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We describe the dynamical evolution of scalar, electromagnetic, and gravitational test fields on the interior
of a Reissner-Nordstrom (spherically symmetric and electrically charged) black hole. The instability of the
hole's Cauchy horizon is discussed in detail in terms of the divergences of the energy densities of the test
fields as measured by a freely falling observer approaching the Cauchy horizon. The late-time development of
the fields is discussed and a picture of the final state for the interior (in terms of classical fields) is
developed. We conclude that the Cauchy horizon of the analytically extended Reissner-Nordstrom solution is

highly unstable and not a physical feature of a realistic gravitational collapse.

I. INTRODUCTION

The H,eissner-Nordstr'om black hole represents
the unique static exterior of a collapsed spherical-
ly symmetric distribution of charge and mass.
However, the interior of the analytically extended
solution possesses a Cauchy horizon prohibiting
any deterministic future based on the hyperbolic
Einstein field equations. In a previous paper'
(hereafter referred to as I) we discussed the be-
havior of a test scalar field near the hole's Cauchy
horizon where the field's energy density was shown
to develop singularities and suggested a disruption
of the horizon (e.g., through the back reaction ot'

the singular energy density on the curvature).
In this paper we continue the scalar field analy-
sis, extend the development to include electro-
magnetic and gravitational perturbations, and in-
vestigate the problem of the finalstateof theevolu-
tion of the interior of a charged black hole for
late times.

We assume that a nearly spherical star with a
net electric charge has undergone a gravitational
collapse with small deviations from spherical
symmetry in the matter density and charge density
at the moment when the surface of the star crossed
the event horizon. All the perturbations from
spherical symmetry are assumed to be weak
enough so that we can neglect their back reaction on
the spacetime metric at the moment of crossing.
Mashhoon' has recently investigated the spherical
charged collapse of a perfect fluid and found that
while the exterior geometry was necessarily Reis-

sner-Nordstrom type, the interior geometry col-
lapsed behind an apparent horizon to a spacelike
curvature singularity. Doroshkevich and Novikov'
have investigated the final-state problem for per-
turbations inside a Schwarzschild black hole,
where the evolution in time of a perturbation cea-
ses at the spacelike curvature singularity. The
geometry at the Cauchy horizon inside the Hei-
ssner-Nordstrom black hole is smooth and regular
and gives rise to dramatically different features
not found in the Schwarzschild interior (cf. paper
i).

In Sec. II we solve the scalar wave equation for
small wave number and use this solution to discuss
the behavior of the scalar field in a "neighborhood"
of the intersection of future timelike infinity, the
event horizori, the Cauchy horizon, and the curva-
ture singularity on the Carter-Penrose diagram
of an analytically extended Reissner-Nordstr'om
black hole (point B in Fig. 1 of paper O. As will
be shown approaching B along a spacelike hyper-
surface r =const (for r x (r,(), i.e., as t-~ for
r held fixed, a perturbation of multiple index l
will decay as t ' and the field between the y, and
r horizons (i.e., the interior as we have called it)
does not develop any pathologies. However, if we
approach B or the x horizon along the world line
of a freely falling observer then the energy density
as measured by the observer is blue-shifted and
diverges exponentially in r* [or as (x- r ) '] near
the x horizon. This suggests that a curvature
singularity develops, topologically similar to that
of the Schwarzschild black-hole interior.
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In Sec. III we formulate and discuss the electro-
magnetic and gravitational perturbation problems.
Using a Regge-Wheeler-type formalism' ' com-
bined with the techniques developed previously to
analyze the scalar case, we extend the above con-
clusions on instability.

In Sec. Df we consider the features of perturba-
tions arising from stationary sources in the ex-
terior region. As an example, we present the
astrophysically interesting case of a hole in a
uniform magnetic field and demonstrate that the
"stationary" field which threads through the inter-

ior does not disrupt the x horizon (as also was the
case with the stationary scalar field discussed in

paper I).
In Sec. V we discuss our conclusions reached by

treating the perturbations as classical fields. By
a classical field we mean that the smallest values
of our field amplitudes are still much larger than
the corresponding quantum amplitudes. We do not
consider quantum-mechanical processes here.
While these processes undoubtedly influence the
structure of the evolving singularity (see, e.g. ,
Ref. 8), they do not alter our main conclusions.

