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We investigate the evolution of Bianchi spaces of type VII,, VIII, and IX during the lepton era, and find
that a large entropy amplification occurs due to neutrino viscosity for large initial anisotropies. The curvature
has a weak influence on the dissipative phenomena. However, following the adiabatic evolution in subsequent
epochs we find that models with large anisotropic curvature and high dissipation are not consistent with the
isotropy of the Hubble expansion inferred from the observations of the cosmic background radiation. We
conclude that our universe is either remarkably flat or nondissipative, the only exception being the particular

case of isotropically curved open spaces.

I. INTRODUCTION

The existence of dissipative processes in the
early stages of the cosmological expansion has
been invoked by several authors’ in order to ex-
plain the high regularity in the structure of the
universe at large scales. Moreover, it was pro-
posed that it could explain also the large amount
of radiation entropy carried by the cosmic back-
ground. These ideas have developed to form the
“philosophy” of chaotic cosmology, according to
which it should be possible to prove that, what-
ever the initial conditions may be, the universe
evolves toward regular configurations.?®* Any
primordial large-scale anisotropy of the expansion
rate and part of the matter inhomogeneities are
smoothed out by radiation viscosity*™” or by quan-
tum processes near the singularity®™*°; during
the damping process the photon number in the
background radiation increases up to the high
value observed at the present epoch (108-10° pho-
tons per baryon; this number gives also the order
of magnitude of the radiation entropy per baryon
in units of the Boltzmann constant).

The idea of Misner,* that neutrino viscosity suf-
fices to damp homogeneous anisotropies, was
proved to be very successful either in flat (i.e.,
Bianchi type-I) or in isotropically curved (type-
V) spaces. It turns out that in flat spaces the
present-day expansion anisotropy must be less
than ~107%, and the dissipation of the primordial
anisotropy energy occurring in the lepton era is
associated with a huge production of the radiating
energy'' ~!%; thus the large photon entropy per
baryon which is observed today is no longer sur-
prising.*

However, since both type-I and type-V spaces
are a very special subset of homogeneous spaces,

20

one should consider more general situations in

" order to check what neutrino viscosity can really
offer to cosmologists. The most generic sets of
homogeneous spaces are Bianchi types VI, VII,,
VIII, and IX.”® In the present paper we consider
the last three types. Type IX constitutes the lar-
gest homogeneous generalization of the closed
Friedmann model; type VIII (semiclosed topology)
does not include strictly isotropic solutions, but
contains models which are quite plausible on ob-
servational grounds, and have many properties
similar to type IX."® Both types admit diagonal
metrics in the canonical frame, and here we
limit ourselves to this case. Type VII, is the
largest generalization of the open Friedmann mo-
del, containing also type V as a special subset,
and one may expect a priori that it is favored by
the available evidence for a low-density universe.'’
Since this type does not admit diagonal metrics
we shall consider a canonical frame with rotating
axes.

We investigate the production of radiation en-
tropy in these spaces by following the evolution of
cosmological models throughout the lepton era
(temperatures ranging between 6 x 10° K and
1.5x 10" K) by numerical integration of the Ein-
stein equations. In our calculations we assume a
lepton plasma in thermal equilibrium, and make
use of the neutrino viscosity coefficients derived
from the Weinberg-Salam interaction through the
relativistic kinetic theory.’? In spite of its short-
comings, this approximate description allows us
to display clearly the main features of the dissi-
pative process during the lepton era; moreover,
it makes feasible the investigation of a very large
number of models with a reasonable computer
time. A brief discussion of the viscous fluid ap-
proximation is given in Sec. IIIB in connection with
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Stewart’s theorem.®

Within our approximations we find that, if the
curvature of space is small throughout the lepton
era, the radiation entropy is enhanced by a fac-
tor which depends only on the initial anisotropy of
the expansion rate and may be as large as to ac-
count for the present ratio of cosmic radiation to '
matter. The entropy production is not hampered
by curvature. On the contrary, in high-curvature
spaces it can even be enhanced with respect to
flat spaces if bounces’+?° from one Kasner epoch
to another occur during the lepton era. However,
models with high dissipation and large anisotropic
curvature are ruled out, because we shall see that
they do not lead to isotropic configurations at the
present epoch. )

