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Clouds of strings in general relativity
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A gauge-invariant version of the Stachel string cloud model is presented. Some formal aspects as mell as
the energy conditions for the model are studied. The general solution to Einstein's equations for a cloud of
strings with spherical, plane, and a particular case of cylindrical symmetry are studied. The solution with
spherical symmetry is used to construct a double-layer model of a star.

I. INTRODUCTION

In a recent paper' an extension of the relativis-
tic "dust cloud" model. for a perfect fluid' was
proposed. In this new model the objects that form
the cloud are one-dimensional continua (classical
relativistic strings) instead of point particles.

The purpose of this paper is to present a gauge-
invariant version of "the incoherent string Quid
model" as well as to study some formal aspects
and particular solutions of Einstein's equations
for the above-mentioned model.

We have two main reasons to study Einstein's
equations coupled with a "string cloud. " First,
the relativistic strings at a classical level can be
used to construct good models for many interac-
tions. ' ' One type of models are the field theor-
ies associated with given action-at-a-distance
interactions. This formalism has been developed
using the same ideas employed in the study of
action-at-a-distance interactions between parti-
cles." Then, as a test of consistency, we must
have a reasonable behavior of the gravitational
field produced by the main elements of these
models' (strings). Second, the universe can be
represented as a collection of extended (nonpoint)
objects. ' So a "string dust" cosmology should
give us a model to investigate properties related
with this fact. Also, a quantization of such a
model may shed some light on the question of dis-
cretization in astronomy. '"

In the present paper we do not touch upon the
cosmological aspects of the string cloud model.
In Sec. II we present a summary of the incoher-
ent fluid model; in particular, we stress the role
played by the parametrization of the particles'
world lines. In Sec. III we present a gauge-in-
variant version of the string cloud model, follow-
ing the lines given in Sec. II. The method used
to derive these equations is a slight generalization
of the one employed in Ref. 1. In Sec. IV we
study the different energy conditions for the string
cloud model. In Sec. V we present the general
solution to Einstein's equations for a cloud of

II. THE DUST CLOUD MORSEL

In this section we study the incoherent perfect
fluid model, paying special attention to the invari-
ance of the theory under reparametrization of the
particles' world lines. The metric of the space-
time is g,„of signature (+ ——-), where the Greek
indices run from 0 to 3. The units are chosen so
that the speed of light is one. The action of a
particle evolving in the space-time is

(2.1)

L -=m(g, „u"u")' ~'

u' = dz" /dX,

(2.2)

(2.2)

where m is the particle proper mass, z' = z"(X) is
the particle world line and A. is an evolution param-
eter. The energy-momentum tensor of a particle
is defined by.

t "=2 =mu"u"/(u'u )'~'aI-

\

I et; us consider a cloud of particles with world
lines described" by Z" =Z'(A. , $, q, 0), where $, q,
and g are variables labeling a particular world
line and X is a parameter describing the evolution
of this particular world line (as before). The
cloud of particles is also characterized by the
proper energy density p&. p~ is the energy per

(2.4)

strings with spherical symmetry. The solution
is used to construct a double-layer model of a
star. In Sec. VI we present the general solution
to Einstein's equations for a plane-symmetric
cloud of strings. The solution found presents some
similarities with the solution to Einstein-Maxwell

/

equations for the same symmetry. " In Sec. VII
we study the solution to Einstein's equation for a
cloud of strings with a particular type of cylin-
drical symmetry. In Sec. VIII we discuss the
problem of the open strings' erid points. We also
point out some possible applications as well as
generalizations of the presented theory.
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unit volume measured by an observer locally at
rest with respect to the cloud, i.e., by an observ-
er with the same local mean velocity of the cloud
particles. For a discussion of this point see, for
instance, Ref. 2, p. 168. Now the energy-momen-
tum tensor of a cloud of particles is

T~"=p,u'u"/(u u )'~' (2.5)

x —x*=~(x, ],q, g), ~o.
' BX

ax
(2.6)

We shall also require that the interval (-~, +~}
be left invariant by the transformation (2.6).
Note that under the transformation (2.6) Z~

transforms like a scalar and the velocity as

u "(~,5, n, 0) = u'(~, $, 8, l), (2 7)

where the velocity vector u' is defined by u" -=BZ"/
ax.