II. SCALAR FIELD

In this section we conclude the scalar field analysis begun in paper I and compute the asymptotic behavior
of the scalar test field in a neighborhood of the point B (cf. Fig. 1 of paper I) for the final-state analysis.
We match the field to a power law on the x, horizon which had developed from the late-time field in the ex-
terior due to the backscatter of radiation. Using a small-wave-number approximate solution, we evolve
this field through the interior up to the x horizon. With this solution we investigate the asymptotic form
of the field as point B is approached in a spacelike direction (r =const, t-~) and in a null direction along
the r horizon (u =~, v -~).

Using the notation of paper I, we write the scalar field solution as

(f&(t, r, 0, (p) =Q Y, (H, y) dke '~'
y, ,(r)-, —

'Y

where P, ,(r) satisfies the evolution equation

d'P,„» (r. r)(x r—) I (I +-I) 2M 2 Q"
d~g2 ~2 P g3 ~4 tmk

I»

(2)

and r* and x are related (on the interior) by the
equation

1 x 1x*=-r-—ln 1 ——+—ln ——1

with g, =(r, r)/y, '. —We will also use the null
coordinates u =-x*—t and v =-r*+t.

l,et $„(r) be the left-going solution to Eq. (2) de-
fined by

!P„(r)- e'""*as r*-~ (i.e., as r r, ) . -
Then $f(x) is a second linearly independent solu-
tion. A general solution (for each set of multipole
indices l, m which we suppress for brevity) may
be written in the form

m

g(z, t) = dk e '"'[a(k)g~(r)+ b(k-)!Pf(r)] . (4)

The coefficients a(k) and b(k) are to be determined
from the initial conditions on the x, horizon and
the conditions on the collapsing star.

A comparison of the asymptotic form of Eq. (4)
near the x, horizon with the late-time field in the

exterior suggests (cf. Ref. 3) that we choose

a(k) = b(k) [-1+B(k)],
where [B(k)—1] is the reflection coefficient of a
wave scattering off the static potential in the ex-
terior of the black hole. ' [The Fourier coefficients
based on the (t, r) coordinates in the interior and
exterior regions can be equated across the r, hori-
zon for infalling waves only. This may be seen by
comparing the (t, r)-based transforms with a trans-
form based on, e.g., Eddington-Finkelstein co-
ordinates (v, 'r) which are nonsingular at the r,
horizon. ] The form of B(k) is such as to repre-
sent a power-law-type trail on the x, horizon for
large values of t. The function b(k) is determined
by the details of the collapse as the star crosses
the r. horizon (which we take to be at v =0). In
what follows, all we will need are a few details
on the analytic properties of B(k) and b(k). (For
an analysis. in the exterior, see Sibgatullin and
Alekseev 7)

The existence of power-law tails in the exterior
region implies that B(k) has, at least, a branch
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point at k =0. (This follows from a Weiner-Hopf-
type analysis of the asymptotic behavior of Four-
ier transforms. Sibgatullin and Alekseev' have
further demonstrated that the branch point has
the character of a logarithmic branch point. ) Us-
ing time dilation arguments, Price has shown that
in the exterior the field on the surface of the star
as the star crosses the ~, horizon has the asym-
ptotic form

P -const && 9(v,„,)+const &&e
"'"' '"',

which when Fourier transformed implies that b(k)
has a simple pole at k =0.

As t-~ (i.e. , a neighborhood of point B), the
dominant contribution to $(r, t) in Eq. (4) comes
from the modes in a neighborhood of k =0 and we
may expect the solution for ikM

~

«1 to Eq. (2) to
apply. We use the now common technique" "of
matching the leading terms in k of the wavelike

'
solutions at r =x', with the low-k solutions on the
interior. This technique matches only the domin-
ant terms and ignores, e.g. , the logarithmic sin-
gularities which are of higher order in k. The
k =0 solutions can be written in closed form and
are given by

2, (r)=a~ (2„' =)

wh r I'i is the Legendre polynomial Qi is he
Legendre function of the second kind, and ~ and P
are constants.

