
.PH Y SICA L RE VIEW 0 VOLUME 20, %UMBER 5 1 SEPTEMBER 1979

Diagrammatic analysis of some contributions to the dd = 1/2 rule

Mark B. Mise
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

Edward %itten
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 23 April 1979)

Higher-order gluon corrections to a particular mechanism for the AI = 1/2. rule are computed using
quantum chromodynamics. It is found that due to gauge invariance these corrections leave the form of the
lowest-order result essentially unchanged.

I, INTRODUCTION

The weak decays of strange hadrons are con-
veniently grouped into three general categories:
leptonic, semileptonic, and nonleptonic. While
the leptonic and semileptonic decays have been
fairly well understood for many years, only re-
cently has serious progress been made towards
the understanding of nonleptonic decays.

It is well known that experimentally the non-
leptonic decays of strange hadrons which proceed
through the AI= ~ part of the effective weak Hamil-
tonian are enhanced by roughly a factor of 20 (in
amplitude) over those decays which go via the
hI=-,' part of the effective weak Hamiltonian. This
is called the AI= —,

' rule. It had been hoped that
strong-interaction effects at short distances would
sufficiently enhance the AX= ~ portion of the usual
current-'current nonleptonic weak Hamiltonian
to explain the AI=-,' rule. ' However, detailed cal-
culations using quantum chromodynamics (QCD)
do not lead to a large enough enhancement. '

It has been claimed' that the answer lies in the
amplitude shown in Fig. 1, sometimes called a

."penguin" diagram. Since the gluon (g) carries
no isospin, this amplitude is pure AI= ~. At first
glance the penguin diagram appears to give a
small contribution to the effective weak Hamil-
tonian, but its chiral structure leads to a very
large contribution to strange-particle decay amp-
litudes involving pions when its matrix elements
are evaluated by saturating the matrix element
of a product of quark bilinears with the vacuum
intermediate state. Analysis' ' of both strange
meson and baryon decays supports the hypothesis
that both the magnitude of the decay amplitudes
and the AI= 2 rule are understandable on this
basis.

Calculation of Fig. 1 reveals that (in the ap-
proximation of regarding the ~-boson and charm-
quark masses as very heavy) the loop integral
gives a factor of k' which cancels the pole in the
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FIG. 1. "penguin" diagram contributing to nonlep-
tonic weak decays.

gluon propagator. As a result Fig. 1 can be de-
scribed, perhaps surprisingly, in terms of a local
four-quark operator in the effective Hamiltonian
for nonleptonic weak decays.

It is natural to wonder whether this local four-
fermion structure is an artifact of the lowest-
order calculation or will persist to higher orders.
For example, Fig. 2(a) might appear to be a dia-
gram showing that the local four-fermion result
is indeed an artifact of the lowest-order calcula-
tion. In Fig. 2(a) the factor of k' from the upper
loop integration cancels the gluon propagator
when the masses of the strange and down quarks
are zero. This, however, does not lead to a local
four-fermion structure, but instead to a structure
of the type shown schematically in Fig. 2(b).

Another class of diagrams that might seem to
show that the local four-fermion result of Fig. 1
is an artifact is shown in Fig. 3. Again, the dia-
grams of this type do not admit an interpretation in
terms of a local four-fermion structure. More-
over, they are no smaller than the lowest-order
penguin diagram even in the limit of large charm-
quark and H -boson masses. The diagrams of
Fig. 3 would, taken by themselves, ruin the low-
est-order local four-fermion result.

The purpose of this paper is to show, -by ex-
plicit calculation, that a cancellation of soft-gluon
effects occurs between the diagrams of Figs. 2

and 3 and to show how similar cancellations occur
between other diagrams so that in general the

20 1216



20 DIAGRAMMATIC ALAI YSIS OF SOME CONTRIBUTIONS TO. . . 1217

s d s d

crossed
+ graph

(a) (b)

k, p, a

(a)

ki, p. ,a

(b)
FIG. 2. (a) A two-loop penguin-type diagram contri-

buting to nonleptonic weak decays. (b) Symbolic repre-
sentation of (a) illustrating the cancellation of a gluon
propagator by the upper loop integration.
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local four-fermion structure of the effective weak
Hamiltonian dens ity is not destroyed.