By invariance of the theory under reparametriza-
tion we mean invariance under the transformation

cloud'4 by choosing a parametrization such that
uou =1,

T =puup. p

V~(p~u") =0,

Note that (2.15) implies

u"V„(u u )=0,

(2.i3)

(2.15)

(2.16)

T~"=u~u"'
p

v, (p, u") =o,
u'V, (u"/p~) =0.

Note that (2.19) implies

(2.17)

(2.18)

(2.19)

i.e., the parametrization is propagated by the mo-
tion equations. In other words, the condition
u u = 1 can be treated as an initial condition.
Of course, this is not the only parametrization
that enjoys this property; as an example let us
choose (u u„)'~'= p~. Then the equations are

where u'V, in[(u u }'~'/p ]=0 (2.20)
u ~=BZ~/BX".

To have a Tp"" invariant under reparametrization
p~ must transform as (u u ) '~', (for a deeper
discussion of this point see Ref. 13). The follow-
ing expressions with obvious physical meaning
are reparametrization invariant,

p~(u u )'~',

ppu p

u~/(u u )' '

Einstein's equations for the cloud are
gPV 1 ~PVg ygV

p

(2.8a)

(2.8b)

(2.8c)

(2 9)

where we have taken the coupling constant equal
to one. The Bianchi identities te11 us that

(2.10a}

Hence, as before, the parametrization is propa-
gated by the motion equations.

III. THE STRING CLOUD MODEL

In this section we study the Einstein equations
for a cloud of strings using the model discussed
in Sec. II as a guideline. The method that we
follow to derive the Einstein equations for a cloud
of strings is a slight modification of the one pre-
sented in Ref. 1. The only difference is that we
do not choose a particular parametrization of the
strings world sheets at our starting point, in the
same sense that for the cloud of particles we did
not impose the condition u"u„=1 from the begin-
ning.

The action of a string evolving in the space-time
is"

4l.e.y

V„(p~u")u"/(u u, )'~'

+p~u~V~[u"/(u u )'~']=0, (2.10b)

8 =- g dxodX', (3.1}

(3.2)

V„(p~u~) =0, (2.11)

and from (2.10) and (2.11) we obtain the motion
equation

u"v„[u"/(u u~)' ']=0 (2.12)

We recover the usual expressions for the dust

where V'„denotes the usual covariant derivative.
Upon a multiplication of (2. 10b) by u„/(u u )' '
we get the conservation equation

where M is a dimensionless constant that charac-
terizes each string" and

y =dety„~,
ax" ax"

YAB

gyes(

) BgA BgB '

(3.3)

(3.4)

x" =x"(X") describes the string world sheet. X"
=(X~, X'), X', and X' are a timelike and a spacelike
parameter. "

Associated with the string world sheet we have
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the bivector

gg ~x Bx
ggA pyB &

where g" is the two-dimensional Levi Civita
symbol normalized as follows &0' = -&'o = ~

the Lagrangian density can also be written as

(3.5)

(3 2')

We shall refer to the gauge-invariant quantity
(-y)'/'p as the gauge-invariant density.

We have two ways to characterize the strings:
first, by its world sheet, i.e., x"=x"(XA) and
second, by a surface forming bivector Z~". This
last characterization, called the intrinsic charac-
terization, ' is more useful for our purpose. The
conditions for Z"" to be a surface forming bivec-
tor" are

The energy-momentum tensor for one string is

(3.6)

gu (ogler 1 0

g g~iogsy) 0

(3.13)

(3.14)

(3.7)

Let us consider a cloud of strings with world
sheets described by X"=X~(A.",$, q), where g and

g are variables labeling a particular world sheet
and X" are parameters describing the evolution of
this particular world sheet. The cloud of strings
is also characterized by a proper density p. Now

the energy-momentum tensor for a cloud of strings
is"

(3.8)

By invariance of the theory under reparametriza-
tion we mean invariance under the transformation

x'-z'*=a'*(z" ] q)

~'-X'"=Z'*(XA, &, q).