As far as isotropization is concerned, funda-
mental results were given in two classic papers
by Collins and Hawking.'®+*! These authors show
that Friedmann models are unstable under the most
general homogeneous perturbations, and that the
expansion anisotropy does not become arbitrarily
small for times {— « in type-VII, and type-IX mo-
dels. We can ask, however, a different question,
namely: For which sets of initial conditions do
homogeneous models exhibit a level of anisotropy
at t~ 10 yr compatible with the available experi-
mental data? In our view the expression of chaotic
cosmology can be put on more empirical grounds
if we simply require the anisotropy of the expansion
rate (i.e., of the Hubble parameter) to be small
today, with no regard for either the ultimate fate
of the universe or the equalization of the cosmic
scale factors (defined in Sec. II). In this connec-
tion we must consider the work of Doroshkevich
et al.,*® according to which models possessing a
largely anisotropic-curvature tensor eventually
become cylindrically symmetric from the point of
view of the (unmeasurable) scale factors, but
“almost” isotropic in terms of the Hubble param-
eter. We investigate such models, which are
somewhat more general than those of Collins and
Hawking, in order to have a picture as complete
as possible of the role of neutrino viscosity in
chaotic cosmology. We checked their physical
acceptability following also their evolution in
adiabatic epochs, up to zero red-shift.

Our calculations show that the analytic results
of Doroshkevich et al. are not correct since a
coupling between expansion anisotropy and the
anisotropic part of curvature makes the former
increase at late epochs; on the other hand, our
results are consistent with those of Collins and
Hawking, and those of Liang,?? who considers in-

_homogeneous perturbations in a Friedmann back-
ground. We show that the set of physically plaus-
ible models includes solutions where the curva-

ture tensor is strongly anisotropic; however, in
such models the requirement of low-expansion
anisotropy implies a small magnitude for curva-
ture.

Restrictions are found also for the production
of entropy: If we assign a finite curvature at the
beginning of the lepton era (compatible with a
small curvature at the present epoch) we may
pose a significant upper limit on the entropy am-
plification. A limit case is represented by Fried-
mann models where the curvature may be large
but the specific entropy remains practically con-
stant. However, a large entropy amplification is
not excluded, provided the universe is sufficiently
flat or its curvature is isotropic. Note that, in the
context of homogeneous cosmologies including the
Friedmann models, an isotropic curvature is pos-
sible only for an open universe, even if the ex-
pansion rate is anisotropic. The same does not
apply to a closed universe where the anisotropy of
the expansions is coupled to the anisotropy of the
curvature tensor. Our results show that most of
the photons of the background radiation may have
been produced in the lepton era of the universe,
but limit the range of validity of chaotic cosmology.

II. THE EINSTEIN EQUATIONS IN THE VISCOUS
REGIME

In this section we write the equations that govern
the evolution of models of types VII,, VIII, and IX
with matter at rest in the homogeneity frame. At
each point of spacetime we take a local orthonor-
mal tetrad where the metric can be written as

ds® == (w%? +‘ZS:1 (wh).
The differential one-forms w* will be‘tav_ken'as
w®=dt,
w'=R (t)(cospQ' - singQ?) ,
w? =R,(t)(singpQ* +cos pQ?) ,
w® =R,(1)Q°,

()

where R,(t) are the cosmic scale factors, and !
are the canonical, time-independent one-forms
obeying the relations

Q' =-3C}, 0", ()

The C}, are the canonical structure constants and
can be written as

Cipl ==€imc; +(0yy +5kt)_(5ks"5i3)a ®3)

with the constants ¢, and a listed in Table L
Although the ansatz (1) is not the most general

. one that one can choose, it is sufficient to display

all the main features of the Bianchi types con-
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sidered here.

