of an asymptotic expression for the mass correction of order a to the electron propagator in

an intense electromagnetic field is presented. It is used for the calculation of radiation corrections to the

electron and photon elastic scattering amplitudes in the a' approximation. All proper diagrams contributing

to the amplitudes and containing the above-mentioned correction to the propagator were considered, but not

those which include vertex corrections. It is shown that the expansion parameter of the perturbation theory

of quantum electrodynamics in intense fields grows not slower than ny "~ at least for the electron amplitude,

where g = [(eF„„p,)']'"/m', p is a momentum of the electron, and F is the electromagnetic field tensor.

I. mTRODUCTIOX

It is a fundamenta, l problem of quantum electro-
dynamics in intense fields to find the true expan-
sion parameter of the perturbation theory as re-
spects the radiation field when the external field
strength or the energy of a particle initiating a
process are' extremely high. This is one of the
reasons a lot of recently published papers' ' are
dealing with radiation corrections to quantum pro-
cesses in very strong electromagnetic fields, i.e.,
in fields whose intensity is close to the critical
value E E, =m'c-' /eh= .4 4&&10" Oe.

Such field strengths are not available experi-
mentally at the present time. However, for ultra-
relativistic particles with a momentum P -E,m/E
»m, the field strength will be of the order of F,
in the proper frame. In addition, independent
of the form of the field in the laboratory system,
it will be nearly a plane-wave field in the proper
frame, and if its characteristic wavelength and
period are large in comparison with the charac-
teristic length and time of the formation of the
process, this field can be regarded as a constant
crossed field E lH, E=H=-F. We shall consider
below precisely such a field.

Quantum processes initiated by an electron with
a momentum P in a crossed field are determinedby
a single invariant parameter y = [(eE~„P„)']'~'/m'
(the same quantity for a photon with a momentum
I we shall denote as z). It is equal to y =P E,/mE
in a "special" coordinate system with the 1, 2, 3
axes along the directions E, H, and E~H, and P

Pp P3 Thus the limit of a very strong field
is the limit X»1 (or z)=1). At the same time one
can regard the limit X»1 as the high-energy
(p» m) limit for an incident particle.

We shall investigate below radiation corrections
to electron and photon elastic scattering ampli-
tudes in a crossed field in the limit y» 1. These
quantities in the z approximation were found by
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FIG. 1. The diagrams representing the elastic elec-
tron scattering amplitude in the ca~ approximation.

Hitus' and the author. ' Radiation corrections of
order z' have been partially investigated in Refs.
4-3. Unfortunately these papers do not answer
the question about the dependence of the expansion
parameter on X when X» 1 because of a rather un-
usual situation.

The polarization correction to the electron elas-
tic scattering amplitude, which is determined by
Fig. 1(a), increases as' ylnx when y»1, while
the mass correction, whi'ch is determined by Fig.
1(b), is of order y'~'Iny. ' The mass correction
to the photon elastic scattering amplitude [Figs.
2(a) and 2(b)] increases as tc'~'Inz. ' Though ver-
tex corrections to both amplitudes [Figs. 1(c}and

2(c}]have not been calculated yet, it is unlikely
that they could increase more rapidly than the
mass corrections. Taking into account now that
the amplitudes of order n increase as X' ' or K

respectively, "one can notice two unusual features
of the expansions for the amplitudes.

First, the expansion parameters for the electron
and photon amplitudes are different in the high-
energy limit. It is nx' ' lnx for the electron's
amplitude and n inc for the photon's. Second,
the expansion parameter for the electron ampli-
tude increases with energy more rapidly than in
conventional quantum electrodynamics where it
is equal to o. In(e/m), as is well known. The same
statements are true, of course, for mass and
polarization operators in an intense crossed field
since the considered amplitudes are their matrix
elements on the mass shell.
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FIG. 2. The diagrams representing elastic photon

scattering amplitude in the n2 approximation.