This cancellation, which might seem surprising
from a strictly diagrammatic point of view,
actually has a simple and fairly well-established
field-theoretic interpretation. ""' To leading
order in the heavy masses the sum of all dia-
grams of the penguin type (with arbitrary gluon
insertions) must be equal to a sum of matrix ele-
ments of local, gauge-invariant operators times
Wilson coefficients. ' Apart from four-fermion
operators, one might expect the operator
d yz (1 —y)T's(D, E"")' to appear in the expansion.
[Here D„E'"-=(D„F"")'T'denotes the covariant
derivative of the gluon field strength tensor. ]
Other operators have the wrong dimension, chiral-
ity or flavor quantum numbers. But by the equa-
tions of motion for QCD this operator is itself
a four-fermion operator. Thus the local four-
fermion structure of the lowest-order penguin
diagram is preserved in the sense that the sum
of all penguin-type diagrams equals a sum of Wil-
son coefficients (which will be modified from
their lowest-order values) times matrix elements
of local four-fermion operators.

The basic result has already been stated in Befs.
3 and 4. The purpose of this paper is to show, in
a diagrammatic language, how the higher-order
diagrams manage to preserve the basic structure
of the lowest-order result. In the next section,
the details of the calculations are outlined. Some
comments and the conclusions are stated in Sec.
III.

quark transition s - d in the mass matrix which
can be absorbed into quark wave-function re-
normalization if the strange and down quarks are
on the mass shell. " When the gluon field is pres-
ent, strangeness-changing transitions such as
s-d+ (gluons) exist which cannot be absorbed into
a redefinition of the fermion fields.

Consider first the contribution of the one-parti-
cle irreducible diagram in Fig. 4(a) to the effective
weak Hamiltonian. In Fig. 4(a) the cycloidlike line
represents the gluon field A'„. The &-boson
propagator has been replaced by a Fermi coupling
which gives the leading contribution of an expan-
sion in powers of 1jM~'. In momentum space
Fig. 4(a) gives rise to an effective vertex Z,'(p;k)„,
where"

E', (p; k) „=2Ch (p —k)1'„(k)si (p) (1a)

2G d'q „. j—P+m
(2w)' (q —0)'-m'+i0

g+m
xigT yap . y

q -m +i0

The SU(3) color matrices T', ac(1, 2, . . . , 8),
satisfy the commutation relations

(1b)

V

(c)

FIG. 4. One-particle-irreducible diagrams contribu-
ting to the transition 8 d+(gluons) at the one-loop level.

II. CALCULATIONS
[T', T'] =if'"T'

and the normalization condition

(2a)

In the absence of strong interactions the weak
interactions induce a strange-quark-to-down-

FIG. 3. Two-loop penguin-type diagrams which are
not the matrix elements of a local four-fermion opera-
tor.

(2b)
gab

Tr(T'T') =
2

When calculating I&(k) only terms which con-'
tribute to leading order in the heavy quark mass
rn are kept and A' is treated as small compared
with m'. That is, we work in the soft-gluon and
large-quark-mass limit. Since the "infinite" part
is independent of the mass of the quark and will
cancel by the Qlashow-Iliopoulos-Maiani (QIM)
mechanism" when another quark is added to the
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loop of Fig. 4(a), the resulting expression for
I &(k) is finite and has the form'"

I'„(k)=,lni, T'(k'yq —k„P) . (3)

a, (x) =—,, ln —,—2d„(x)y~ T's~(x)

x (g"'8' —8"8')A'„(x)+ H. c.

The dependence of the logarithm in Eq. (3) on the
renormalization point mass p will cancel by the
GIM mechanism, but it is retained at this stage
so that the argument of the logarithm appears
dimensionless. In the four-quark model, for ex-
ample, the case of physical interest has a charm
quark in the loop. However, a diagram such as
Fig. 4(a) with an up quark in the loop arises from
the matrix elements of the usual current-current
term in the effective Hamiltonian. If the charm
quark is treated as heavy, then to leading order
in the heavy charm quark mass m the up quark
does not contribute except to cancel the infinite
parts and replace p by a typical hadronic mass.
This last point is somewhat arbitrary since in the
limit where mis very heavy In(m'/1)') is approxi-
mately independent of p.

Transforming to coordinate space, by the sub-
stitution k„i8-&,-Fig. 4(a) is represented by the
operator

in the effective weak Hamiltonian density. Note
that Eq. (4) does not contain the heavy quark field.
In general we want to derive an effective Hamil-
tonian density independent of the heavy quark
field. "'" Of course, matrix elements of this
Hamiltonian must be evaluated to all orders in the
theory of strong interactions.

