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The concept of entropy is examined with an eye toward gaining insight into the nature of black-hole
thermodynamics. Definitions of entropy are given for ordinary classical and quantum-mechanical systems
which lead to plausibility arguments for the ordinary laws of thermodynamics. The treatment of entropy for a
classical system is in the spirit of the information-theory viewpoint, but by explicitly incorporating the coarse-
grained observable into the definition of entropy, we eliminate any nonobjective features. The definition of
entropy for a quantum-mechanical system is new, but directly parallels the classical treatment. We then
apply these ideas to a self-gravitating quantum system which contains a black hole. Under some
assumptions—which, although nontrivial, are by no means exotic— about the nature of such a system, it is
seen that the same plausibility arguments which lead to the ordinary laws of thermodynamics for ordinary
systems now lead to the laws of black-hole mechanics, including the generalized second law of
thermodynamics. Thus, it appears perfectly plausible that black-hole thermodynamics is nothing more than
ordinary thermodynamics applied to a self-gravitating quantum system.

I. INTRODUCTION

The concept of entropy and its role in the laws
of thermodynamics has undoubtedly been one of
the most widely discussed issues in physics in
the past century. While there are nearly as many
points of view on this subject as there are authors,
there is basic agreement—at least in the domain
of classical mechanics—as to what entropy is and
as to the statistical nature of the laws of thermo-
dynamics. However, some remarkable recent
developments in the theory of black holes have
given cause for reexamination of some of these
ideas.

First, a complete mathematical analogy was
found between the ordinary laws of thermody-
namics and the laws of black-hole mechanics
in general relativity.! Most striking is the anal-
ogy between the law of entropy increase in ther-
modynamics and the law of area increase® for
black holes. Since the laws of thermodynamics
are statistical in nature—valid only with high
probability—while the laws of black-hole mechan-
ics of classical general relativity are rigorous
theorems in differential geometry, most theo-
rists at first viewed this analogy as merely a
mathematical curiosity. However, this situation
changed dramatically after Hawking’s discovery?®
of the quantum particle-creation process near
black holes which results in an exactly thermal
emission of particles to large distances.* The
temperature of this radiation equals (up to a nu-
merical factor) the surface gravity of the black
hole, which is the quantity playing the role anal-
ogous to temperature in the laws of black-hole
mechanics. Furthermore, this result made en-
tirely viable the generalized second law of ther-
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modynamics which had earlier been proposed by
Bekenstein.®

The idea here is the following: If black holes
are present it is unpleasant to have to include the
entropy of matter that has fallen into a black hole
in counting up total entropy, since neither the
entropy nor any other property of this matter
can in principle be measured by an observer out-
side the black hole. But the total entropy of mat-
ter outside black holes can of course, decrease by
simply allowing matter to fall into a black hole.
Bekenstein defined a new quantity, called the
generalized entropy S’, to be the sum of the total
entropy of matter outside black holes (S,,) plus a
multiple of the total area of the black holes (S,,).
He proposed that the generalized entropy can

‘never decrease, since when matter falls into a

black hole (thereby decreasing S,,), it also in-
creases S,,. This generalized second law does
not quite work with a purely classical picture of
black holes because, by sending in low enough
temperature radiation, one can decrease S, by a
large amount while keeping the increase in S,
small. But the quantum particle-creation process
saves one from this potential violation of nonde-
crease of S’ by making the black hole emit more
than it would absorb in this situation. Further-
more, although the particle-creation process vio-
lates the area-increase theorem of classical
black-hole physics—black-holes area decreases
as a result of it—it does so at the expense of
emission of thermal radiation with high S, and
thus no decrease of S’. Thus while S, and S,
may individually decrease, it appears to be true
that S’ never decreases. :

The above results and ideas have left little doubt
that the connection between black hole and ther-
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modynamics is considerably more than a mathe-
matical analogy between certain formulas. But
the full nature of this fundamental connection
remains to be explored. Indeed, it is widely be-
lieved that the notion of entropy in quantum gravi-
tational physics may be much more fundamental
than it is in ordinary physics (where it has the
clear status of a derived concept, dependent on
coarse graining, etc.) and that this may somehow
be related to black-hole thermodynamics.

The main purpose of this paper is to gain more
insight into this issue. We shall argue in Sec. VI
that the laws of black-hole mechanics—including
the generalized second law of thermodynamics—
are ncthing more than the ordinary laws of ther-
modynamics applied to a self-gravitating quantum
system containing a black hole. In particular,
there appears to be no need to postulate a more
fundamental role of entropy for a quantum gravi-
tational system than for an ordinary system.

Before discussing self-gravitating quantum sys-
tems with black holes, it will be necessary to give
a more precise treatment of entropy for ordinary
dynamical systems. Therefore, we begin in Sec.
II with a discussion of entropy in classical mech-
anics. We give a precise definition of entropy
which explicitly incorporates the dependence of
entropy on the choice of coarse-grained observ-
able. This definition is in the spirit of information
theory but clears up some of the nonobjective as-
pects of that viewpoint. Here the entropy of a
system depends on the observable but not on the
observer or how much he knows about the system.
The thermodynamic entropy of a subsystem—de-
fined as the maximum of the entropy over all
states—is, for a wide class of observables, in-
dependent of observable and is given by the stand-
ard microcanonical ensemble formula, so stand-
ard thermodynamic formulas may be recovered.
The treatment given here also provides.a simple
resolution of the Gibb’s paradox concerning the
entropy of mixing.

The definition of entropy in ordinary Schrﬁdinger
quantum mechanics is the subject of Sec. III. As
in classical mechanics the precise definition of
entropy depends on what observable is being mea-+
sured. Entropy itself will be defined to be an ob-
servable, i.e., an operator. The definition given
in Sec. I will not reduce to the commonly given
tr(p Inp) formula for density matrices p. In fact,
the entropy of pure states can be high, the entropy
of density matrices can be low, and the entropy
of both can, and usually will, vary with time (as
it must if it is to reduce to the classical notion
of entropy in the classical limit). However, for
a wide class of observables, the thermodynamic
entropy will again be independent of observable

and be given by the standard microcanonical en-
semble formula, so the usual thermodynamic
formulas may again be recovered.