One may doubt the validity of these conclusions
which are based on the analysis of the a2-order
diagrams. There is still a possibility that the
diagrams of order z' contain some anomaly. The
existence of such an anomaly seems to be very
probable due to the fact that the leading term in
the asymptotic expanison of the electron amplitude
of order n' is caused by Fig. 1(a) which contains
the polarization correction to the photon Green's
function while the diagrams determining the cor-
rection to the photon amplitude of order a' do not
contain it.

In the next order cf the perturbation theory both
electron and photon amplitudes "enjoy equal rights"
and one could expect that they increase with X in
a similar way. To verify it one should calculate
radiation corrections to both amplitudes in the n'
approximation. Unfortunately it would be too
cumbersome to make explicit calculations. There-
fore approximate methods for direct calculations
of the asymptotics of diagrams of high orders in
the limit X» 1 should be developed.

In the present paper we have found the high-en-
ergy asymptotic for the mass correction to the
electron Green's function in a crossed field which
allows one in a relatively simple way to calculate
asymptotics of some diagrams of order ri' in the
limit of very large X. Figure 3 contains the most
important diagram among the considered diagrams
since it increases as X' ' when X» 1, while other
diagrams are of the order X' 'ln'y. This fact
confirms the idea that the diagrams containing
polarization corrections to the photon Green's
function give the main contribution to the asymp-
toties of radiation corrections in the limit X»1
and make it possible to assert that the expansion
parameter of the perturbation theory increases
with X not slower than X' ', at least for the mass
operator.

A derivation of the high-energy asymptotic for
the mass correction to the electron propagator is
presented in the next section of the paper and it is
used then for calculating diagrams of order a2.
In Secs. III and IV we calculate some diagrams of
order e' and the obtained results are discussed in
See. V.

II. MASS CORRECTION TO THE ELECTRON GREEN'S

'FUNCTION IN THE n APPROXIMATION

&&exp i
'

(k.x)'

$2a2 1
—i (k.x)' —ip. x

rwe use the units h=c=1, n= /e4 =v~3'and the
notation p„=(p, ip, ),p q=p q-p, q, j.

A remarkable property of the E~ representation
is the fact that in this representation the electron
propagation function S'(P) reduces to the vacuum
one and the mass operator is diagonal':

Mz(q, P) =(»)'&(q-P)MF(P),
M~(P) =~S(X, v) + 1',(X, ~)(~+iP r)

(2)

( )
ie'r„F,+„p,

2 X& ~4X2

j'4 *
~ 7 ( )

e~uP u«~g( )
iersr~Fu«pv

~x "'" ~'x

The scalar functions S, V», T, and A may be
written in the n approximation in the following
way:

S" (X, v) = ——,(1 + 2v)
Q d8
2v (1+v)'

It will be convenient to use the so-called E~ rep-
resentation introduced by Ritus' with basic func-
tions E~(x), which for the particular case of a
crossed field with 4-potential 2„(x)= a, (k ' x), k'
= a k=0 may be written in the form

@ ( ) 1 ( .r)( r)(k )
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FIG. 3. Some diagrams representing elastic electron
scattering amplitude in the n approximation.
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dvT"'(x, &) =-—
2

— f(y),&T, (1+v)' v

dvA"'(X, &f) = ——,(2 + v) — f(y) .2», (1+v)' v
(8)

Functions f(y) and f,(y) in (4)-(8) are defined by
relations

f(y}=i do exp(-iyo —icr'/3),

f, (y) = d~[f(~) —I/~l,

g=z 1+—
y

8= —
~

v=

1+ v pish
vx —v+ ~0 2 y ~o

v yn

A small photon mass m,„was introduced in (3) to
eliminate the infrared divergence which appeared
in the mass operator after renormalization.