The matrix elements of the operator in Eq. (4)
reproduce the amplitude for the lowest-order
penguin diagram in Fig. 1 and the amplitude for
the diagram in Fig. 2,

Next consider the case where two gluon fields
are attached to the quark loop as shown in Fig.
4(b). In momentum space, Fig. 4(b) gives rise to
an effective vertex E'2'(P; k„k2)&„which has the
form

&2"(P ' ki k2)) .= 2&i(P —ki —k.)f;",(ki, k,)&i(P) .

(5)

The calculation of I&,(k„k,) is simplified by noting
thai only logarithmically divergent integrals have
the potential to give rise to a logarithmic enhance-
ment in the heavy-quark mass m. Explicit calcu-
lation to leading order in the heavy-quark mass m
reveals that in the soft-gluon and large-quark-
mass limit where k, ', k, ' and k, ~ k, are treated
as small compared with m'

I

r (k, ).,)= — -- . 2, , )n —,, -))"f'"[(2).', +).',),w. —(2).', ~ k)„w, . )O', —)))g„.] .12m' p.', (6)

The "infinite" part is omitted since it is independent of the quark mass m and will cancel by the GIM
mechanism. In coordinate space, Fig. 4(b) is represented by the operator

K,(x) =—,ln - '-,— 2d~(x)y" T's~(x)f"" [ 2'A( )x' 8A( )x+A', (x)8'A', (x)+A" (x)8„A'„(x)]+H.c.

in the effective weak Hamiltonian density. If Fig.
4(b) as a subdiagram of Fig. 3 could be replaced
by the effective vertex in Eqs. (5) and (6) then
Fig. 3 would be included in the matrix elements
of K, evaluated at the one-loop level. There would
then be a complete cancellation" between the dia-
grams in Fig. 3 and the diagram in Fig. 2(a),
which is included in the matrix elements of K,
evaluated at the one-loop level. However, such a
substitution is only valid if the gluon momenta ky

and k, can be considered as small compared to
the heavy quark mass. If one differentiates the
diagrams in Fig. 3 with respect to an external
momentum, their ultravj. olet convergence is im-
proved enough for the substitution of the effective
vertex in Eq. (5)." It follows that the sum of dia. —

grams in Figs. 2(a) and 3 is a constant independent
of external momenta and thus is proportional to

the tree approximation for the matrix elements
of a local four-quark operator. Thus the sum of
the two-loop diagrams in Figs. 2(a) and 3 just
gives a higher-order (i.e., order g') contribution
to the Wilson coefficients of local four-fermion
operators and does not change the basic form of
the lowest-order result due to the one-loop dia-
gram in Fig. 1. Note that the corrections to the
Wilson coefficients given by the diagrams in Figs.
2(a) and 3 depend on the choice of renormalization
scheme. We use a mass-independent renormaliza-
tion scheme. "'"

At the two-loop level we also encounter' diagrams
such as Fig. 5 which give higher-order contribu-
tions both to matrix elements of 3C, and to Wilson
coefficients of local four-quark operators in the
effective Hamiltonian for nonleptonic weak de-
cays. If Fig. 4(a) as a subdiagram oi Fig. 5 could
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FIG. 5. Example of a two-loop diagram that gives a
higher-order contribution to both the matrix elements
of X& and to the Wilson coefficients of local four-quark
operators in the effective Hamiltonian.

be replaced by the effective vertex in Eqs. (Ia)
and (3), then Fig. 5 would simply be a higher-
order contribution to the matrix elements. How-
ever, the ultraviolet convergence is not good
enough for this simple substitution. Differentiat-
ing with respect to an external momentum reveals
that Fig. 5 differs from a. higher-order contribg-

tion to the matrix elements by a term which is in-
dependent of the external momenta and hence pro-
portional to the tree approximation for the matrix
elements of a local four-fermion operator. Thus
Fig. 5 also gives rise to an order-I, ' contribution
to the Wilson coefficients of local four-fermion
operator s.