The utility of the notion of entropy stems from
the fact that, as argued in Secs. II and III, itis
highly plausible that for most (complicated) sys-
tems the total entropy of a given state is the log-
arithm of the fraction of time the system spends
in that state or others which have the same value
of the coarse-grained observable. In other words,
it measures the fraction of time the system “looks
like” it is in the given state. In classical mechan-
ics the main argument leading to this conclusion
is the standard ergodic argument usually employed
to justify the microcanonical ensemble. Similar
arguments in the quantum-mechanical case are
given in Sec. IIIL

Thus if a system is in a state of low entropy,
it is likely to quickly change its appearance (with
respect to the given observable) and go to a state
of higher entropy, since it spends very little of
its time in states of low entropy. On the other
hand, if the system is in a state of maximum
entropy, it is likely to “just sit there” in a state
of apparent equilibrium (with respect to the given
observable). - In other words, we have a plausi-
bility argument for the second law of thermody-
namics, derived in a manifestly time-reversal-
invariant manner. We also have an important
entropy criterion for the (apparent) equilibrium
of a system. The potential uses and pitfalls of
entropy in stability analysis are discussed in Sec.
IV and illustrated there by the example of a New-
tonian self-gravitating gas.

Plausibility arguments for the laws of thermo-
dynamics are given in Sec. V. These arguments
are quite simple and general, but of course are
far from rigorous. To show that thermodynamics
rigorously applies to a given system would require
a detailed study of that system, and such a study
is not attempted here. Our aim in Sec. V is not
to prove the laws of thermodynamics but to gain
a basic understanding of why they work in the
cases where they do apply.

Finally, in Sec. VI we apply these ideas to a
self-gravitating quantum system with a black hole.
A satisfactory quantum theory of gravitation does
not yet exist, so the ideas of this section are
speculative. The main assumption that will be
made is that a quantum self-gravitating system
behaves basically like an ordinary quantum sys-
tem. This is a much stronger assumption than it
might at first appear to be, since a classical self-
gravitating system, either Newtonian or general
relativistic, does not behave like an “ordinary”
classical system. However, as explained in Sec.
VI, the quantum particle-creation results lend
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plausibility to the validity of this assumption.
Assuming further that the degrees of freedom

of the system can be (approximately) divided be-
tween “black-hole states” and “other states” and
assuming a specific formula for black-hole en-
tropy with respect to a naturally chosen observ-
able, we argue for the main conclusion of this
paper that black-hole thermodynamics is, plausi-
bly, just ordinary thermodynamics applied to a
quantum self-gravitating system.

II. ENTROPY IN CLASSICAL MECHANICS

The state of a system in classical mechanics is
described by a point in its phase space M. (For a
gas consisting of N particles, MW is 6N-dimension-
al.) If we knew the exact state of the system (as
well as the‘ exact equations of motion) we could
predict the exact future behavior of the system.
However, the observables which we can measure
in practice do not come close to telling us the ex-
act state of the system and force us into a statis-
tical description of its future behavior. In addi-
tion, since we observe only very limited proper-
ties of the system, the system may appear to be
in equilibrium (i.e., the observables may not
change with time over long periods) even though
the system is actually undergoing very compli-
cated dynamical motion. It should be emphasized
that our notion of equilibrium of such systems
depends entirely on what observables are being
measured. Indeed, an alien civilization with
eyesight good enough to keep track of the motion
of individual particles in a classical gas would
undoubtedly be surprised that we would ever at-
tribute any equilibrium properties to it.

An isolated system is one whose interaction with
other systems can be neglected. It can be charac-
terized by it total energy E as well as other “state
parameters” which will be collectively labeled as
a. Restriction to given values of E and o will
define a submanifold M of the original phase
space M. We shall assume that this “reduced
phase space” M is compact. The state param-
eters o are supposed to be chosen so that the
dynamical trajectories on M are (at least, approx-
imately) ergodic. Thus for example, for a gas
confined to a box, a ordinarily might consist only
of parameters describing the size and shape of
the box; however, if the box were exactly spheri-
cal, it would also have to include the angular
momentum of the gas since it would now be con-
served. The issue of determining the correct
state parameters for a given system is a
nontrivial one. We attempt no general answer
here, but merely assume that the correct state
parameters have been identified.

An observable on an isolated system is simply
a map from M into another set (typically R or R"),
We define a coarse-grained obsevvable © to be an
observable which is piecewise constant, i.e.,
such that M can be divided into a finite number of
cells with © constant on each cell. (By “cell” we
mean a set whose interior is connected smooth
manifold and whose boundary is a C° manifold of
one lower dimension.) Because of finite mea-
surement accuracy, physically measurable
quantities correspond much more closely to
coarse-grained observables than continuous ob-
servables.

Let © be a coarse-grained observable. We de-
fine the total entropy with respect to © of the state
x &M by

S(x)=In[vol{y eM|0(y)=0()}], (1)

where the natural (Liouville) measure on M is
used to compute the volume, and we use units
where Boltzmann’s constant & is set equal to 1.

In other words, S(x)-is the logarithm of the volume
of the cell to which x belongs together with the
other cells for which © takes the same value.