As one can see, the mass operator (3) is ex-
panded into five real y-matrix operators m, m

+iy P, ie'y F„„F„P,/m'X2, eo„„F„,/mX, and

icy,y, F,*„P„/m2X. To find the asymptotic behavior
of the mass operator (3) in the limit x» 1 we will
first compare the orders of magnitudes of the
terms of the expansion. This is easy to do if we
notice that we deal, in fact, with matrix elements
u(t&)M(P)u(P) of the mass operator, where u(i&) is
a free Dirac spinor, while calculating radiation
corrections described by diagrams including the
mass operator as an inner part. Such matrix
elements of all y-matrix operators in (3), except
the operator nz+iy p, are of order m and there-
fore the magnitudes of all terms of the expansion
(3), except the second one, are determined by the
magnitudes of scalar functions. For the second
term the situation is different because matrix
elements u(m+iy. p)u-m&f. The role of the vari-
able v is to form causal 8 functions in the inte-
grands of the integrals representing radiation cor-
rections and the whole region of integration over
v, -& v& ~, is essential. Since it is impossible
to point out the effective values of the variable v,
we can compare the contribution of this term to
the asymptotics of radiation corrections with the
contributions of other terms only after performing
the integration over v.

It is important that the effective values of the
variable v, which has a simple physical meaning
(that the ratio of virtual photon and electron mo-
menta v = l /P ), is of order 1 in all integrals (4)-
(9) except the infrared-divergent one in (5). The

(12)

where o, is always of order 1 if z ~ 1 (v,«-1, X
~1). In the limit X» 1 (z « I) the second integral
in (12) grows logarithmically while the first one
is of order 1. Therefore, independent of o'„

f (e) —In(1+ — =Inn=--, )n)1, X»IV
(13)

and we see that the function S' } may also be
omitted in the high-energy asymptotic of the mass
operator.

%e may now regard the expression

M~&'&0&}= V~&'&(X, v)( m+i y.P)

+ V(~)( )
yll Ilv VIPv (14)

as the asymptotic of the mass operator in the
limit X»1 with the a".ymptotic expression for
VP&(X, v),

V,"'(X, v) = —
2, h (X.X'"), (15)

which one can easily derive from (5) with the help
of formula (13) after separating the infrared di-
vergence.

effective values of the variable cr, which determine
the f functions rsee integral representation of the

f function {9)], are of one and the same order in
integrals (6)-(8), and since the function V,"& has
the factor X' ' while the functions T~') and g&'}
-X' ' we may omit the latter two in the high-ener-
gy asymptotic of the mass operator.

To compare the magnitudes of functions S&'~ and
V"} we will get a simple asymptotic expression
for the function S&'}. There is the following inte-
gral representation for the function f, (y) —ln(1
+ v/v):

f,(X) —In(1+ —=
v

da' ~ .ZV .Vx —e '" exp —i —o —i ——1 (11)
0 (7 v 3

and o-(v/X)'f'(eF/m)by, where by is the dura-
tion of interaction of the electron with the radia-
tion field. In any diagram including mass opera-
tor Mg&(i&) the term -e ""f"in (ll) will lead to
the appearance of a causal 8 function after inte-
gration over v, which will limit ~y by the dura-
tion of the external interaction (see, for example,
Figs. 1 and 2). Thus the formula (11) may be ef-
fectively written down as

v odo' ] . &v
f, )X) —In (I + — = —e " exp -I—e —I——I

V 0
O' V 3
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Unfortunately it is impossible to find a simple
universal asymptotic expression like (15) for the
function V~&'&(X, v). But we shall see that for the
leading terms of asymptotics of radiation correc-
tions it reduces to a very simple form.

Qne should remember that the leading term of
the asymptotic of V,') originates from the vacuum
part of the mass operator (though it is -lnX and
depends on E) and can lead to the appearance of
ultraviolet divergences which should be removed
by the standard renormalization procedure.