The cosmological expansion is described by the
Hubble parameters

d
Hi =dT lnR‘ (4)

with, in general, H,# H, for i #k. The Einstein
equations involve the time derivatives of H;;
after long manipulations we obtain

where H=%y,H,; is the average Hubble param-
eter, € and p are the energy density and pres-
sure, respectively, of the cosmological fluid,
and 7, and 7, are the shear and volume viscosity.
We have ¢ =0 (and therefore d¢/dt =0) for types
VIII and IX. For type VII, we have

o R, R )

=24(2H. —H . — S _f2) 8
dt 2a(2H, - H, Hz)(R2 R, (6)
The set of Einstein equations is completed by the
constraint equation

1 (do\'(R, R,
€e=3) HH +lR*__<_—><—1_——2->, (7)
ZZ,; B2 4 \dt/ \R, R,

with R* the curvature of three-space,

C 1 ‘R 2
R*=¢ L L <_¢)
S&“ R/ E R,R,

(types VIII and IX),

e 2_-‘;(&_&)2

re- o) (7 ©
(type VII,). However, we found that Eq. (7) is not
easy to handle in computer calculations because €
is often given by the difference between larger
quantities. It is preferable instead to use the en-
ergy-balance equation, namely

Z—te == 3H(e +p) +I H® +4n (BH® — €) +2n,R*. (9)
Thus Eq. (7) only gives a constraint for the param-
eters specifying the initial conditions.

Equations (5), (6), and (9) can be integrated to
give the complete evolution of the cosmological
models. Our main purpose is to calculate the
entropy amplification and the isotropization of the
expansion rate; the radiation entropy amplification
is given by

3/4
> = R,R,R, < € rad ) , (10)
R 1inRzinR3in € rad sin

where the subscript “in” denotes the initial condi-

Fa &) ilma- @12, ((
a “‘3””“2(1%3 algg-ala) ], 2,
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TABLE I. Values of the constants ¢; and a for Bian-
chi-type VII;, VIII, and IX cosmological models.

01 CZ (33 a
V11, 1 1 0 a=0
VII 1 1 -1 0
IX 1 1 1 0

2 ' 2\ 2
ol et} (ST st i 2n -1

R, R,R,

(5)

]
tions (in our case the beginning of the lepton era).
It is also useful to define the anisotropy paramet-
er'! .
) 2
a4=53 (—”—’—i’) : (11)
T H

However, in a metric with a nonvanishing d¢/dt,
shear originates not only by the anisotropy of
the Hubble parameters, but also from the rotations
of the principal axes. We therefore define a sec-
ond shear parameter

such that the shear energy density* is
| o T3HA(A, +A,)= 3HPA. (13)

Entropy production and anisotropy damping de-
pend on the magnitude of the viscosity coefficients.
For the lepton era we use the shear viscosity co-
efficient calculated in Ref. 12. However, in quasi-
isotropic models where the role of bulk viscosity
is dominant, the coefficient n, calculated in Ref.
12 does not allow us to calculate = accurately. In
this special case it is better to use the expansion

n, =M X1 = 3.37X% +8.27X*~9.65X5+4.03X°)

where X=0.51 MeV/kT and 1,=7.0x 107 cm™?,
For the subsequent plasma era we set 9,=7,=0.
This is a very good approximation, since the en-
tropy enhancement at this stage is quite negligible.

Some care must be taken in defining the limits of
the dissipative period. In the standard Friedmann
models the lepton era is comprised between the
earlier hadron era and the subsequent plasma era.
The starting and ending points are defined by the
hadron annihilation and the electron-positron pair
recombination, respectively. The limiting temper-
atures can be taken as T;, =1.5x 10* K and T,
=5.9x 10° K(kT set equal to the pion and electron
rest-mass energy, respectively). These results
are useful for our purposes. As a matter of fact,
in the hadron era the short mean free paths of
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particles do not allow a large dissipation, and in
the plasma era neutrinos are decoupled from mat-
ter, whereas photon viscosity gives a negligible
dissipation in homogeneous models.

However, in anisotropic models one is led to
consider two classes of solution: class A, where
the temperature decreases monotonically with
time, and class B where the “isotropic” tempera-
ture (see below) increases for some part of the
lepton era before dropping down. For class A we
can take 7, and T, as in Friedmann models; for
class B we start the dissipative epoch at T;, =5.9
x 10° K, but we are aware that the beginning of the
lepton era is not so well defined as in class A for
the additional difficulty of treating a collisionless
regime in the first steps of the integration.