As an example, consider a gas of N particles.
The most natural observable to consider for this
system is the distribution function, measured to
finite accuracy; -this represents the most we could
reasonably expect to measure without keeping
track of the individual particles. To define O, we
break up the 1-particle phase space into cells of
uniform size and take O(x) to be the collection
{n;}, where n, is the number of particles in the
ith cell of 1-particle phase space when the system
is in state x&< M. The cells in M will then be of
approximately® uniform size so, up to an additive
constant, the entropy of x will just be the loga-
rithm of the number of cells which have the same
value of @ as x. Hence we recover the familiar
formula

1
S(x)=1n; N1 -+ const (2)

17,
i

which, upon use of Stirling’s approximation,
leads to the standard formula

S(x)=-3_ n;lnn, + const. (3)

However, if we had chosen a totally different
coarse-grained observable © (e.g., one which
kept track of the individual particles) we would
have obtained a quite different formula for S.
The importance and utility of S stems from the
idea that S(x) measures the fraction of time the
system spends during its dynamical evolution in
states which are indistinguishable (by the ob-
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servable ©) from x. The main arguments for
this are the well-known arguments used to justify
the microcanonical ensemble, which we shall not
repeat in detail here (see, e.g., Ref. 7). If M is
metrically indecomposable (i.e., if M cannot be
written as the disjoint union of two sets of posi-
tive measure each of which is taken into itself by
the dynamical evolution) it follows from Birkhoff’s
theorem” that for almost all initial states, the
fraction of time spent in each cell equals its
volume of that cell divided by the volume of M.
This means that for almost all states S(x) is (up
to an additive constant) the logarithm of the frac-
tion of time O has the same value as it does at x.
The assumption of metric indecomposability is
unrealistically strong and in any case the time
scale required to the system to manifest this
ergodic behavior is enormous compared with nor-
mal observation time scales. Nevertheless, if
the cells of O are large, it is plausible (and one
can argue, borne out experimentally by the
validity of thermodynamics) that for most sys-
tems the above interpretation of S will be valid
to high accuracy. Furthermore, even if the
system—when perfectly isolated—were to display
violations of ergodicity (e.g., many trajectories
avoid large regions of M), it is likely that small
outside disturbances would help give “effective
ergodicity” to the system. Estimates of the effects
of the tiniest disturbances on systems such as a
hard-sphere gas show that they magnify enor-
mously in a few collision times and thus have a
very large influence on dynamical trajectories
in M. If gross violations of ergodicity still occur,
then, of course, new state parameters must be
identified to further reduce M to the submanifolds
where ergodic behavior is achieved.

Consider now the case where the total phase
space M of the isolated system can be expressed
as a product of phase spaces of subsystems,

M =N, X+ XM | (4)

and the coupling between these subsystems is
sufficiently weak that, at least over a limited
period of time, we may treat each of them as an
(approximately) isolated system in its own right.
Then we may assign state parameters E;, a; to
the ith subsystem defining its reduced phase space
M;. If we have a coarse-grained observable O,
on M;, we may define the entropy of a state x, of
the ith subsystem in exactly the same manner as
for the original system, namely,

S (x;)=In[vol{y, € M,| 0,(y,)=0,(x,)}]. (5)

The reason for making two separate definitions
Eqgs. (1) and (5) is logical clarity with regard to
the following point. For the total isolated system

we do not contemplate every varying its state pa-
rameters E, a, whereas for the subsystem we do..
Hence for the total system we have the above
ergodic argument and interpretation of S as mea-
suring fractions of time (and thus, as discussed

in Sec. V, a plausibility argument for the second
law of thermodynamics) but no meaningful depen-
dence of S on state parameters, whereas for a
subsystem in general we have no ergodic argument
but can meaningfully vary E; and «;.

Suppose now, as ordinarily is the case, that for
each subsystem the coarse-grained observable 0,
arises from a coarse-grained observable ; de- .
fined on all of 9M;. That is, suppose the cells of
0, arise from intersecting the cells of §; in M,
with the submanifold M;. The collection Q
=(Qy++-,2,) defines a coarse-grained observ-
able on the total phase space M. Let O be the
coarse-grained observable obtained from £ by in-
tersection with M. Each cell of € in M is a
product of cells of €; in M,. Thus the volume of
each 2 cell is a product of the volumes of ; cells.
If the relative sizes (i.e., ratio of volumes) of the
0, cells in M, induced by these €, cells do not
vary strongly with the state parameters E,, o,
then the volumes of the O, cells will be approxi-
mately proportional to the volumes of the corre-
sponding 2; cells. Similarly, if the relative sizes
of the O cells in M do not vary strongly with E, «,
the volumes of the O cells will be approximately
proportional to the volumes of the corresponding
2 cells. Hence the volume of each © cell will be
approximately proportional to the product of the
volumes of the O; cells. Taking logarithms, we
find that the total entropy of a state x=(x,,...,x,)
in M (where each x;€ M,) is, to a good approxi-
mation, given by 4

S =3 8,(x). (®)

However, if the observable O is not chosen in the
above manner, the additivity of entropyneed not
hold.

The above resultisbest illustrated by the follow-
ing example: Suppose the isolated system consist of
two noninteracting gases confined to the same box.
Suppose we take as observables O, and O, the
(coarse-grained) distribution functions of the two
gases. The entropy of each gas will then be given
by Eq. (3). If we take O to be the pair of distribu-
tion functions (i.e., if the two gases are observ-
ably distinct and we measure both distribution
functions), then Eq. (6) applies and the total en-
tropy S will be. the sum of S, and S,. On the other
hand, if © is say, the sum of the two distribution
functions (i.e., the gases are observably indistinct



and we measure only their cumulative effect),

then S will not be S, +S,. This resolves the Gibb’s
paradox on the entropy of mixing. Some textbook
treatments® of this point claim that the Gibbs para-
dox cannot be resolved in the context of classical
mechanics.

We define the thermodynamic entvopy 8; of the
ith subsystem of an isolated system to be the max-
imum of the entropy over all states x; correspond-
ing to state parameters E;, a;:

8, = max S,(x;). M

Thus, 8; is a function of the state parameters E;
a;, not the individual states x;. Of course, §,
also depends on the choice of observable ©;. How-
ever, for observables which we can in practice
measure for most complicated systems, a single
group of cells with the same value of O; will dom-
inate the reduced phase space M,;. For example,
for a gas this will be true if 0; is taken to be the
coarse-grained distribution function (with the
phase-space cells not chosen too small and with
additional coarse-graining defined on the {ni}). In
practice we measure considerably less than this
about a gas, and the domination by the largest
group of cells will be even greater. Thus we can
estimate $; as

$,(E;,a;)=1In(volM,). (8)

Equation (8) is just the standard microcanonical
ensemble formula for entropy. From it we can
recover all the usual (observable, independent)
formulas for the thermodynamic entropy of class-
ical systems. )