For the mass correction of order n to the elec-
tron propagation function in the E~ representation

t&S'"'(P) = —iS'(P)MF"(P)S'(P)

we may get, using formula (14),
»'"'(p) =—»(x x'")s'(p)

2m

—i V,' '(X, v)—

. ,~)
ie y, E,„E„,P,

(17)

We shall now use the expression (17) for AS'"&(P)
for calculating the asymptotics of the mass cor-

T,"'(P,E) = 2, »(x.x"')T"'(P,E) (18)

where 7 "&(P,E)~x„, denotes the asymptotic of the
amplitude in the cy approximation'

T"'(P, E)
~
„„,= (2—X)'"

27~2Pp

x I'(-', )(1 —i»' 3 ) .

The contribution of the second term in (17) to
the amplitude may be written to read in the limit

rections to the electron and photon elastic scatter-
ing amplitudes in the intense crossed field, which
are described by Figs. 1(b) and 2(a) and 2(b), re-
spectively. We will follow the method introduced
by Ritus in his paper. ' The usage of expression
(11) for AS'&"(P) is justified by the fact that the
charged particles created in a process initiated
by an ultrarelativistic particle (X» 1) are always
ultr ar elativi sti c..

We shall consider the electron amplitude without
a change of spin direction first. The contribution
of the first term from (17}to the asymptotic is
obvious and is equal to

2 + 2u + u
. V&'&(X', p. ) (1+—,'&& ——,'up, )&P,(t)+ — &P'(t)

00

(20)

We have dropped spin terms in formula (20) since
they are obviously small compared to the remain-
ing ones in the limit X»1.

Here X' and p. =(q'+ m)/ mrefer to the internal
electron of momentum q; && and x =-P/m' refer
to the external photon of momentum /; K+/
u=«/X'. &P(t) is a well-known Airy function,

&P(t) = dP cos(tP+ 3P'),

function &P, (t) is

&P, (t) = dt'&t&(t')

In the term proportional to &t&, (t) in (20) u, « -1,
and it is easy to show that the contribution of this
term to the amplitude is of order X

' and is
less compared to (18).

In the term proportional to &P'(t) in (20) u, ««1,
and it is clear after comparison of t and y that
one may neglect the dependence of V&'&(X', p, ) on p. .
This means physically that the duration of the
external interaction is much larger than the dura-
tion of the internal one for this term since the .

emission of weak photons is essential. Thus, for
this term

V,' &(X', P) = V,& &(X', 0)
~ 3

2Z
1 ftP zP /3e

p —Q

and the argument of the Airy function is

i2 /3

f (o)
dv,t, (I ), (1+ 3v)

'1+@ 1+u 1+ut=z' 1+X» —p, +A.
Q Q Q

(21}

o. (8X)'" —(1 —iv 2)r(-,').

The integration over P. and X'in (20) can be per-
formed now with the help of the formula
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1+u
z~ ——z' 1+~0 u2

(23) (b) (c)

and we get in the limit X» 1

T~&4&" (p, E) =—(—,
'

1nA., —1ng)T&'&(p, E) (24)
(4) (e)

Finally, for the mass correction to the Q.
2 ampli-

tude

T(4)(P E)—T &4)1(P E)+ T(4&"(P E)

we have

FIG. 4. Some diagrams representing elastic photon
scattering amplitude in the ~ approximation.

T~&~&(P, E)=—(2 ink, ——,
' lnx}T&2)(P, E) . (25)

Tg"(I, E)+ T~&'&(I) E)=—ln(XOK' ')T"&(I)E)
k»1

T &'&(/, E)
i „„,= — Q (e'e, )(ee,.)&(&'&(&&)

0 f=l 2—,z»1

(26)

This result coincides with the one obtained by
Morozov and Ritus. '

The mass correction to the photon amplitude
does not have infrared divergences except the one
caused by the mass operator of order z. There-
fore the ratio of virtual electron and positron mo-
menta u =X'/X -1, and it is easy to show that the
contribution of the second term from (17) to the
amplitude is of order z' '. Thus only the first
term froin (17) determines the asymptotic be-
havior of the photon amplitude:

m2
'g (!&)i„= (3&&) i v 3 (1 —j)1 3 )F (

—) .