III. PROPERTIES OF THE SOLUTIONS

The study of the general properties of models
of type VII,, VIII, and IX is complicated by the
fact that one can choose a large variety of initial
conditions for the integration of the Einstein equa-
tions. As a matter of fact only the temperature
(and consequently, the radiation density) is pre-
scribed for the beginning of the lepton era, after
fixing €,, (where the subscript “in” means initial,
referring to the beginning of the lepton era) sev-
eral more parameters are to be chosen since ani-
sotropic-curvatufe spaces allow a large number of
degrees of freedom. In this connection we notice
that all the models which present the cosmic back-
ground temperature T =3 K, an acceptable matter
density (3H? 2 €uue; = 0.2 H?) and an expansion ani-
sotropy smaller than 1073~ 10™ when H =50-100
km sec™ Mpc™ are compatible with observational
constraints. It can be shown that anisotropic-
curvature models can be made compatible with
the observed specific entropy at =~ 10'° yr by
simply adjusting the baryon density at the beginning
of the integration. Then, during the cosmic evolu-
tion, the baryon density adjusts itself to become
~ 3H? in the quasi-isotropic stage, so that a quasi-
critical density is provided automatically.

In order to dispose of the remaining degrees of
freedom we adopted the following procedure. For
each world model we fixed the ratios R¥/H;2,
(R1/R3)in b (Rz/Rg)in > (Ha/H) iny and (Hz _H)in/
(H,-H);,, and finally H,,. Then Eq. (8) determined
the initial value of R;, whereas the initial shear
parameter A=A, +A, was determined by the con-
straint (7). (In type VII, we had also to choose the
constant ¢ whose value determines, for a given A,
the parameters A, and A,.) Then we allowed H;, to
vary by keeping the other parameters fixed. Thus
we were able to observe the influence of the ex-
pansion anisotropy on the properties of the models.

As a matter of fact, varying Hy- for a given tem-
perature simply reflects on the amount of shear,
larger values of H;, corresponding to more aniso-
tropic models.

One should notice that H;, is not completely
arbitrary:. For class A,H;, is limited by the ob-
vious condition 3 H?z ¢ - 3 R*, and by the require-
ment de/dt<0 at T=1.5x 10 K. For class B we
require de/d¢>0 at the beginning of the lepton era;
on the other hand, we impose that the temperature
should be always less than 1.5x 10** K in order to
avoid a hadron era that we are not able to treat at
present. So for low curvatures we set

3.4%x 107" ecm™'<Hy, s15cm™ (class A),
107" cm™ <Hj <10 cm™ (class B). (14)
After covering the above ranges of H,, we re-
peated the procedure for many values of R¥ /Hi, 2,
ranging in magnitude from 10~% to 107!, (In
realistic models the initial curvature must be

very small, as we will show below.) Fixing the
sign of the initial curvature limits the choice of

the ratios R,/R, and R,/R, for type-IX models.

We adopted R,/R, =3, R,/R,=2 for positive curva-
tures, and R,/R,=3, R,;/R, =5 for negative curva-
tures. We considered also the effect of systematic-
ally changing the above ratios, but it is small

‘except for very special models (cylindrically sym-

metric models in type IX). -

In most calculations we also posed (4, - H,);,
=—(H, - H,)i, and (H,/H);; =1. However, the values
of such parameters turn out to be irrelevant for -
the isotropization and entropy amplification (for
a given value of A,;,).

We integrated about 400 models throughout the
lepton era. For part of them we followed also the
evolution in the subsequent plasma era, mainly in
order to check which models exhibit an acceptable-
anisotropy level at the present epoch. For type
VII, we also checked the possibility of switching
to the Milne epoch claimed in Refs. 16 and 23.

In the rest of this section we shall describe the
results of our computations and discuss the ap-
proximations involved.

A. The entropy amplification

In spite of the large variety of solutions the
entropy production turns out to be described by a
few simple laws. Let us denote by % the total
entropy amplification, namely, the value of ¥ at

. the end of the lepton era. (Since no other dissipa-

tive epoch occurs, the specific entropy at the pres-
ent epoch is S=8§;, %, with S;, the specific entropy
at the beginning of the lepton era.)

We find that the final entropy ratio Z; depends
mainly on Hi» and on the solution class. The situa-
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FIG. 1. The entropy amplification Z; versus the ini-
tial Hubble parameter Hy,. The full lines refer to quasi-
flat spaces. The dashed lines refer to class-A models
with R}, =10"32H, 2 and class-B models with R
=10"%H, 2. Note that larger values of Hin simply cor-
respond to higher shear parameter Aj,.

tion is especially simple for low-curvature models.