Near the r, horizon, g,(r) has the form of an
ingoing wave of unit amplitude, viz. , P„(r)= e""*.
For ~krr*

~

«1 we may neglect the k' term in Eq.
(2) and match the leading terms in („(r) in the re-
gion -1/k «r*« —M with the iP,~ solution and we
find to O(k')

This in turn implies that ~A(k) ~' —(B(k) ~' =1 for
all k. Comparing Eqs. (7) and (8) in the region
M «r2'«1/k, we find for

~

kM
~

«1 the scattering
-amplitudes A and 8 are given by

A(k) = — —'+= +O(k),
(-1)'

2 'Y J' (10)

e "'b(k) [(B(k) —1)2t2,(r) + 5„*(r)]dk . (12)

We take the branch cut [to define B(k)] to run from
k=0 to k =-i~ along the negative imaginary axis
and deform the contour of integration into the lower
half of the complex k plane. The pole of b(k) at
k =0 produces a cancellation between the second
and third terms (-2)~+ g„*) [cf. Eqs. (10) and (11)].
Any additional poles of b(k) below the real axis
will give terms that exponentially damp as t-~.
There remains the integral along the cut from
k =0 to k =-i~. As previously discussed, the re-
flection coefficient B(k) is chosen to reproduce
the power-law tail on the r, horizon (expected
from the late-time development of a collapse)
with the asymptotic form given by

g(r, t)- „„-=- „»„for u--~, v»M.const const

At intermediate times (r =constant) using the
~kM

~

«1 solutions given in Eq. (7), we find

[Owing to the exponential decay of the potential
in Eq. (2) as jr"

~

-~ (see paper 1), the coefficients
A and B are, in fact, analytic at k=0."]

We now consider Eq. (4) with the Fourier coef-
ficients related by Eq. (5), viz. ,

2tt(r =const, t) =const x dk e "(k"")2'„(r)

+222 —Q (
'

)

const 2~- ~, —r
2 g+2

x 1+0 — as t-~ .t (14)
1

1 —ik —ln as x-x, .
K

(7)

Near the r horizon, 2t2, (r) evolves to a solution of
Eq. (2) with the asymptotic form given by

Near the r horizon approaching the point B (i.e.,
for v-~ with u(0) using Eq. (8), the Fourier
synthesis gives the result

2t,(r)=A(k) e'~""+B(k)e "" as r r. -(8) dk k""[A(0) e ""+B(0)e'"]

The Wronskian for two solutions of Eq. (2) is in-
dependent of r and for p,(r) and g„*(r) it has the
value given by

~2~[ka2 422]

A(o) B(o)

Recalling that near the x, horizon

$ = const x v &22'@, (16)
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we see that Eqs. (14)-(16) present the complete
structure of the scalar field near the point B.
(N.B. The regions in which each of these expres-
sions are applicable overlap. )

In paper I we considered what a freely falling ob-
server (with a four-velocity U ) crossing the r
horizon would observe for the energy density in
the scalar field and demonstrated that the energy
density was a function of &t U . For an observer
crossing v =~ this is given by

d& U -e«—" ""-'"'+const x —as v -~ . (17)
8

Ov 8Q

-IO

+&

CU

-20

-30

If the point B is approached along a surface of con-
stant r, then since u+ v = -2r* we find using Eqs.
(14) and (17) that

&t U -const/t"" as t -~.
Hence, there is no pathological behavior of Q ap-
proaching the point B in this direction. However,
if the point B is approached along the r horizon,
then using Eqs. (15) and (17) we find that

u'- (const/v"") e'"- ""as v -~ .
g O

Hence, approaching the point B by running along
the r horizon (i.e., by taking the order of the
limits as v -~, then u ——~ in the previous ex-
pression) indicates that a singularity may develop
near the Cauchy horizon in an arbitrarily small
neighborhood of the point B. These conclusions
when combined with the analysis in paper I indi-
cate that the entire Cauchy horizon is unstable
to perturbation produced by a scalar test field.

III. ELECTROMAGNETIC AND GRAVITATIONAL
PERTURBATIONS

In this section we augment the previous analysis
and extend our considerations to include electro-
magnetic and gravitational perturbations of the
interior. Owing to the presence of the background
elect. ric field, the situation is mathematically
more difficult. Electromagnetic and gravitational
perturbations are described by coupled sets of

I

FIG. 1. The potential of the separated wave equation
for electromagnetic and gravitational perturbations. The
particular case Q =0.9M and l =2 is shown. The poten-
tials have the same overall features for other values of
the parameters Q and l, as in the scalar case.

wave equations which correspond physically to the
conversion of electromagnetic perturbations into
gravitational perturbations and vice versa by the
catalytic action of the background fields. How-
ever, owing to the efforts of Zerilli, ' Moncrief, "
Sibgatullin and Alekseev, ' and Chandrasekhar, ""
it is possible to obtain decoupled equations which
upon separation satisfy potentiaL-like equations
similar to Eq. (2) (see Fig. 1).