(27)

Unit polarization vectors e, and e, are given by

el,„l„eW„l„
lu 3 & 2v 3 & pv 2& p vXo'+X&ymz mI(

and describe in the "special" coordinate system
the photons polarized respectively along the direc-
tions E and H. This result coincides with the one
obtained by Morozov and the author. '

The agreement between our results and those of
Refs. 2 and 3 is a good 'check on the method. We
will use it for the calculation of some diagrams of
order ~' in the next sections.

III. 0.3 CORRECTIONS TO THE ELECTRON AND PHOTON ELASTIC SCATTERING AMPLITUDES A

In this section we present the calculation of asymptotics of Figs. 3(a) and 4(a). The correction to the
electron amplitude of order &)&' described by Fig. 3(a) can be written with the use of expression (17) for
hS'&2)(P) in the following way:

x (I--,'up)(&&, +&(, +2&&,)+X&),+A. , (&(, +&(,) —», (v, —&(,) (t),(t)
2+ 2u+u' 1 +u

2u u

-2+2u+u' -
X

2/3
+ (w, +v, +2m, )+~, —~, — &'(t)I. (28)

Just as in formula (20) we have omitted small spin terms in (28). Here functions &(„ i = 1, 2, 3, are the
scalar functions which determine the polarization correction to the photon Green's function of order z

(29)

nm~ " dv' 2v" + (5 v 3)v'+ 2
li2 3 (1 + vt)2 i ii f (7 )

w (1+v')' f' ~ (1+v')')
(30}
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Xv' „(1+v'}2(1+u) '/'
(1+v')' ' uv'x (31)

13o2rn2X v . X 142

36 3~P, 2 2 3

The leading contribution to the asymptotic of (22) is due to the terms with u„,-lix«1. One may use
formula (22) for V2(2& and neglect the dependence of », 2 on X for these terms as was done in the previous
section. Integration over. p. and X may be performed then in the same way as in formula (20) and we get

(32)

and t is presented in formula (21). T('&(P, E)i„„,is the asymptotic expression for the polarization correc-
tion of order o( to the electron amplitude described by Fig. 1(a) which was found by Ritus' and is equal to

T,('&(P, E) =—ln(x0X'/')T &'&
Q&, E)

i „,
7 3e21 —i 3

I'(3)f(0)(3X)'"
3&'P, 27& 3

dv i v, 2
d'8

(1+v')' ' (1+ ')' u'" (33)

where z" may be written as

(1 + vi)2 2/3
g /I

Qv'X

because of the condition u,««1.
After integration over u and v and neglecting

terms -
X lnx, X ln'X we get

T('&(t&, E) =—lnA0T,"&(p,E)
)(»l

14 3m2

3~3»'P 1485
(34)

The considered correction to the electron ampli-
tude increases as X' ' when X is large. Therefore
we can conclude after comparison of expressions

(34) and (32) that the expansion parameter of the
perturbation theory increases with X at least not
slower than nx' ' for the amplitude or for the
mass operator.

The asymptotic of Fig. 4(a) is determined
only by the first term in (17) and is equal to

QT "&(1 E)= ln(X K )T( &(l E)a s (2v)2 0
,
K»1

The terms of T, ((I3,&E) originated from the second
term in (17) increase with K as K' ' Still the. y
have infrared-divergent terms -ink„but these
terms increase as x' ' too and therefore are in-
significant for the amplitude in the limit ic»1
since there are terms -lnk0 in expression (35)
which increase as x lnx.

pf. 0. CORRECTIONS TO THE ELECTRON AND PHOTON ELASTIC SCATTERING AMPLITUDES g

For calculation of the asymptotics of Figs. 3(b) and Figs. 4(b) and 4(c), it is convenient to find the as-
ymptotic expression for the mass correction of order n2 to the electron Green's function (Fig. 5) first. It
is again determined only by functions U, ) and V2&') of the mass correction to the renormalized mass opera-
tor of order a'. Asymptotic expressions for these functions may be obtained with the help of formulas
(17}, (15), and (6) and are equal to