III. ENTROPY IN QUANTUM MECHANICS

In this section we shall define entropy for an
ordinary quantum-mechanical system in close
parallel with the treatment for a classical system
given in Sec. II. For a density matrix p, our

definition will not reduce to the familiar formula®

S=-tr(pIlnp). This latter expression has the
properties that (a) it remains constant with time
for a perfectly isolated system and (b) it is not
measurable in practice. For these and other
reasons, it clearly does not correspond to the
classical notion of entropy. Our formula for the
thermodynamic entropy of a subsystem will, how-
ever, agree with the standard quantum micro-
canonical ensemble formula. The treatment given
here is close in spirit to a discussion of Tolman.?°
In quantum mechanics, states of a system are
described by vectors in a Hilbert space 3. How-
ever, unlike classical mechanics, an isolated
system in quantum mechanics need not have a
definite energy. Indeed, it is well beyond our .
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capacity to prepare (or measure) a complicated
system to be in an exact energy eigenstate; if we
could, then—since the exact energy eigenstates
are probably nondegenerate—we could determine
the state exactly and would have no need for ther-
modynamics. However, we can prepare an iso-
lated system so that its probability of being in a
state with energy differing from E by more than

a small interval AE is negligible. The remaining
state parameters a for such an isolated system
will consist of parameters defining the nature of
the system (e.g., for a gas in a box, parameters
characterizing the box) together with observables
which we measure and which commute with the
Hamiltonian (e.g., for a gas in a spherical box,
the angular momentum). Thus we shall take the
veduced Hilbert space H of the isolated system to
be the subspace spanned by the energy eigenstates
with eigenvalues within AE of E, intersected with
the similar subspaces of other measured observ-
ables (if any) which commute with the Hamiltonian.
We shall assume that the reduced Hilbert space H
is finite dimensional. This is completely analo-
gous to the assumption that the reduced phase
space M in the classical case is compact.

In quantum mechanics an observable is de-
scribed by a self-adjoint operator acting on the
Hilbert space of states 3. A measurement of a
quantum-mechanical system affects the system,
and if we are observing an isolated system it is
reasonable to require that we choose an observ-
able which does not disturb the system too great-
ly. Thus for example, the measurement of the
position of particles in a gas to a very high ac-
curacy is not an' acceptable observable. We shall
take as the criterion for O to be an acceptable
observable that it leave the reduced Hilbert space
invariant, i.e., © maps H into H. However, we
do not assume that © commutes with the Hamil-
tonian; indeed, if O does, it should be included
as a state parameter.

Since in quantum mechanics all information
about simultaneously measurable (i.e., commut-
ing) observables can be encoded into a single ob-
servable, there is no loss of generality in con-
sidering only a single operator ©. There is no
need in quantum mechanics to make a separate
mathematical definition of a coarse-grained ob-
servable as, in effect, the quantum theory itself
has already done the coarse graining for us. A
coarse-grained observable in quantum mechanics
is merely an ordinary observable whose degen-
eracy subspaces are “large.” Because of our
very limited measurement abilities for compli-
cated systems, the observables which we can
measure, in practice, are coarse grained in this
sense.
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Let © : H—H be an observable for our isolated
system. Since O is self-adjoint, and H is finite
dimensiondl, we can write O as

0= 1,0, (9)

where the 1; are the (distinct) eigenvalues of ©
and the ®@; are the projection operators onto the
eigensubspaces. We define the entvopy operator
S with respect to the observable © by

S= Y (Ind,))e; (10)

where d; =tr®; is the dimension of the jth eigen-
subspace. Thus entropy is an observable which,
as in the classical case, can be measured by
measuring ©. The expected entropy of a system
described by density matrix p is

(Sy =tr(Sp). (11)

Unlike the commonly seen tr(p Inp) formula,® (S)
given by Eq. (11) can change with time. Further-
more, the entropy of a pure state lying in a sub-
space of large dimension d; is high, whereas the
entropy of a density matrix constructed from
states lying in a subspace of small d; is low.

In the classical case discussed in Sec. II we
argued that most dynamical trajectories on M
spent equal times in equal volumes so that the
entropy of a state is the logarithm of the fraction
of time the system spends in a state indistinguish-

able (as far as O is concerned) from the given one.

We shall now argue that in the quantum-mechani-
cal case, most systems spend equal times in sub-
spaces of equal dimension in H and thus that the
same interpretation of entropy applies.

Suppose for simplicity that the isolated system
is initially described by a pure state v € H rather
than a density matrix. We may ask what is the
probability that at time ¢ the observable 0 will
have value A;. This probability is

b,y =(@0(8); (1))

=3 (@;8,0(0),®,8,0(0))e! ExE0t | (12)
k,1

where {(Pj} are the projection operators (spectral
family) of © and {8, are the projection operators
of the Hamiltonian. The average p; of p,(¢) over
time is the closest analog in quantum mechanics
to the fraction of time the system spends with
the given value ; of the observable. We find

1"
pj:11m~T-fo p,(t)dt

T~

= ; (®,8,0(0), @, 8,0(0))
=3 llo,gol. (13)

We can estimate the right-hand side of Eq. (13)

if we assume that the relation between the invari-
ant subspaces of O and the Hamiltonian is a “ran-
dom” one, and that v has been chosen in a random
manner with respect to the energy eigenspaces.
Projection of the unit vector v onto the kth energy
subspace should produce a vector of squared norm
lk/n, where 7, is the dimension of this subspace.
Further projection onto the jth subspace of O
should further reduce the squared norm by the
factor d;/n. Thus we estimate

— d;l, d;
p,.:kZ—nl =1 (14)

3'»

which gives the desired result that the fraction of
time the system spends in the jth subspace is pro-
portional to d;. Note that this estimate applies
even if the original vector v is an eigenstate of O,
provided, of course, that the relation between O
and the Hamiltonian is random. Even if the rela-
tion between © and the Hamiltonian is not suffi-
ciently random to give the ergodic behavior Eq.
(14) for nearly all state vectors for a perfectly
isolated system, the inability to perfectly isolate
a system from small disturbances should, as in
the classical case, contribute toward giving “ef-
fectively ergodic” behavior in H. (The extreme
sensitivity of the system to tiny disturbances
manifests itself in the quantum-mechanical case
by the energy difference denominator in the formu-
la for induced transition amplitudes.) If the re-
lation between O and the Hamiltonian is grossly
nonrandom (e.g., in the extreme case, if © com-
mutes with the Hamiltonian), and if sufficient iso-
lation can be achieved, then of course O should be
included as a state parameter.