Following Moncrief and Zerilli, we expand the
electromagnetic vector potential, the electromag-
netic field tensor, and the metric perturbations of
the Heissner-Nordstr'om background in terms of
the Regge-Wheeler spherical harmonics. '" The
Einstein-Maxwell equations for the perturbed
quantities have been decoupled by Moncrief" into
two second-order wave equations for the even-
parity and odd-parity cases. Chandrasekhar, "
using an approach based on the Newman-Penrose
formalism, "'"has shown how to derive solutions
of the even-parity Moncrief equations from the
solutions of the much simpler odd-parity Moncrief
equations. Hence it is sufficient to consider only
the odd-parity Moncrief equations given by Ref.
20.

2M 2@[(1—1)(i+2)]' '
fr '&

r y &&~ y 2Q[(l —1)(l+2)]'~' -SM

where n =(r r,)(r y) and -where M-oncrief's variables «and «z are related to Zerilli's electromagnetic
field f2, and metric perturbation l&, (in the Regge-Wheeler odd-parity gauge although the variables v and «&

have gauge-invariant significance) by

2[(l —1)(l+2)] f = [(l —1)(l+2)]&I'v
l(l+ 1)

m'

«'g=(l —1)(l+2) .
k

h, —
l(l+1) '
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This system is decoupled by the linear transformation that diagonalizes the right-hand side of Eq. (18}(see
Matzner'o for details) and the resulting combinations here called R, satisfy the equations

d'R, „, (~- r,)(~ —~ ) l(l+1) 3M C 4q'
(19)

where

C = [9M'+4@'(1—l)(l +2)]'~'. (20)

The electromagnetic and gravitational perturba-
tions are then extracted from the R, solutions by
the relations

wz =costtR, —singR

~, =singR, +cosgR

where

(21)

(22)

,2 Q[(l —1)(l+2)]'"
The decoupled perturbation equations for R, [Eq.

(19)]are very similar to Eq. (2) for the scalar
field and the general qualitative features of the
evolution of the scalar field also hold for R,. For
brevity we outline only the essential details since
the scalar case was carried out in such detail.
Near either horizon Eq. (19) has solutions of the
form R - e" "*. For the case ~kM

~

«1 we can
match the leading terms of these wave solutions
from the x, horizon to the x horizon through the
use of the k=0 solution as was done with the scalar
case, and obtain analytical expressions for the
low-frequency fields between the horizon. The
0 =0 solutions are discussed in detail in the Ap-
pendix. Here we note that the solutions are gen-
eralizations of Eq. (6), one being a polynomial
in x and one being a polynomial times a logarithm
that diverges on either horizon [cf. Eq. (A7) (in
the Appendix) ].

We start with initially infalling waves (R, -e"""*)
on the x, horizon. According to Sibgatullin and
Alekseev's" analysis in the exterior region
(r) x,), the power-law tails, reflection coefficients,
and general analytical features for the Fourier
coefficients defined (as in the scalar field case)
by expansions of the R, fields on the x, horizon
are qualitatively similar to the scalar field case.
Following a similar analysis that leads from Eq.
(12) to Eqs. (14) and (15), we obtain the following
picture for the development of gravitational and
electromagnetic perturbations inside the black
hole: On the spacelike surface x =const for t»M
we find

we find

&,(0) R,(0)R(V ~q B(0) D ~„2+
V Q

(2s)

IV. STATIONARY EXTERNAL SOURCES

For the special case of perturbations that are
independent of f (i.e., stationary in the exterior
and homogeneous in the interior), the Moncrief
variable w, is not well defined and the derivation
that leads to Eq. (18) breaks down. However, it
is possible to still obtain an appropriate set of
decoupled equations. Using Zerilli's' notation in
the odd-parity Regge-Wheeler gauge (i.e., h, =0}
Maxwell's equations for the t-independent case
are given by

l(l+ 1)f„=—f„, (26)

(27)