The full lines in Fig. 1 report Z, as a function of
H,, for models where |[R*/H?| <10 throughout the
lepton era. It is easy to check that Z, depends lin-
early on H;, for all of (low-curvature) class-B
models, and also for the class-A models satisfy-
ing H>10™ cm™. We find

%) =1.2ff‘ (class B),

! (15)
2§ =0.6x 107" % (class 4),

f

where the superscript (0) denotes the low-curva-
ture limit and H,=0.6 x 107" ¢cm~™". For H;, ~107*
cm™! the class-A curve in Fig. 1 exhibits a bump
which represents the transition to quasi-isotropic
models. For small anisotropies (4;, =1, or
equivalently Hy, <107° ¢cm™?) the entropy production
is due to bulk viscosity, and ={°) =1.0016.2¢

Since we must set the limits (14) on H;,, we find
that ={°) < 10° for class-A models and ={°) <3 x 102
for class-B models.

The models to which Egs. (15) apply have a
rather simple behavior. The lepton era begins in
a vacuum regime which is described very accurate-
ly by the simple Kasner model since (€/€ear )in
<107° for H;, 2 107 cm™. The condition € << €y,
remains valid for part of the lepton era, but the
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radiation content always becomes important before
the end of the lepton era and then the universe
evolves toward a quasi-isotropic stage.

More complicated situations arise when R*/H?
is not small; in particular, at |[R*/H?|~1 the
Kasner regime is temporarily replaced by a cur-
vature-dominated regime, which preludes to a
new Kasner epoch’®+?°; the process is known as a
curvature-driven “bounce”, and is favored by
larger values of both R¥ and H;,. For |[R¥}=10""°
H,?and Hy ~1 cm™ we observed up to three
bounces and four distinct Kasner epoches within
the lepton era. The effect of bounce processes on
the entropy production is moderate. In Fig. 2 we
show the total entropy production =, (compared
with the curvature and anisotropy at the end of the
lepton era) as a function of H;,. We can check
that the entropy amplification is only slightly
smaller than ={° for those models that are just
bouncing at neutrino decoupling. However, when
the universe has enough time to enter a new Kas-
ner epoch a larger dissipation is allowed (see also
dashed lines in Fig. 1). For models that show two
fully developed Kasner epochs, the production of
entropy is larger than Z)f“’) by a factor ~ 2.7, This
is interpreted as the entropy enhancement due to
one complete curvature bounce. The interpreta-
tion is confirmed by the analysis of models with
N complete bounces, where we found Z,= (2.7)¥
=), We could verify this rule up to N =3 (four
distinct Kasner epochs).

If one considers the upper limits on H, already
discussed, one finds the following upper limits on

3

L -l L.

LOGy Hiy

FIG. 2. Comparative behavior of R;k,.Af, and Z; func-
tions of Hj,. The curves refer to type-IX class-B
models with R?;\= 10° 28Hin2, but their qualitative fea-
tures are quite general.
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the entropy ratio: |
;<3 10" (2.7)" (class B),

Z, <10° (2.7)" (class A). (16)

However, we shall see below that arbitrary curva-
tures are not allowed in realistic models.

B. Discussion

The results exposed in Sec. III A are based on
some assumptions that we shall discuss here. One
of them is the validity of the viscous fluid approxi-
mation. The objection to the viscosity scheme is
that 1arge viscosity coefficients may formally give
negative signs for the diagonal spatial stresses,
which are not realistic for a gaseous system. A
criterion for the validity of the viscous approxi-
mation was given by Stewart,’® and can be written
in the following form:

~ d1n%(¢) o1

=3 <3,
olt) dIn(R,R,R;)  °

(17)

In order to check the reliability of our calculation
we calculated ¢ as a function of time throughout
the lepton era. '

In all class-A models we find that the dissipa-
tion proceeds rather uniformly in the lepton era,
in the sense that ¢ is a slowly varying function of
time. In the most dissipative models of this class
we have 0.1<¢ =<0.5 throughout the lepton era. In
class-B models ¢ may be larger by several orders
of magnitude in the first steps of integration, but
it drops to ¢ <0.5.