2

Vl"(y, V&=—In(X.,X'~'&V|*'(g, V&= —
(
—

)
(ri'(X,X' '&, (36)

l',"'(X, u) =—»(X.X' ")I'("(X,u) + ~."&(X u) (37}

dv' 2+ 2v'+ v' dv v
V&4)i V~ =—

(1+v')'/' (1+v)' 3 v
1+—

g3 p3
dooexp izo —i dppexp -iy-, p —i —(p —ao)(g(p——ao'),

0 0

I+ vi », vi '/' v(1+ vi) '/' v'a=v" v' '
X X

' v(1+ v') .

(38)
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V. SUMMARY

W W W W

FIG. 5. Mass correction of order n to the electron
propagator.

~'"&(p) =—»(~.x'")»'"'(p)2'
2

—i —v"'& u& is'&&& — " "" "' ')
(39)

It can be shown that the contribution of the sec-
ond term in (39) to the asymptotics of Figs. 3,
4(b) and 4(c) is small compared to the contributions
of the first term. For the electron amplitude it
is of order

n'(c, 1n&&, + c, inx)x'~',

where e, and e2 are constants and i.t is -zz' ' for
the photon amplitude.

Therefore the asymptotic of ~S'&'&(P) is repre-
sented only by the first term in (39), at least
while calculating these diagrams, and we get

T&&6&(P, E) =—ln(&&OX'(')T~&~&(P, E) (40)

On the mass shell (v= 0) &&,'„«1 in formula (38)
and one can get a simple expression for V2&'&(X, , o).
Calculating then the matrix element

T,"'(P,E)= —u(P)M &'&(P)s(P),

one can easily reproduce the result (25) for the
mass correction of order a2 to the electron ampli-
tude.

Off. the mass shell the effective values of the
variable v depend on v and could be found only
after, the integration over v is performed. Note
that there is no infrared divergence in V2&" off the
mass shell, but the small photon mass should be
preserved in (38) since it could appear in dia-
grams of higher orders after integration over v.

For the mass correction of order n' to the elec-
tron propagation function in the limit X» 1 we get

We have considered all proper diagrams of
order cy' fear the electron and photon elastic scat-
tering amplitudes which include the mass correc-
tion of order n to the electron propagation function
but not those which contain vertex corrections.
The method developed is based on the asymptotic
expression (1T) for hS'& &(p) and on an analysis of
effective values of integration variables in exact
expressions for radiation corrections. The meth-
od is valid for calculating only the leading terms
of radiation corrections in the limit X»1 (or &&

» 1).
Just as in the n2 approximation, we can dis-

tinguish two types of diagrams with different ex-
pansion parameters of the perturbation theory.
The parameter grows at least as nx' ' with X»1
for diagrams including polarization corrections
to the photon Green'. s function and therefore its
dependence on the particle's energy is stronger
than in conventional quantum electrodynamics.
This result is valid at least for the electron elas-
tic scattering amplitude or the mass operator.

For other considered diagrams the parameter
is of order n 1ny (or o. ln&&). Still this result must
be checked by calcu)ating vertex corrections be-
cause the considered diagrams are not gauge in-
variant, and it is remarkable that terms -zx' '
lnx appear in the radiation corrections as a re-
sult of procedures of renormalization and of elim-
ination of infrared divergences by introducing a
small photon mass X,. They always accompany
terms -ink, and could cancel together with infra-
red-divergent terms after taking into account ver-
tex corrections.

The present paper does not, of course, answer
the questions about the dependence of the true
expansion parameter of the perturbation theory on

X when X»1 and wliether the parameters are dif-
ferent for mass and polarization operators. To
answer these questions one still should consider
the behavior of Figs. 3(c), 3(d), 4(d), and 4(c).

for the electron h.mplitude and

0
T&'&(/ E)+T&'&(/ E) =—1n'(X, &&'~')T&'&(/ E)

ft»l
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