2=0, (28)

and the relevant Einstein equations are given by

where the D, are constants. From Eqs. (21) and
(22) it follows that the electromagnetic and metric
perturbations have similar power-law develop-
ments near the r horizon. [The complete per-
turbed Maxwell field and the perturbed metric
follow from a knowledge of w& and m, (see Moncrief
and Zerilli for details). ] Consequently, the ener-
gy density in the electromagnetic field and the
energy density in the Landau-Lifshitz pseudotensor
describing the energy density in the perturbed
gravitational field will have similar power-law
falloff relative to the frame stationary in (x, t)
coordinates. Therefore, exactly as in the scalar
field case, when the fields and the energy tensors
are referred to a frame carried by a freely falling
observer (cf. Gursel 'et al. , paper I) the power-law
falloff of the fields and energy densities are over-
come by the exponential blue-shift factor [cf. Eq.
(17)] of the observer's frame as she approaches
the horizon.

l~*l
R,(x = const, f » M) - ~+, 1+0 (24) 4Q d

=r l(l+1) ~~f- (")
and near the x horizon approaching the point B h, =0, (80)
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where

2M Q~=1 — +—.r

avoided and the decoupling of Egs. (29) and (31)
accomplished by considering Zerilli's Egs. (14)
and (16):

Solving Egs (4 1) alld (4 2) fol f331 we find

d n df„ l(l+1)f =l(l 1)
d —h

dr r' dr r' " dr (31)

l(l + 1)f,3 = -i&of», (34)

Z&L„' =—h 1 (32)

The problem is how to deal with h, and f» in Egs.
(29) and (31). As Moncrief has pointed out, ' Zer-
illi's odd-parity (what he calls "magnetic") equa-
tions for the functions

Taking the (d-0 limit, we find

g('m )

lim 2~x ——' =lim2sz
~»o r & ~-o

= ".(-";)—'. :
and

m) 1
LM l(l + 1)f» (33)

Upon substitution of the new variable no defined
by

(37)
may be decoupled by a linear transformation;
however, for the t-independent case (i.e., k—= v =0)
the variable hy vanishes. This difficulty may be

in Egs. (29) and (31), we find a pair of suitable
equations to describe the t-independent case, viz. ,

(38)

3=A. 1 ——
2 (39)

where A is a constant determined by the magnitude
of the external field. From Eq. (26) we deduce
for f» the value

f„=-A3/Q3, (40)

and with these values the field two-form is given by

It is interesting to note that when Eq. (38) is de-
coupled, the resulting equations are identical to
Eq. (19) with k=0.

%'e shall illustrate the ease of an electromagnet-
ic perturbation arising from a source current in
the exterior that is at rest with respect to the
black hole by the example of a charged black hole
in a uniform static magnetic field. This situation
is mathematically similar to the scalar case
treated in paper I. The problem is to extend the
field to the interior and solve for the behavior of
the field near the r horizon.

To match onto a uniform field at r =~ we keep
only the 1=1 dipole term in the multipole expansion
and align the external magnetic field along the z
axis. For this case the Maxwell equations decouple
from the gravitational perturbation and we find the

'solution that matches onto a uniform field for
large r is given by

2M Q'E= —B 1 —+— sing Q)

+B——3 +—Co SO (d A (d
Q' &'

3 t
g2 Q3

(41)

where 8 = (3/4v)' t3A/Q3 and [&u'] is the orthonormal
frame given by

- (i~ I)'"
N Q) = r48r

V. CONCLUSION

We have calculated the evolution of scalar,
electromagnetic, and gravitational test fields in
the interior of the Reissner-Nordstr'om geometry
near the "intersection" of the event horizon

Notice that the field between r and r, contains
an electric part (F-„-„)due to the fact that the ortho-
normal frame we have chosen is not stationary in
this region.

This solution is finite at either horizon and like
the scalar case (cf. paper I) does not disrupt the
r horizon. The field does not depend on the time
of an external observer, hence any observer falling
into the hole from the outside at any time will al-
ways see the same electromagnetic field.
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(r=r, ) and the Cauchy horizon (r =x ) from initial
data appropriate for long times after the formation
of the charged black hole. The behavior of the
fields in this region is qualitatively independent
of details of the collapse process. In particular,
the results are independent of whether the sur-
face of the collapsing body approaches the left or
right part of the r horizon (Fig. 2).