From these results it follows that we should dis-
cuss separately the accuracies we can obtain for
the two classes of models. For class A we can be
confident that a good accuracy is achieved for o,
and therefore for log,, Z;. This confidence is also
strengthened by the fact that the neutrino collision
time ¢, turns out to be smaller than the hydrody-
namic time ¢, for 722 x 10'° K, namely for the
largest part of the lepton era. We note that the
condition ¢,< ¢, is nof necessary for efficient
dissipation®® but gives further evidence for small
errors. For class B the situation is worse, for
the violation of Stewart’s criterion. The meaning
of the temporary violation of Stewart’s theorem
was discussed in Ref. 11, following the ideas of
Matzner and Misner.?® A consistent kinetic treat-
ment of the dissipative process shows that in a
collisionless regime most of the shear energy
density resides in the radiation density, so that

00
T = €iso T €aniso »

with €., > €iso. In the viscous approximation we
formally ascribe €,,,, to the shear energy density,
so that € appearing in'Eqgs. (5), (7), and (9) is to

be identified with €;,. The sharp increase of ¢
and T and the negative stresses refer only to the
isotropic part of the stress-energy tensor. How-
ever, it seems reasonable to take only ¢;, into
account when we calculate the entropy (no entropy
being associated with an ordered motion) so that
Eq. (10) remains the best estimate we can make of
the parameter ~. However, we admit that large
errors may be implied by this naive procedure;
such errors are larger for the most dissipative
models (Z; ~10'?) where Stewart’s theorem is
violated for an appreciable part of the lepton era.
We can give a lowev limit to the entropy enhance-
ment by neglecting the contribution during the
violation of Stewart’s theorem; if we do so we
find that in the extreme cases we reduce %, by ~4
orders of magnitude. :

Another question is the accurate identification
of the initial and final point for the dissipative
epoch. As already remarked for class A these
points are defined by pion annihilation and lepton
pair recombination. Although they are not point-
like events, the temperatures T,, and 7, are well
defined, being uncertain at most by a factor 2. In
our calculations we checked that this implies an
uncertainty by a factor <3 on T,. However, the
beginning of the lepton era is not so well defined
for class B, where neutrino dissipation starts in
a collisionless regime and gradually leads the
cosmological plasma to a collision-dominated
regime.

Finally we must check whether entropy amplifi-
cations as large as 108-10'2 are consistent with the
observed specific entropy, which is of order
10%~10°. Fixing such a specific entropy S, implies
that the ratio of the photon number to the baryon
number was initially ~S;/T;< 1 in the most dissi-~
pative models. This introduces an inconsistency
in our computation, since in fact we assume that
the cosmological fluid was radiation dominated
throughout the lepton era. We note that the baryon
excess has no influence on the geometrical evolu-
tion of the universe at early times because the
class-B models with H,, >107 cm ™ (as required
in order to have the baryon excess) are very
largely dominated by the shear energy density.
The equation of state of matter (p=0 or p=¢/3)
has no relevance. Later, when the energy den-
sity € becomes comparable to €y, the radiation
density dominates the rest-mass density of bary-
ons. However, the baryon excess decreases the
viscous dissipation, since the neutrino number N,
becomes smaller than the number of scatters N,
and n,<N,/N, As a result, the entropy amplifica-
tion should be overrated when we find Z,> 10%-10°,
and we can suspect that the maximum allowable
enhancement of entropy Z, cannot be much larger
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than S;. It is certainly attractive to speculate on
an initial specific entropy S;, ~ 1.

C. Limits posed by the isotropy requirement

We have already remarked that the cosmological
models can be made consistent with a present
matter density € e ~1072° g/cm® and a specific
entropy S~10® with a suitable choice of (€, /
€nd)in; @ significant selection arises instead from
the isotropy requirements. The available limits
on the quadrupole anisotropy of the cosmic back-
ground radiation imply that, if the universe is
represented by a type-VIII or type-IX model,
then®®

LA ~[A(z,) 2| = 107%, s

where A(z) is the shear parameter at a red-shift
z and z, is the last-scattering red-shift. For type
VII, the available data on the dipole anisotropy
imply that?®®

[A4©0)]V2 =[A(z,)]?|< 1072, (18b)

If the law found in isotropic curvatures or flat
spaces

A<H™[R,R,R,)™ (19)

were valid also for the adiabatic damping of the
expansion anisotropy in generic curved spaces,
the limits (18) would not be restrictive at all. In
fact Eq. (19) is found to be valid when the curva-
ture is small; in such cases we find at neutrino
decoupling (see Figs. 3 and 4)

A <0.8, (20)

and a very small A(z) is calculated from Eqs. (19)
and (20) at low red-shifts.