Consider now the case where the full Hilbert
space of system can be expressed as the tensor
product of Hilbert spaces of subsystems,

H=0C,®.- - ®IC,, (15)

and the interaction between the subsystems is
sufficiently small that we can (over limited periods
of time) treat each subsystem as an (approximate-
ly) isolated system. Then for each subsystem we
can introduce state parameters E;, «; and define

a reduced Hilbert space H;. If we have an accept-
able observable O; for the ith subsystem, we can



define the entropy operator S;:H;— H; in exactly
the same manner as for the original isolated sys-
tem.

The reduced Hilbert space H of the total system
will be contained in the direct sum K of tensor
products of the reduced Hilbert spaces H,.

HoK= & [SH(E,a)], (16)
where the sum is taken over all collection of state
parameters {E,, a,;} which are compatible with the
original state parameters E, «a, of the total sys-
tem. Define the observable 2 on K to be the ob-
servation of which reduced Hilbert space H; each
subsystem belongs to together with the observa-
tion of O, on each subsystem. In other words,
the eigenspaces of 2 are precisely the subspaces
left invariant by all the projection operators onto
the H; and all the operators ©;. Thus each eigen-
subspace of 2 is a tensor product over 7 of invar-
iant subspaces of the @, in H,. Hence, the dimen-
sion of each eigensubspace of 2 is the product of
the dimensions of the corresponding eigensub-
spaces of the 0,. Suppose we take our observ-
able O on H to be the projection of £ onto H, i.e.,
0=£28, where £ is the projection operator onto
H. Assuming that the eigensubspaces of O are in
essence just the projections onto H of those of 2,
and assuming that the dimensions of these eigen-
subspaces of O are (approximately) proportional
to the corresponding ones of 2, (i.e., assuming
that Q itself is essentially an acceptable observ-
able on H), we find that if 3, < H; are entropy
eigenstates with eigenvalues s; and y=9;®. ..,
lies in H, then at least to a good approximation,
is an eigenstate of total entropy with eigenvalue s
given by -

n
S= E S;. (17)

i=1

Since this is (approximately) valid for all eigen-
vectors ¥; € H;, we actually have the operator
identity

s=3s, (18)

holding to a good approximation on the intersec-
tion of ®}_, H; with H. Thus we recover the addi-
tivity of entropy (for suitable choice of ©) in a
manner analogous to the classical case.'®

The thermodynamic entropy 8; of the ith sub-
system is defined as

Si:wt,;r}ea’ﬁ,(ll)iys%):lnpi’ : (19)

where D, is the dimension of the largest invariant
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subspace in H; of ©;. Thus §; is a number (not an
operator) which depends on the state parameters
E;, a;. 8, of course also depends on the choice
of observable ©;. However, for observables
which we can in practice measure, a single invar-
iant subspace will dominate H;. Thus we may
estimate 8, as

8;=InD, ~In(dimH,). | (20)

Equation (20) is the standard (observable indepen-
dent) formula for the entropy of the microcanoni-
cal ensemble; it is equal to —tr(pInp), with p the
microcanonical density matrix. (If E is the only
observable in the state parameters, then dimH,
is just the density of energy levels at energy E
times AE.) From Eq. (20) we can recover the
usual formulas for the thermodynamic entropy of
quantum systems.

IV. TOTAL ENTROPY AND STABILITY

Most systems with many degrees of freedom,
such as a gas of particles, are never in equilib-
rium in a true sense; the system is always under-
going complicated dynamical motion. However,
if we measure only the (coarse-grained) observ-
able O, it is possible that the value of ® may re-
main unchanged over a long period of time, i.e.,
the system may be in apparent stable equilibvium
with respect to ©. Using the ideas of the previ-
ous two sections (for respectively, the classical
and quantum-mechanical cases) it is easy to ob-
tain a criterion for apparent stable equilibrium.

By the arguments of Secs. II and III, the entropy
of a given state is (up to an additive constant) the
logarithm of the fraction of time the system spends
in states where O has the same value as in the
given state. Therefore if the entropy of a given
state is low, © should soon change its value as the
dynamical evolution proceeds. On the other hand,
for a state of maximum entropy (with a choice. of
O where classically the largest group of cells fills
almost all of M, or quantum mechanically where
the largest invariant subspace of O fills almost
all of H) the value of O is likely to remain un-
changed over a long period of time as the dynami-
cal evolution proceeds. Thus a criterion for
apparent stable equilibrium with respect to 0 is
that the system be in a state of maximum entropy.

Thus in principle we should be able to deter-
mine the (apparent) stability of a given configura-
tion of a complicated system (such as a self-grav-
itating star cluster) by (1) identifying the observ-
able we are measuring (e.g., the coarse-grained
distribution function for a star cluster), (2) com-
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puting the entropy of the configuration whose
stability we are testing [using Eq. (3) in this ex-
ample], and (3) comparing this value with the
value of entropy for other configurations with the
same state parameters to determine if the entropy
of the original configuration is a maximum. In
practice however, this approach is not very reli-
able mainly for the following reason: Although we
have an estimate of the relative amounts of time
the system spends in the various macroscopic
configurations during its dynamical evolution, we
obtain no estimate of how rapidly it evolves from
one configuration to the next. Thus if we find a
configuration of higher entropy than the given one,
the given configuration is indeed unstable, but the
time scale required to manifest this instability
may be so long as to make the instability totally
uninteresting; the given configuration may in
practice be perfectly stable. On the other hand,
if we fail to find a. configuration of higher entropy,
this may be due to a poor choice of trial configura-
tions rather than the stability of the given config-
uration.