In this sense these results are universal and
may be extended to the final stage of the evolution
of a charged black hole~ not just a collapsing
body. The general picture is that at fixed times

(x =constant) from the event horizon all perturba-
tions damp according to a power-law-type behav-
ior as we move away from the surface of a col-
lapsing body (i.e., as t-~). The metric becomes
increasingly spherically symmetric, similar to
the behavior of perturbations inside a Schwarz-
schild black hole (Ref. 3). However, freely falling
observers will see an infinitely blue-shifted energy
density or an infinite tidal shear as they approach
the x horizon. This in turn suggests an instability
in the geometry developing within the x horizon
and its possible transformation into a spacelike
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curvature singularity.
We have not taken into account the quantum-

mechanical process of pair creation by the clas-
sical electromagnetic and gravitational fields.
In the exterior region (r& r,) the Hawking process
takes place on a characteristic time scale
G'M'/hc'. The background electric charge Q may
discharge itself by means of e'- e pair creation
in the outer region via electromagnetic interac-
tions in a characteristic time GM/c (e'/Sc) '~' if
eQ» G~m, ~M2/8'c, but for smaller values of Q the
process proceeds much more slowly (and even
stops completely if eg&4Gm~). The Hawking
effect will then dominate only long after the forma-
tion of the tails. Preliminary considerations in-
dicate that these effects also lead to a disruption

of the x horizon. We hope to return to this ques-
tion elsewhere.
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APPENDIX: ZERO-FREQUENCY, ODD-PARITY SOLUTIONS OF THE ELECTROMAGNETIC AND GRAVITATIONAL

PERTURBATION EQUATIONS

The electromagnetic-gravitational perturbations in the small-wave-number limit satisfy Eq. (19) with
k=0. [Also, see Sec. IV Eq. (38).] Setting k =0 and changing the dependent variable by

G, =~R,

and using a dimensionless independent variable x =r/2M, Eq. (19) becomes

d'G -4 1 1 dG, -(l —1)(I+2)x+C„—3
dx' x x —r.' x —r' dx ~ x(x —r .')(x —r')

where r'. =r,/2M, r.

' =r /2M, and

c„= —)I—(s ) {9M*+ 40' {(—1)(!+ 2 ))' ~*I .1

Notice that

C„(C„—3) = -4n' [2 —I (l + 1)],
where c(=Q/2M.

This equation is of the form

d'y y 5 e dy ~. npq P-0
dq' q q —1 q —a dq q(q —l)(q —a)

(A3)

if we set q =x/r', a =r,'/r', P =-(C„—3)/r'),
y =-4, 5 =1, c =1, 6 =-(I+2), and p =(l —1). 'q,

P, y, 5, and E satisfy the relation

determined by the positions of -the singularities
and the exponents at those singularities. "

Equation (A3) [or its equivalent Eq. (Al)] is
known to admit polynomial solutions if both of the
following conditions hold4

(i) )I or p should be a negative integer.
(ii) The accessory parameter should have one

of its special values called the eigenvalues.

Condition (i) is clearly satisfied, but at this point
one is not sure about (ii). In what follows, we will
examine the solutions and the nature of the sing-
ularities of Eq. (Al). We will drop the + subscript
on G, and C„with the understanding that one takes
the appropriate root of (A2) for the case one has.
Set

q +(8-y —5 —e +1 =0. G = a„xn' (A4)

Such an equation is called Heun's equation" and
represents a Fuchsian equation" of the second
order with four singularities at x=0, 1, a, and

The constant P is called the accessory param
eter whose presence is due to the fact that the
solution to a Fuchsian equation of second order
with four or more singularities is not completely

One then obtains the indicial equation

s(s —5) =0 or s, =5 and s, =0.
We will try to obtain the solutions of (Al) by the
method of Frobenius. "

In this method, one chooses the smaller root of
the indicial equation, namely s, =0. Taking a, a
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constant different from zero, we find a, =((C, —3)/
4o. ) a, and the remaining coefficients are given
by the recursion relation

o, '(n+ 2)(n —3)a„„+[n(2 —n)+ C,]a„„
+(n —I —2)(n+I —1)a„=0. (A5)

When n=3, Eq. (A5) implies a consistency re-
lation between a4 and a, which were calculated
before. This is a fifth-degree equation in C, and
is of the form

I =1: (special case)

3 6
G =1 — ~x+ 4x

l=2:

C, —3 C, —3. 1
G =1+ ' x — ' -x ——x4n' 4n'

l=3:

C, —3 C, —3, 5 30

(C,(C, —3}+4n'[2 —I(l+1)){acubic in C,) =0 . (A6)

Equation (A2) implies that this is always satisfied.
[Incidentally, the cubic shares no common roots
with Eq. (A2).] Since Eq. (A6) is always satisfied,
the coefficient a, is left totally arbitrary. Two
linearly independent solutions of Eq. (A1) can be
obtained by setting a, =1, a, =0 and a, =0, a, =1.
Call these solutions G, and G, . From Eq. (A4) it
follows that both G, and G, are regular at x =0,
i.e., the point x =0 is an "apparent" singular point
of (Al). [An apparent singular point of the differ-
ential equation y" +P(x)y'+ Q(x)y =0 is the one at
which the coefficients P(x) and Q(x) blow up but
the solutions do not. ]

The following tests" can be made to show that
x =-0 is an apparent singularity:

(i}Write the equation as y "+P(x)y'+ Q(x)y =0.
(ii) Set P(x) =P(x)/x; P(0) should be a negative

integer (-4 in our case).
(iii) Calculate s, —s, . It should be a nonzero

integer (5 in our case}.
(iv) Finally, the ease with two arbitrary constants

(as in the case of G, and G, above) should result.

If any of these fail, the singularity is real.
We will use these tests to show that the sing-

ularities at x=r,'and x=r' are real [i.e., one of
the solutions at x =r,' and x =r' contains ln(r,' —x}
and ln(x —r'), respectively]. Consider now the
recursion relation (A5). Notice that when n =I+2,
the coefficient multiplying a„vanishes. This fact
can be used to generate a polynomial solution to
Eq. (Al). The prescription is the following:

(i) Set a, =1, leave a, arbitrary.
(ii) Calculate a„,. Choose a, so that a„,=0.

(This, is always possible since a„,=0 is a linear
equation in a, .)

Then a,~ will be zero because of Eq. (A5) and

so will a,~, .. . . Hence the series will terminate
and one will obtain a polynomial of order /+2 as
a solution. This procedure corresponds to taking
the right linear combination of G, and G, above to
get a polynomial.

The first few of the solutions are given below:

l=4

C, —3 5(C, —3), 15

where x'=x —x'. One obtains the indicial equation
s =0, i.e., s, =s, =0. Write the equation as
y+P'(x')y+ Q'(x')y =0, where the single overdot
denotes differentiation with respect to x'.

Now set P'(x') =P'(x')/x', then P'(0) =1. Using
the method of Frobenius" does not lead to the case
with two arbitrary constants. It is clear that all
of the tests mentioned before give negative re-
sults. Hence the solution at r' will contain
ln(x') =ln(x —r'). If G' is the polynomial found
above, then the irregular solution at x =x' is of
the form

G" =AG' ln(x —r')+gb„x'",
n=0

(A7)

where A is a constant and the b„'s can be deter-
mined by the method of undetermined coefficients.
The precise form of the b„'s is not important in
the calculations we do in the main portion of the
paper.

From the expressions written above, it follows
that for the regular solution

21(C, —15) . , 84 1
2@~(C,—6 —6o ') n4 (C, .—6 —6n')

The region of interest in our case is x'& x & x,'.
But since the solutions above are polynomials,
they will serve as well as any other regular solu-
tion of Eq. (Al) between r' and r„'. (Indeed, these
are the solutions that match to the waves outside
properly. ) We should now determine the solution
of Eq. (Al) which is not regular at r.' or r'. The
singularities at these points are real. This can
be seen as follows. (We will take r' as anexample;
the results are identical for r,'.)

Try an expansion of the form
I

~b x in+~
n
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Let us normalize this solution so that R,'(r, ) = 1,
then

If R,"denotes the irregular solution normalized in
such a manner that

The constant A can be determined by the Wronsk-
ian of Eq. (Al),

dgt dyeW= ' R"— ' R'=const
dy ' dy

near the points x*-—~ and x*-+ . %e obtain

r, -xR,". (as r-r, ) =in ' +const

then

R "(as r r)-=A ln + const

From this one can determine t;he zero-k behavior
of the coefficients A(k) and B(k) defined in the
main portion of the paper. The answer has the
same form as in the scalar case.
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