Let us discuss how the coupling between aniso-
tropy and curvature influences the cosmological
evolution. The coupling is clearly observed as
early as in the lepton era in those models where
R*/H? is not small. In such models A is no longer
a monotonically decreasing function of time; more
precisely, it reaches a minimum during the tran-
sition from one Kasner epoch to another, when all
the Hubble parameters become temporarily posi-
tive. Afterwards “new” anisotropy is pumped by
curvature, so that one may find occasionally ani-
sotropies as large as A=~1.9, or €/ege, ~107*
near T =10 K. However, in our models we al-
ways found A, < 1.1,

In Fig. 3 the dashed lines give A, as a function of
H;, in type-IX spaces for two values of the initial
curvature, namely R¥ =107 H, 2 (class A) and
R#% =10"% H;? (class B). The characteristic be-
havior for large H;, is common also to types VII,
and VIII. The comparative behaviors of R}and

0 VRl it
B N <~ 7
\\ /\A\h/ B
N~
- A
<
o
o
por]
-2 F
-4f A
1 " L 1
-6 -4 -2 0
LOG,, H;,

FIG. 3. The residual shear parameter A; versus the
initial Hubble parameter Hj,. The full lines refer to
quasiflat models (whatever the type, VII,, VIII, or IX).
The dashed lines refer to type-IX class-A models with
Rit=10"%pg % and class-B models with R;¥=10"%#,,2,

Ay versus H;, are given in Fig. 2 for models where
R} =107 H,®. We can see that whenever R*/H;>
is a decreasing function of H;, the residual aniso-
tropy is larger than A{®). This occurs for a set of
models which exhibit two distinct Kasner epochs
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FIG. 4. The shear parameters Ay, and A, versus
Hin in type-VII, models witha=10" 4. The curves are
labeled by the corresponding values of logy, (Rin/Hin ).
Note that A, gives little contribution to the total shear;
larger values of a tend to increase the ratio A,/A, but
we can have A{~A, only when R*/H?~—1,
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within the lepton era (H;,, 25x 1073 em™!). For

10™* em™ < H;, <1073 cm™! the anisotropy is smal-
ler than A{”); this refers to models where the
universe is switching to a second Kasner epoch just
at neutrino decoupling.

An analytic description of the curvature-aniso-
tropy coupling can be given in the adiabatic regime
following the lepton era. Let us consider the most
general case where the curvature tensor is strong-
ly anisotropic, the scale factors being largely dif-
ferent from each other (R;> R,> R, for a suitable
choice of the indices). Then from Eq. (5) we find

¢
H, _Hz(R]RZRZi)-l[al(tO) +“31'_[ RleRsR*dt] ’
¢

t
HZ—H=(R,R2R3)'1[a2’3(t0)—§f RleRaR*dt:] ,
to

where ¢+ is an arbitrary time and g,({,) are con-
stants. Thus the anisotropy can be given as an
explicit function of time in the quasi-isotropic
stage (A<0.5), where we know that R, <{". As
far as the integral appearing in (20) is negligible,
the anisotropy decays as in flat spaces [see Eq.
(19)]. But the curvature term eventually prevails -

and
2 2
=8 n E)
A §<1 +u) <H2 ’ (21)

where » =% in the radiation-dominated regime and
n =% in the matter-dominated regime. It is im-
portant to note that R*/H? increases in magnitude
like #* (R,R,R;) /3« #72" g0 that curvature even-
tually destroys the isotropy of the cosmological
expansion.?” More precisely, if the matter-
dominated epoch started at a red-shift z =104,
then |[R*/H?| has increased by 14 orders of mag-
nitude since the end of the lepton era up to today.

We find similar results if at least two scale fac-
tors are fairly different from each other. In type-
IX spaces we can select, as a limit case, axisym-
metric models with R, =R, and H,=H,. For R,
<R, , we get

2= (2 () )

whereas for R; >R, , one recovers Eq. (21). - The
only significant exception to Eq. (21) is given by
the quasi-Friedmann models, where all the scale
factors are quite close to each other. Excluding
this special case, we find that strong limits can
be posed on |R*/H?|, which must be smaller than
107%-107* today and smaller than 107'7- 1078
at neutrino decoupling.