The example of a classical Newtonian self-
gravitating gas of point particles provides a good
illustration of both the potential utility and pit-
falls of this approach as well as providing a useful
background for the discussion of Sec. VI. The
major added difficulty that arises in this case is
that, even for a system confined to a finite box,
the reduced phase space M is not compact. Nor-
mally the finite total energy E bounds the momenta
of the individual particles, thus confining M to a
bounded region of the full phase space. However,
in the Newtonian self-gravitating case, one can
have aribtrarily large negative binding energies
of groups of particles, so no such bound on the
individual momenta of particles exists. This
means that a Newtonian self-gravitating gas does
not conform to the framework of ideas of Sec. II,
since there is no reasonable possibility of ergodic
behavior over all of M if M is noncompact. This
difficulty by itself need not lead to disastrous
consequences for equilibrium. Although all New-
tonian self-gravitating systems would eventually
evolve to configurations where groups of particles
become more and more tightly bound with the gas
becoming hotter and hotter (gravothermal insta-
bility?), the time scales required to achieve such
tightly bound systems may be enormous compared
with time scales of interest. Therefore we may
be justified in excluding such configurations from
consideration, in which case the remaining sec-
tion of M will be compact, and we can expect the
ideas of Sec. II to apply with at least some de-
gree of validity. If the Newtonian self-gravitating
gas is confined to a sufficiently small box, there

will be a local maximum of the entropy (defined
with respect to the coarse-grained distribution
function) which, if we exclude tightly bound con-
figurations, should become a global maximum and
thus correspond physically to a stable equilibrium
configuration. However, if the box is large, then,
because of the long-range forces and the absence
of screening, there is not even a local maximum
of the entropy,'! so physically no true equilibrium
exists in this case, and even more caution must
be used when employing this approach.

Nevertheless, some analytic calculations illus-
trate that the above approach for determining
stable equilibrium does give correct results in
simple cases. If we ask when a uniform distribu-
tion of Newtonian gas has maximum entropy com-
pared with a nearby configuration with a sinusoid-
ally perturbed density distribution, we reproduce
the usual Jeans’ length criterion.’? If we maxi-
mize the entropy of a gas with state parameters E
and angular momentum J with respect to scaling
the size of the configuration, we obtain the virial
theorem.'? If we further constrain (artificially)
the gas to be a uniform density spheroid, we find
the maximum entropy is achieved when its eccen-
tricity is that of a Maclaurin spheroid.'?

These results given encouragement to try the
approach in some interesting cases where alter-
native methods are extremely difficult to apply.
One example is to estimate the “final” spectrum
of masses of a box of Newtonian gas which is
initially Jeans unstable. It is hopelessly difficult
to follow the nonlinear dynamics of such a system,
but it is an extremely simple matter to compute
entropies of final trial configurations. A second
example concerns the potential instability of ro-
tating systems to nonaxisymmetric perturbations
and the obtaining of estimates of the degree of
nonaxisymmetry in the final configuration when
such an instability exists. Some simple numer-
ical calculations'® showed that the presence of
bars increases the entropy of configurations with
large angular momentum J. However, for the
reasons discussed above, the reliability of these
results is questionable. To obtain completely
reliable results, one would need a knowledge of the
nature of the dominant potential instability (so.as
to pick a good trial configuration) and, if a con-
figuration of larger entropy is found, one would
have to know that the time scale for achieving
this instability is within the range of interest. Of
course to achieve this knowledge, one would in
effect have to solve the problem by other means.
Nevertheless, the calculation of entropies of con-
figurations is so simple that it has the potential to
play an extremely valuable role in preliminary
stability analyses of systems.
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V. THE LAWS OF THERMODYNAMICS

In this section we shall give some crude plausi-
bility arguments for the validity of the laws of
thermodynamics for both classical and quantum
systems. To obtain a precise, rigorous proof
that thermodynamics applies to a given system
certainly requires further detailed assumptions
about the system as well as further idealizations
such as infinite size of the system. Thus our aim
is not to give a general proof of the validity of the
laws of thermodynamics but rather to give a sim-
ple explanation of why they hold in the cases where
they are valid. As we shall see in Sec. VI, these
same plausibility arguments plus some further
assumptions concerning the nature of a quantum
self-gravitating system will yield the laws of
black-hole mechanics.

The argument for the validity of the second law
of thermodynamics—the nondecrease of total en-
tropy—is basically the one already given in Sec.
IV. Namely, since the entropy of a state mea-
sures the fraction of time the system spends in a
state observably indistinguishable from the given
one, the condition for (apparent) stable equilibri-
um—i.e., no change of the value of O for a long
period of time—is that S be maximum. If S is
not maximum, then the system is likely to change
its “macroscopic state,” i.e., the value of © will
change, in a relatively short period of time. If
the system is in a state of low entropy it is ex-
tremely unlikely to evolve to a state of still lower
entropy, as the system spends even less time in
such states. Thus, with high (and, in practice
for most systems, ovevwhelming) probability, a
system in a state of low entvopy will evolve to
states of higher entvopy, while a system in a
state of maximum entropy will vemain unchanged
in appeavance fov a long peviod of time. Of
course, this law holds only with high probability,
and in fact, by clever arrangements of the sys-
tem—such as in the “spin echo” effect—we can
produce brief violations of it.

The remaining laws of thermodynamics apply
to the situation where the total system can be
divided into subsystems (as described in Secs. II
and III) such that each subsystem is in “thermal
equilibrium,” i.e., in a state of maximum entropy
for the values of its state parameters. Physical-
ly it is reasonable to expect this to be the case if
each subsystem self-interacts sufficiently rapidly
that it has time to evolve to a state of maximum
entropy, but the subsystems interact sufficiently
weakly with each other that the total system need
not be in a state of maximum total entropy.