(3.9a)

(3.9b)

We shall require that the Jacobian of the above
transformation be different from zero and that
the interval (-~, +~) be left invariant by the
transformation (3.9a). We shall also refer to the
above-mentioned invariance as "gauge invariance. "
Note that under the transformation (3.9) the world
sheet X" transforms as a scalar and the bivector
Z'" as

where the square brackets denote antisymmetri-
zation in the enclosed indices. The first condition
tells us that the bivector is simple, i.e., that it
can be written as g" X~X~ and the second tells
us that the two vectors X, and X, fit together to
form a surface, i.e., X„=2„X . Two useful iden-
tities are

g 0 ng b'av +yves

(3.15)

(3.16)

[~.(p~")~,'~,./~1 =0. (3.18)

In finding this result we have made use of (3.15}
and (3.13). From (3.17) and (3.18) we get

V~(pZ "~)ZB'=0. (3.19)

The identity (3.15) is valid for any antisymmetric
tensor and (3.16) is a consequence of (3.13), (3.3),
and (3.5).

The Bianchi identity and (3.8) give us

&.(P~")~g'/(-7)'"
+pZ"'V„[Z,"/(-~)'"]=0. (3.17)

Upon multiplication of Eq, (3.17) by Z„„/(-y}'/'
we get

Z~"*(XA*,g, q) = Z „Z"(XA,g, q),

where

(3.10} Using the special representation of Z"" given by
Eq. (3.5) and adapting the coordinates to the para-
metrization we get the "conservation law"

V (pZv")=0. (3.20)
(3.11)

To have a T"" invariant under a reparametriza-
tion of the string's world sheets p must transform
as (-y) '/' (for a deeper discussion of this point
see Ref. 13). The following quantities are mani-.
festly gauge invariant:

(3.12a)

(3.12b)

(3.12c)

Note the similarity of these expressions with the
corresponding expression for particles, (2.8).

v'»~v "X'+ " "'a x a x'=0A &6
~ A B (3.21')

where v„'"' denotes the covariant derivative on the
surface world sheet. Equation (3.21') is the equa-
tion for a minimal two-dimensional surface em-
bedded in a Riemannian space. " The fact that the

Note that Eqs. (3.20) and (3.13) imply Eq. (3.14).
From (3.19) and (3.17}we obtain

~"~.(~,"/(-r)'") = o. (3.21)

Taking the particular representation of Z~~ given
by (3.5) one can cast (3.21} into
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Z vvZ 2' (3.22}

string equation of motion (3.21) can be derived
from the Bianchi identity is well known. '

Equations (3.21) and (3.19) are manifestly
gauge invariant. Furthermore, if we choose a
particular parametrization, let us say

C(R v=o.

Equations (3.24) imply that

(3.32)

where A,„represents an arbitrary second-rank
covariant tensor. For scalars the Lie derivative
reduces to P,Q= $'B„P. As a consequence of

(3,30) we have

Eq. (3.21) will propagate it. From (3.21), (3.22),
(3.15), (3.16), and (3.13) we get

Z "vVv in(-c'/Z„2ZN ) =0. (3.23)

g(Z„„——0,

8, p.=o,
(3.33)

(3.34)

2g', P-.= pZ, '-Z, /( r)'"- (3.24)

and Eqs. (3.13), (3.20), and (3.21). Equation
(3.24) can also be cast as

Thus, the parametrization (3.22) is propagated by
the field equations.

Hence, in summary we-have that the Einstein
equations plus their integrability conditions for a
cloud of strings are

i.e., that a space-time symmetry must also be a
symmetry of Z~" and p.

IV. ENERGY CONDITIONS

In this section we study the restrictions that
different energy conditions impose on the bivector
Z"". We have that the most natural energy condi-
tions'4 are the following:

(a) The weak energy condition, i.e.,

8 fp(-Z)'"Z"")]=0. (3.27)

~..=pr(-r)'"~..- Z."Z.,/'(-~)'"].