For a given solution class and a given R;‘/Hfz,
R¥/H;,? depends only on H;,. For class-B solu-

tions we find

i3

.Hfzv

X
~ | B

- 2
Hin

(Z—‘))B @3)

with g~ % and H,~10""* em™!, Using Egs. (15)
and (23) we derive an upper limit on the entropy
enhancement

10—18

R ET - (24)

RS

* Thus for finite curvatures significant limits on

%, can be derived; for instance, for R?;,/Hinz
=10"* we get for class-B models T, < 10°, namely
the overall limit that we gave for the entire class
A using Eq. (14). For the same curvature, the
only allowable class-A models have no appreciable
dissipation Z,~ 1. Although Friedmann models
may have high curvature, the entropy amplifica-
tion is very small there; so we can conclude that
curvature limits the entropy production indirectly,
in the sense that a high-curvature space (with
anisotropic curvature) is either unrealistic or not
dissipative.

However, since we can choose arbitrarily small
R} /Hw?, the only overall upper limit on Z, is
108-10%2. Thus Bianchi models with a strongly
anisotropic curvature tensor may be highly dissi-
pative.

We have already remarked that the models “spon-
taneously” give €=~ 3H? in the quasi-isotropic
stage. It is worth considering here type VII,, in
which one would like to find models for a low-
density universe. It was claimed'®:? that such
spaces eventually enter the Milne epoch (R*=~—6H?,
€ < H?) with an expansion anisotropy A= constant
<« 1. Such a transition being observed in Bianchi
type V," if we could confirm the existence of this
regime in the most generic case, it would be suit-
able to represent the present state of the universe
if €~0.3 H%. We performed calculations to check
(a) whether type-VII, models are really able to
reach a Milne epoch with A< 1, and (b) whether
the Milne epoch has a lifetime ¢ = 10 yr against
“decay” into a highly anisotropic regime.

The answer to point (a) was negative. Qur mo-
dels could never reach a low-density stage with
A< 1 because the anisotropy-curvature coupling
leads to A~ 1 when |R*|~H?. In order to check
point (b) we imposed “artificial” initial conditions
at z=10-100 (i.e., conditions inconsistent with the
previous evolution). The Milne epoch was quickly
destroyed for moderate anisotropy of the curva-
ture tensor.

We conclude that the expansion can remain iso-
tropic over cosmological periods in a low-density
universe only if the curvature tensor is isotropic.



20 NEUTRINO VISCOSITY AND ISOTROPIZATION OF ... 1259

IV. CONCLUSION

According to the results expressed in the pre-
vious section, the entropy content of the universe
increases during the lepton era by a factor that
may be very large and depends on the average
Hubble parameter at the beginning of the lepton
era (or equivalently, on the anisotropy parameter)
and on the solution class A or B). The curvature
of three-space plays a role only because, for a
given entropy amplification, significant upper
limits can be posed on the magnitude of curva-
ture when only realistic models are selected.

The divect influence of curvature on the entropy -
production is small.

The set of plausible models showing a large dis-
sipation has a very interesting feature: These
models must be rather flat at the present epoch,
|[R*|=< 107* H?, so that the matter density is very
close to the critical density €,=3H?. This is in
agreement with the result of Collins and Haw-
king,'5+?! according to which only models with criti-
cal energy density isotropize for t- <, but it is a
stronger conclusion than theirs: We state that
either the universe must be extremely flat at the
present epoch, if it is quasi-isotropic today after

being quite anisotropic at the big bang, or the ex-
pansion anisotropy was purely kinematical and the
curvature tensor is then isotropic. Of course the
universe may have a strong anisotropic curvature
today, as would be required in particular by a
low density'”; but in such a case it was isotropic
since the beginning, and the observed specific
entropy is a direct imprint of the big bang. The
possible existence of earlier dissipative mechan-
isms does not change this conclusion: No matter
how small the residual anisotropy may be, new
anisotropy can be produced by curvature. Only
stringent limits on the magnitude of R* can elim-
inate this phenomenon.

We finally observe that our work does not give
support to the ideas of chaotic cosmology?®; as a
matter of fact even its weakest formulation (ex-
pressed in the Introduction) meets serious diffi-
culties because of the anisotropy-curvature
coupling,
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