We define the temperature T'; of the ith subsys-
tems by

1 (08
.i‘—i-~<aEi>ai’ (21)
where §; is the thermodynamic entropy given by
Eq. (8) [or Eq. (20)]. By Eq. (6) [or Eq. (18)]
plus the assumption that each subsystem is in a
state of maximum entropy for its state parame-
ters E;, a;, the total entropy is given by

S=30 8, (22)

As discussed above, for the total system to be in
thermodynamic equilibrium, S must be maximum.
In particular, it must be maximum with respect to
arbitrary interchanges of energy among the sub-
systems. Using Eq. (21), we thus obtain the Oth
law of thermodynamics: A necessary condition
Jfor the theymodynamic equilibvium of the total
system is that the temperatures T, of the subsys-
tems all be equal.

The first law of thermodynamics (or, really,
the combined first and second laws) is entirely
trivial in this formulation. The thermodynamic
entropy 8, is a function of only the state parame-
ters E; and ;. Assuming it varies smoothly with
these parameters, we have

08, 08; v
— [ %% 29 .
dsiﬁ<aEi>aidEi+(aai>E.da” (23)

where, if o; represents more than one parameter,
-the second term on the right-hand side of Eq. (23)
is understood as a sum over these parameters.
Using the definition of T';,, we have

dEi:TidSi—T,.(asi> da;, (24)
da;/ g,
which is the first law.

Finally, we give a particularly crude plausibil-
ity argument for the third law of thermodynamics
in the form expressing the impossibility of achiev-
ing absolute zero temperature. This law is con-
siderably less rigorous than the other laws and
really expresses the difficulty, in practice, of
achieving and maintaining 7', =0. By Eq. (21) at
T;=0 the entropy 8; has infinite derivative with
respect to E; (with the other state parameters
held fixed). Thus the total entropy of a system
which has a subsystem at T, =0 will enormously
lower than the total entropy would be if a tiny bit
of energy were transferred to the ith subsystem.
Hence unless perfect energy isolation can be
achieved, the subsystem should quickly evolve
away from absolute zero temperature.

An alternate version of the third law which is
sometimes given for quantum systems is that the
entropy 8; at absolute zero temperature vanishes.
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The rationale behind this version is that, for
most quantum systems, the only regime where §;
has infinite derivative with respect to E;,—i.e.,

the only regime where the density of energy levels
changes enormously with energy—is at the ground
state. Thus for most systems being at absolute
zero temperature is equivalent to being in the
ground state. But for most systems the density
of energy levels at the ground state is very small
(at least compared with other energies), i.e.,

dimH; ~1 at the ground state. Thus §;~0 at T';=0.

However, there is no general principle of quantum
mechanics which requires that the ground state be
the only state at which T;=0. Indeed, if (as we
shall argue in the next section) black holes fit into
the general framework described here, they would
provide an example of a system which can have T,
=0 at high entropy and thus would violate this
formulation of the third law (though not the first
formulation above). )

VI. THE THERMODYNAMICS OF BLACK HOLES

In this section we shall apply the ideas of the
previous sections to a quantum self-gravitating
system containing a black hole. This is a rela-
tively bold application in view of the fact that a
satisfactory quantum theory of gravity does not
yet exist. Furthermore, the Schrddinger picture
framework for the quantum-mechanical notion of
entropy given in Sec. III is not very natural in the
space-time viewpoint of general relativity., In
particular, it is not obvious how to properly re-
formulate concepts such as ‘“the fraction of time
the system spends in a given state,” etc. How-
ever, we shall ignore these difficult issues in the
discussion below. .

Consider an isolated, self-gravitating system
confined to a box. As already discussed in Sec.
IV, a classical Newtonian self-gravitating gas of
point particles is nof really a system for which
ordinary thermodynamics is applicable because
the reduced phase space M is noncompact, so
ergodic behavior on M cannot be expected, and
there is no equilibrium state of maximum entropy.
As previously discussed, the cause of this prob-
lem is the lack of a bound on the magnitude of
the binding energy of groups of particles. How-
ever, this difficulty is resolved when one passes
to a (classical) general relativistic description of
the system. According to the positive energy
conjecture,' the total energy of a bound system
in general relativity can never become negative,
i.e., roughly speaking, the binding energy of a
group of particles can never exceed their rest
mass plus kinetic energy. If one attempts to bind
particles so tightly that, in the Newtonian descrip-

tion, their bindingenergy would exceed this limit,
one finds in general relativity that gravitational
collapse to a black hole will occur.

However, this cure of general relativity brings
with it an equally bad disease. Assuming the
validity of the cosmic censor hypothesis, in clas-
sical general relativity black holes are com-
pletely stable; they can form and grow in size but
they can never bifurcate or disappear.'® Thus for
a general relativistic self-gravitating system one
does not get ergodic behavior either. Given
enough time, a closed self-gravitating system
will form a black hole; given enough time, this
black hole will swallow everything else up and
then remain in this state forever.

Remarkably, this second problem appears to be
resolved by quantum theory. When quantum ef-
fects are taken into account, black holes no longer
are stable objects; they can decrease in size and
can “evaporate” within a finite time.> Thus, there
is no obvious contradiction to ergodic behavior of
a closed, self-gravitating quantum system. I is
pevfectly plausible that a quantum self-gvavitating
system behaves in essence like an ovdinary quan-
tum-mechanical system as descvibed in Sec. III.
Note that it is not necessary for the validity of
this idea that—as Hawking'® has proposed—the
process of black-hole evaporation be the time re-
verse of the process of black-hole formation. As
Penrose!” has argued, this latter idea appears
implausible.

To proceed further, we make the assumption
that the states of the self-gravitating quantum
system can be decomposed (at least approximate-
ly) into black-hole states and “other” states, so
that as in Sec. III the total Hilbert space 3Ccan be
expressed as

:}ngcbh@:}coth’ (25)

where 3¢, is the space of black-hole states. The
Hilbert space ¥, describes the states of “ordin-
ary matter outside black holes” as well as possib-
ly other more exotic states (e.g., perhaps white-
hole states). We further assume that the interac-
tion between the black hole (if present) and other
states is sufficiently weak that we can treat each
as a subsystem in the sense of Sec. III above.
This is not unlike decomposing the states of water
molecules in a box into “liquid water states” and
“water vapor states’” and treating each phase as

a thermodynamic subsystem.