1~vv =-fP/(-X)'"](Z, 'Z, +-,'Z„„Z"Z,) (3 26)

Equation (3.25) will be useful when dealing with
particular symmetries and Eq. (3.26) shows a
remarkable resemblance with Einstein-Maxwell
equations. . Equation (3.20) is equivalent to

where U„ is an arbitrary timelike vector:

U,U" & 0.
From (3.8) and (4.1) we find

pU ZvNZ VU /( y)1/2) 0

(b) The dominant energy condition, i.e.,

(4 1)

(4.3)

For some particular eases see can have

Z~~B( Za„) ——0, (3.28}

r"U„U„&O,

U.r"r.vU o O.
V

(4 4)

(4.5)

e.g., if we have only Z» —-Z»00. When (3.28)
holds, Eq. (3.21) is equivalent to

(Z"Z /y+5" )8 (-y)'"=0, (3.29)

as a consequence of (3.15).
The closest analog to the "usual" gauge em-

ployed when dealing with particles u"u = 1 is y
=-1, i.e., Z„„7""=-2. This is the gauge used
by Stachel' "to study the string cloud model.
Note that this gauge restricts the model because,
in general, y can take the value zero. In particu-
lar, for open strings we have that the usual bound-

ary conditions imply y =0 at the open strings' end
points. " Also closed strings can have y =0 at
some singular points. "

To end this section let us study the behavior of
Z~" and p when the space-time has a symmetry
described by a Killing vector" (", i.e.,

p'U Z Z vU ~0.0 V

(c) The strong energy condition, " i.e.,
(Tv„--21 g,T)UvU") 0.

(4.6)

(4.7)

From (4.2) and (3.8) we find that (4.7) is equiva-
lent to

PUvZ BZ Uv/( y)1/2 )p( y)l/2

where

O' =U'/(U U.)'".

(4.8)

(4.9)

Note that the expressions:(4. 3), (4.6), and (4.8)
are gauge invariant.

From the identity (3.16) we find that this condition
gives

k,g„„=0, (3.30}
V. STRING CLOUD WITH SPHERICAL SYMMETRY

QP,„=—$'B,A„„+A„„R„$1+4,8„g', (3.31)

where g, denotes the Lie derivative. It is defined
as

In this section we study the general solution to
Einstein's equations for a cloud of strings with
spherical symmetry. The method that we follow
to solve the above-mentioned equations is as fol-
lows: First, we solve the Einstein equations for
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o

the general static spherical symmetric metric"

ds2 evdt exdr 2 r 2d8 2 r 2 sjn28d$2 (5.1)

where v and X are functions of r. Next we prove
that the static solution is the general one.

The symmetries of the space-time under con-
sideration restrict the density p and the bivector
Z~„ to be functions of r alone. Furthermore, .

these symmetries restrict Z~„ to have only two
independent components different from zero Zpy

and Z». The previous statements can be proved
directly from (3.33), (3.31) and the explicit form
of the three $~ that characterize the spherical
symmetry. " Also, it is a rather intuitive fact
that a spherically symmetric bivector Z"" must
have its "electric vector" (Z", i = 1, 2, 3) as well
as its "magnetic vector" (Z»-=Z'~, cyclic permu-
tation in i,j, k) along the radial direction. Equa-
tions (3.13) and the condition y & 0 tell us that out
of Zpy and Z» only Zpy survives . Thus, the gener-
al solution to Eq. (3.20) is

r'[(8'}'+ sin'8(U')'] & 0 (5.12a)

The weak and the dominant energy conditions give
us

r 2[(U )'+ sin 8(U')'] ~ 0 . (5.12b)

Note that these conditions do not impose any re-
striction on the value of the constant a.

The constants a and m are not related, thus,
the metric

(5.11)

But T„=O and the Einstein equations (3.21) imply
that X is time independent, ' and from this fact it
follows that Z„, p, and v are also time independ-
ent. In other words, we have a "Birkhoff theo-
rem" for the cloud of strings. Thus, the solution
exhibited before is the general solution for the
symmetry under consideration.

The strong energy condition for the present
solution reduces to

~pl "(x+v& /22epr
(5.2)

2m 2 2m 2ds = 1 —a-—dt — 1 —a-- -- dr

where a is an integration constant. Note that the
guage-invariant density (-y)'t2p has the value

—r 'd8' r' s-in'8dp' (5.13)

(-y)'"p =e/r', (5 3)

thus, a is a positive constant.
Equation (3.29) is trivially satisfied by (5.2).