The case where three gluon fields are attached
to the quark loop i.s similar to the previous one.
In momentum space, Fig. 4(c) gives rise to an
effective vertex E', (P; k„k„k,)„„q which has the
form

E',~ (p; k„k„k,)p,q=2d~(p —k, —k, —k,)

x I'„",,(k„k„k,)s~ (p)

and direct calcula, tion in the large-quark-mass
and soft-gluon limit gives

G ' m'
labe (k k k ) g In Td [(feabf eca febcf eaa)g y (feabf eca+faacfebd)g

+ (f'"f'"+f'"f"')g, .y b.]

where the "infinite" part which is independent of the quark mass m has been omitted. Transforming to
coordinate space, Fig. 4(c) is represented by the operator

6 g m
K,(x) =—,ln, 2d~{x)y"T'~, {x)f'~f""[A'„{x)A (x)]A'„{x)+H.c. (10)

in the effective weak Hamiltonian density.
Using these results we see that a cancellation"

at the three-loop level occurs which is similar
to the one between the two-loop diagra. ms in Figs.
2(a) and 3. The three-loop diagrams in Fig. 6

cancel up to terms independent of external mo-
menta, which are proportional to the tree approxi-
mation for the matrix elements of local four-quark
operators. Thus, taken together, the diagrams
in Fig, 6 give an order-g contribution to the Wil-
son coefficients of local four-fermion operators,
preserving the basic form of the lowest-order
result.

In the large-quark-mass and soft-gluon limit
terms with more than three gluon fields attached
to the quark loop do not contribute to the transi-
tion s- d+ (gluons) at the one-loop level since
such graphs are finite without the GIM mechanism
and a.re incapable of producing a logarithmic en-

I

hancement in the heavy-quark mass. Thus, apart
from Cabibbo-type angles and terms that will
cancel by the GIM mechanism, diagrams contribut-
ing to the process s- d+ (gluons) with a heavy
quark in the loop give rise, at the one-loop level,
to an effective weak Hamiltonian density

x '"'"'"(x) =K,(x) +xb(x) +3eb(x)

m2
12,ln, 2di, {x)y'T's~(x)

x [D"E»(x)]'+ H.c. .

III. COMMENTS AND CONCLUSIONS

Using the equations of motion for QCD,

(D"E„„)'=J'„=g(uy„T'u+ d —y„T'd+ sy„T's), (12)'
the effective weal: Hamiltonian density in Eq. (11)
becomes the local four-quark operator

2 2
Xc'~"'"(x)=—,.ln —;— 2d~(x)y"T's~{x) [u(x)y„T'u{x) d (x)y„T'd(x)+ s(x)y„T's{x)]+ H.c. . (13)

This is essentially the same result as a lowest
order in perturbation theory calculation of Fig. 1
gives but the derivation is more satisfactory since
higher-order QCD effects have been taken into

account. Of course, using gauge invariance and
the result of Eq. (4) one can immediately conclude
that the effective weak Hamiltonian density must
contain Eq. (13). What we have shown, by explicit
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FIG. 6. Three-loop penguin-type diagrams which
together are proportional to the tree approximation for
the matrix elements of a, local four-fermion operator.

calculation, is how the various pieces combine
to give a local gauge-invariant contribution and
that in the large quark mass limit no other gauge-
invariant contributions occur. Other possible
gauge-invariant contributions are either higher
order in 1/Ms, ' or lower order in m'. For ex-
ample, if the strange and down. quark masses
are not taken to be zero, diagrams at the one-loop
level also give rise to a transition color magnetic
moment term. However, its contribution" to the
effective weak Hamiltonian density is multiplied
by a factor m'/M~' so it is suppressed by- an ex-
tra power of 1/M~' (apart from logarithms) pro-
vided M~'»m', as we have implicitly assumed
by the order in which the large-M~ and large-m
limits were taken.

We have also shown how diagrams with more

than one loop, such as those in Figs. 2, 3, and 6,
.combine together with soft-gluon effects canceling
because of gauge invariance and hard-gluon ef-
fects giving higher-order contributions to the Wil-
son coefficients of local four-fermion operators.
Of course, one also encounters from diagrams
beyond the one-loop level (e.g. , from Fig. 5) cor-
rections to the matrix elements of the local four-
fermion operators occurring in the effective
Hamiltonian for nonleptonic weak decays. What
is preserved is the fact that the sum of all pen-
guin-type diagrams (with arbitrary gluon inser-
tions) can be represented by a sum of Wilson co-
efficients times matrix elements of local four-
fermion operators.
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