Next we assume that the correct state parame-
ters characterizing the black-hole subsystem are
simply its energy E (i.e., its mass) and its angu-
lar momentum J. This is strongly suggested by
the black-hole uniqueness theorems®® of classical
general relativity which state that stationary
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vacuum black holes are uniquely characterized

by E and J. (For simplicity, we ignore the pos-
sibility that the black hole may be charged; other-
wise the total charge @ should also be included as
a state parameter.)

To define the entropy of a black hole, we need to
introduce an observable ©. As emphasized in
Secs. II and III above, the notion of entropy (as
opposed to thermodynamic entropy) depends criti-
cally on the choice of coarse-grained observable.
However, for a black-hole subsystem, there is a
completely natural choice of coarse-grained ob-
servable O, namely, the properties of the “in-
stantaneous” black-hole state which can be simul-
taneously measured by observers oufside the
event horizon of the black hole. For a subsystem
without a horizon, such a complete set of observ-
ables would not be coarse grained, i.e., it would
distinguish between distinct states and thus lead
to an assignment of zero entropy to each state.
However, because of the possibly large number
of internal configurations of the black hole which
produce the same external configurations, this
observable © here should be coarse grained, i.e.,
in the quantum-mechanical case, have large de-
generacy subspaces. It is worth emphasizing that
the notion of entropy thus obtained for black holes
attains a more fundamental and absolute status
than elsewhere. For other systems we measure
only coarse-grained observables because our
measurement ability is limited by practical con-
siderations; in principle we could determine the
state of the system precisely. However, for black
holes we cannot in principle measure the internal
configurations unless we go inside the black hole,
in which case we still would not be able to report
our results to observers remaining outside the
black hole. Thus for black holes the limit to our
measurement abilities implied by © is a more
fundamental one.

Finally, we postulate the formula for the entropy
of a black hole defined with respect to our observ-
able O

S=1A (26)

where A is the area of the event horizon (ex-
pressed in Planck units G=c=7%=1), If Eq. (26)
is correct, it remains a mystery—presumably to
be resolved only when a full quantum theory of
gravitation is available—why such a remarkably
simple formula should hold.

The thermodynamic entropy 8 of a black hole is
the maximum of S over all configurations with
fixed state parameters E and J,

$=1maxA(E,J)=1Q(E,J), (27

where @(E,J) is the maximum possible area. The

uniqueness theorems®® for stationary black holes
together with the area-increase theorem? strongly -
indicate that the maximum possible value of A is
achieved by the Kerr black hole, with

Q(E,J) =87[E2+ (E* - J?)/?], (28)

Assuming that the states of maximum entropy fill
up most of the reduced Hilbert space H,,, Eq. (27)
is equivalent to the formula for the dimension N
of H,,, i.e., the number of black-hole states with
energy and angular momentum within AE and AJ
of given values,

N «<exp[lQ(E,J)]. (29)

This formula previously has been postulated by
Hawking'® and (with a slightly different interpre-
tation) by Bekenstein. -

Thus our picture of a closed self-gravitating
quantum system with a black hole is the following:
The total system behaves essentially like an or-
dinary quantum system and displays ergodic mo-
tion (in the sense of Sec. IM) through its reduced
Hilbert space. The black-hole states and the re-
maining states can be treated as thermodyanmic
subsystems. The state parameters of the black-
hole subsystem are E and J. Furthermore, the
formula (26) holds for the entropy defined with
respect to the observable measuring all properties
of the black hole which can in principle, be deter-
mined by observers outside the black hole. While
all these assumptions are certainly nontrivial,
none of them can be considered in any sense
“exotic.”

Our aim now is to argue that under the above
assumptions, the ordinary laws or thermodynam-
ics yield black-hole thermodynamics when ap-
plied to this system. We choose as the observ-
able for the total system the properties of the
black-hole subsystem which can be measured
outside the black hole together with a suitable
coarse-grained observable for the non-black-hole
subsystem. By the general argument of Sec. III,
the total entropy will be additive

Stot =Spnt+ Sotn - (30)

Using Eq. (26) for S,,, we see that the ordinary
second law of thermodynamics yields in this case
the generalized second law: The sum of “ordinary
entropy of matter outside black holes” plus black
hole area never decreases. If S, is negligible,
the generalized second law reduces to the area
theorem.?

The remaining laws of thermodynamics apply to
the case when the two subsystems (i.e., the black-
hole states and the other states) are each in a state
of maximum entropy, i.e., each is in thermody-
namic equilibrium. A black-hole equilibrium con-
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figuration is uniquely characterized by its state
parameters E and J. It temperature is
Ty = (%ﬂ) =4n[E+ EPEC-02] (31)
0E/ ;

in agreement with the Hawking formula.®* The Oth
law of thermodynamics, applied in this case,
states that a necessary condition for equilibrium
between the black hole and other states is that
Tpn=T,:,. That this equilibrium can actually be
achieved is of course essentially the Hawking
particle-creation result,®*

The first law of thermodynamics, Eq. (24),
applied to the black-hole subsystem, yields

dE =Ty dSy, + andJ ’ ‘ (32)
where

A 38 J
Q. = DOpp)
n T"h( o )E 2E[E + (E* - J?)'/2]"

Equation (32) is just the first law of black-hole
mechanics.! ,

Finally, the first formulation of the third law
of thermodynamics given in Sec. V, now yields

(33)

the statement that it should be very difficult in
practice to achieve T, =0. This is of course
just the third law of black-hole mechanics.! The
alternate formulation of the third law does not
apply to black holes, presumably for the reason
given at the end of Sec. V.

Thus it appears perfectly plausible that the con-
nection between black holes and thermodynamics
is extremely simple and direct: Black-hole ther-
modynamics is just ordinary thermodynamics
applied to a quantum self-gravitating system.
Many further aspects of this connection remain
to-be explored, however, such as the derivation of
Eq. (26) and the relation of the thermal particle
spectrum seen by an accelerated observer in flat
spacetime to black-hole thermodynamics.?
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