From (5.1)-(5.3) we find that the Einstein equa-
tions (3.21) reduce to

represents the space-time associated with a par-
tic.le of mass m centered at the origin of the 'sys-
tem of coordinates surrounded by a spherical
cloud of strings of gauge-invariant density (-y)'~'p
=a/r2. The solution (5.13) has a horizon of
radius

2v" —A. 'v'+ 4v'/r+ v" =0
2v" —X'v' —4X'/r+ ve =0,

1

e '[1+ ', r(v' -X')]--1=-a.
From (5.4) and (5.5} we find

p'+X. '= 0

so

(5.4)

(5 5)

(5.6)

(5.7)

(5.6)

2m a41.
1 —a' (5.14)

If a is less than one we have that the cloud of
strings enlarge the Schwarzschild radius of the
particle by the amount (1 —a) '. When a & 1, (5.13)
represents a homogenous space-time. The cloud
of strings alone (nz =0) does not have horizons; it
only has a naked singularity at r=0. This can be
seen from the fact that

where we have omitted the constant of integration,
because it can always be set equal to zero by a
suitable redefinition of the time coordinate.

Equations (5.6) and (5.V) give us

R = 2(-y)'~'p = 2a/r',

48m2 16m a 4a'
agy6 = r6 + r5 r4

(5.15)

(5.16)

(e»r)'=1- a.
Thus,

(5 9)

(5.10)e"=e =1-a—2m/r,

where m is an integration constant.
Now let us consider the general case, i.e., Z~"

=Z'"(t, r), p=p(t, r), Z=X(t, r), and v=v(t, r).
As before, we find that the only surviving compo-
nents of Z~„are Z„=-Z„. Thus, we have

Note that if m =0 and a=1, we still have a well-
behaved metric as (5.15) and (5.16) indicate. This
fact can also be seen by making a simple change
of coordinates in (5.13).

As an application of the previous results, let us
construct a simple model of a star. Because of
the singular character of (-y)'~ p at r=0, (5.13)
cannot be used alone to construct a star, but it
can be used as an outer layer of a multilayer star.
A usual multilayer model of a star" is a model
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, —2'(d8' + sin'8 dp2) .1- 3P,r' (5.17)

(1 1p 2 2)1/2 (1 1p ~ 2)1/2
p0 3(1 lp 2 2)1/2 (1 lp 2 2)1/2 (5.18)

where the range r is 0 & x & r„x, is the "radius"
of the core, and 8 is a constant to be determined.
Note that the pressure vanishes at x=r, . The
metric for the outer layer is taken as (5.13),
but now the coordinate r is restricted to x, &x&x„
where x, is the star "radius. " Outside the star
(2'& r, ) the metric is taken as

ds' = (1 —2M/r) dt2 —(1- 2M/r) ' dr 2

—2'(d8' + sin'8 dQ'), (5.19)

where each layer is formed by a fluid with a dif-
ferent state equation. Hence, the solution to
Einstein's equations for a fluid sphere can be
used to describe physical properties of this system
by a suitable choice of the state equation for each
layer. The main mathematical problem presented
by these models is that the metrics associated
with each layer must match continuously, one to
each other. And the metric that represents the
outermost layer must match continuously to the
Schwarzschild metric. As an example we shall
consider a two-layer star, the core formed by a
perfect fluid of constant proper density p, and
pressure P, and the outer layer formed by a
cloud of strings. Thus the metric and the pressure
for the "inner layer". |.s"
ds2=8'[3(1--,' 2 ')' '- (1--,' ')' ']dt'

sistent.
The model that we have considered presents a

novelty in the fact that the different layers that
form the star are made of different kinds of mat-
ter. %e have presented the most simple model to
show with an example that the matching of a per-
fect fluid with a string dust can be performed.
This fact can be used to construct more elaborated
models of star, e.g. , the classical analog of a
star formed by quarks attached by strings. " (This
point is under active consideration by the author. )

VI. STRING CLOUD WITH PLANE SYMMETRY

In this section we study the general solution to
Einstein's equations for a cloud of strings with

plane symmetry. The general plane-symmetric
metric in null coordinates is"

ds2 = 2e"dudv —e"(dx'+ dy2), (6.1)

where u and p, are functions of u and v. The
symmetries of (6.1) restrict Z"" and p to be only

functions of u and v. Furthermore, these sym-
metries restrict Z„„to have only two independent
components Z, and Z», where by "+" and "-"
we refer to the coordinates u and v, respectively.
Equation (3.9) and the condition y & 0 tell us that
only Z, and Z are different from zero. Thus,
the general solution to Eq, (3.20) is

(6.2)

where a is an integration constant. From (6.2)
we find that the gauge-invariant density (-y)' 'p
has the value

i.e.-, the Schwarzschild metric.
The condition that (5.17) and (5.13), and (5.13)

and (5.19) match continuously at 2 =r, and 2'=2„
respectively, gives us

(-y)'/'p =ae ", (6.3)

thus, a must be such that (-y)'/'p&0.
Equation (3.29) is trivially satisfied by (6.2).

Now the Einstein equations (3.25) reduce to

2' = 3 p t' —aJ'0
y

3

2M = a(r, —r )+ -',0p0r0'.

(5.20)

(5.22)

The model under consideration has a clear mean-
ing only if the three line elements of the different
regions of the space-time are static. This condi-
tion is implemented by

+(d, +zp, ,p, =0,
p. + —p, —p. ~ =P,

(p.„+p,.p )e"=ae",

(6 4)

(6 5)

(6.6)

where we have introduced the notation p,,—= 8, p, ,
(d =—8 M, etc.

From (6.4) and (6.5) we get
pa&0' ~ 1

2m
f'p &

p a & 1
1 —a'

2M

(5.23)

(5.24)

(5.25)

&o --'2 p, =ln[p, .G (v)],

10--, p =h1[p-F, (&)],

(6.8a)

(6.8b)

where E and G are arbitrary functions of their
arguments. Thus, Eqs. (6.8) give us

The condition (5.23) and Eqs. (5.21) and (5.22)
imply (5.24) and (5.25). Thus, the model is con-

(6.9)

This condition tells us that p is a function of u and



13DD PAT RIG IO S. LET E LIER 20

v of the form

V =V[E(~)+G(~)j

So from (6.10) and (6.8) we have

eQ p Ieg /2g 6

(6.10)

(6.11)

VII. STRING CLOUD WITH CYLINDRICAL SYMMETRY

In this section we study the solution of Einstein
for a cloud of strings when the metric is given
by32

ds' = e""~&(dt' —dr')

p II+ pI2 ap le 0/2 (6.13)

where a prime denotes differentiation with respect
to t=E(u)+ G(&&). When we put (6.10) .and (6.11)
into (6.5) and (6.7) we get

p
II + ~II + i

p
I2 0 (6.12)

e»r 2d&t&2 e2&ds~ (7.1)

where v and A. are functions of t and r.
As in the previous cases we find that Zpy Zyp

t D and that the integrability conditions are ful-
filled by

From (6.11) and (6.13) we have

1
(i&

rr + &&@re P I2) (6.14)

gpj. a e2(&-»
p'Y

(7.2)

and from (6.14) and (6.13) we recover (6.12).
Thus, we only need to solve (6.13) that can be
cast into the form

(eP)n 2g(ePI2)p (6.15)

This ordinary differential equation is solved by

e" —C, ln(e" ~'+ C,) = at + C, , (6.16)
where C& are arbitrary constants. When C,.=O,
solution (6.16) must be changed to

e'= (at+ C,)'.
From (6.1) and (6.11) we get

ds2 = 4QdEdG —e~(dx ' + dy'),

where

Q —(eP /2) (eP)e/2&&

(6.17)

(6.18)

(6.19)

Letting s =G Eand t=-G+E (as before), we have

(7 3)

where a is a positive constant.
The Einstein equations for this case reduce to

voo —v, &
—v, /r —Zoo+ &&&, +&&,/r+ 2&&o =0, (7.4)

v&&
—v&/r —voo + Zoo —

A&&
—X&/r + 2&&& —0

q (7.5)

2XOX& —vo/r = 0

r(&&00 —&&„—».,/r) = ae'&"-'&,

r(&&oo —&&„—&&,/r) =ae"" '&,

(7.6)

(7.7)

(7 8)

where we have introduced the notation Bpv—= B,v,
X, -=ay, etc.

From (7.7) and (V.8) we find that a =0, and thus
p=0. The same result can be achieved as follows.
From (7.4) and (7.5) we get

ds' = Q(t)(dP —ds') —e"&'&(dx '+ dy'), (6.20) Xo +&&,i —v&/r =0, (7 9)

where», (t) is the solution to (6.16) or (6.17).
The strong energy condition for the present case

reduces to

e"[(0')'+ (U')']& 0. (6.21a)

The weak and dominant energy conditions give us

e"[(v')'+ (v')'1- o. (6.21b)

Thus, Eqs. (6.21) restrict e" to be positive and
Eq. (6.3) implies a&0.

We have for this solution a Killing vector
($ =5 ') that is a consequence of the field equa-
tions (Birkhoff theorem). The norm of this Killing
vector is $ ( =-Q, so its character will depend
on the sign of 0; in particular, when C, =0, we
have A=a&0. In this late case the space-time
is homogeneous. Note that this solution is quite
similar to the general solution to Einstein-Max-
well equations for the same symmetry. " This
fact is not too surprising if one considers Eqs.
(3.26).

and (7.6) and (7.9) tell us that the integrability
condition for v is

&&„-&&„-&&,/r =0. (7.10)

Thus, from either (7.7) or (7.8) we conclude that
a=0. In other words, the symmetries of (7.1)
are too restrictive to allow a solution of Einstein's
equations in this case. It is a well-known fact that
there are particular metrics that are too restric-
tive to be solutions of Einstein's equations for
some models of matter. For instance, a metric
whose Ricci scalar is identically zero, when
coupled via Einstein's equations to a cloud of
particles, will produce p~=—0. This will also be
the case when coupled with a cloud of strings.
An example of a metric with R =0 is

ds' = 2H(u, x, y)du2+ 2dudv —dx' —dy'. (7.11)

Finally, we want to point out that the metric (7.1)
is not the most general metric with cylindrical
symmetry. "
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VIII. DISCUSSION

In the study of the string cloud model it has not
been considered the behavior of the open strings'
end points. '5 If we do not impose the usual"
boundary conditions at the strings' end points we
have that each string in the cloud is not a closed
system, i.e., we have energy going out of the
string by their end points. But the cloud as a
whole is a closed system as a consequence of the
Bianchi identities (V„T""=0). So the model
studied in this paper forms a well-defined physi-
cal system, even in the case of open strings
without the usual boundary conditions. The prob-
lem indicated above does not appear when we con-
sider that each string that forms the cloud is
closed. "

If we impose the condition that no energy es-
capes from the strings' end points, we find that
y=0 at the strings' end points. 4 And y =0 implies
that the end points move with the speed of light. 4

Thus, when y =0 the concepts of proper energy
density p and gauge-invariant density (-y)'~'p are
meaningless. In this case we must replace in
(3.8) p/(-y)'~' by ao and Z"" by K~", where so is
an energy density and K~" a null bivector (K""K„„
=0). Completely null strings have been studied
by Schild." The behavior of the gravitational
field in the weak-field approximation for a par-
ticular open string is discussed in Ref. 8.

%e have a similar situation for particles that
move with the speed of light (u u =0); p~ as well
as p~(u u )'~' are meaningless. We must replace
in (2.5) p~/(u"u )'~' by m~ and u" by k", where co~

is the particles' energy density and k~ is a null
vector. Particular solutions to the Einstein
equations for beams of photons are known. " It js
interesting to point out that the general solution
to Einstein's equations in the weak-field approxi-
mation for a beam of photons is unknown. 3' Also,
the general solution to Maxwell's equations for a
null current is unknown. "

To use the string cloud model to construct more
complete models of stars than the one presented
in Sec. IV as well as to study some of its cosmo-
ogical consequences we need to introduce the con-
cept of pressure, in other words, to transform
the "cloud" in a "fluid. " Part of this program
has been already completed. "

The motivation that we had to study the string
cloud model is also valid to the study of a "mem-
brane cloud model, " i.e., now the constitue'&ts of
the cloud are two-dimensional objects." Work
done along this line will be soon reported.
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