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We unify the n quark and n lepton generations within the standard SU, &( U, gauge model by means of the
generation symmetry group S„. We show that no more than five generations of quarks and leptons can be
incorporated into the theory. The resultant model always has either one or two exactly conserved
multiplicative quantum numbers with eigenvalue +1 carried by each generation. These constrain the number
of nonzero weak mixing angles between generations so that, even if there exist six or eight quarks, exact
Cabibbo universality can hold naturally in the light-four-quark sector. The b quark must then always decay
semileptonically with lepton-flavor violation, a key test.

I. INTRODUCTION

In this paper we consider the consequences of
unifying n quark generations, and analogously the
lepton generations, within the standard SU, && U,
gauge model' by means of the discrete generation
symmetry group S„. We shall show that, under
some simple assumptions to be delineated below,
not more than five fermion generations can be
incorporated into this generation-symmetric
model. Moreover, for all allowed physically in-
teresting n (i.e., n=3, 4, 5), there are always
either one (v) or two (v and v') multiplicatively
conserved quantum numbers carried by all gene-
rations in the theory, corresponding to residual un-
broken S, or S, && S, symmetries of the vacuum of
the original S„-symmetric theory. These multi-
plicative conservation laws constrain some nor-
mally allowed weak mixing angles between genera-
tions in the charged-gauge-boson couplings of the
quarks to be zero. An attractive consequence of
this is that even if there are six or eight quarks
exact Cabibbo universality' in the light-four-quark
sector of the theory can be naturally maintained.
This Cabibbo universality results in the b quark
decaying purely via Higgs-boson- mediated inter-
actions, alseays semileptonically and with flavor
violation as described below. Verification of this
unique prediction would strongly point to the ex-
istence of real Higgs bosons.

The model we propose for linking the different
flavors is [SU, x U, ], „x[S„)„„„«„,where S„ is
the symmetric (permutation) group of n objects,
and n corresponds to the number of quarks (and
leptons) of a given charge in the theory —i.e., the
number of generations. The logic behind this
choice of generation unification group is that, be-
fore spontaneous symmetry breaking, the gauge-
boson interactions of the n charge -', quarks, the n
charge -3 quarks, the n charge -1 leptons, and the
n neutrinos are already invariant under simul-
taneous S„permutations' on the n flavor labels

of each set of n fermions, since their gauge
'

couplings depend only upon weak isospin and hy-
percharge, but not on generation number. We
regard this S„generation invariance as the super-
ficial manifestation of a true S„generation sym-
metry of the total weak Lagrangian including Higgs-
boson and Yukawa interactions. In order to im-
plement S„ invariance in the whole Lagrangian and
nevertheless obtain nondegenerate quark and lepton
masses after symmetry breaking, one needs Higgs
bosons belonging to nonsinglet S„representations,
since singlet Higgs bosons result in an S„-sym-
metric fermion mass matrix with degenerate fer-
mions (see Sec. IV below). It is therefore most
natural to require the existence of n generations of
Higgs-boson doublets in the theory, in direct an-
alogy with the quark and leptons. In this way all
nongauge particles appear with n flavors, and the
model displays a fundamental quark-lepton-Higgs-
boson symmetry.

Models based upon this SU, x U, && S„picture for
n = 2 and 3 have been recently considered. '-' The
n = 3 case with six quarks' was shown to lead
naturally to rather remarkable and unique predic-
tions for b-quark decay that wi:ll soon be tested—
namely that b-flavored hadrons alzvays decay via
Higgs-boson-mediated interactions to final states
containing two differently flavored leptons, e.g. ,
b de' p, . This absence of gauge-boson-mediated
b decay naturally explains exact Cabibbo univer-
sality in the light- (u, d, c, s) quark sector. The
model for n= 3 also' predicted the existence of
rare 7 decays such as w- p, ee, py via Higgs bosons
of coupling strength VG~ m„as well as requiring
muonium to antimuonium conversion. This paper
is devoted to showing exactly how these features
persist if more than six (in general 2n) quarks
exist.

The layout of the paper and a summary of the
principal assumptions made are briefly outlined.
In Sec. II we define the model [SU, x U, ],
x [S„]„„„«„withits n generations of quarks,
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leptons, an/ Higgs bosons. In Sec. III we derive
strong constraints on the residual symmetries of
the vacuums of the S„-symmetric Lagrangian after
spontaneous symmetry breaking. The main as-
sumption we make in deriving these constraints
is to restrict ourselves to minima of the Higgs
potential with real vacuum expectation values.
This leads to restrictive and highly structured
relations between the fermion generations that
will be easily verifiable. ' Section IV derives the
mass eigenvalues of the fermions from the Yukawa
couplings in the different vacuums allowed by Sec.
III, and shows that for n& 5, some charged fer-
mions must always be exactly degenerate. Since
this is not the case for known leptons or quarks,
we assume that newly discovered fermions will
be similarly nondegenerate, so that the theory
cannot incorporate more than five successive
generations of quarks and leptons. SectionVthere-
fore discusses the physics of the allowed n= 3, 4,
and 5 models, and proves the existence in all
cases of at least one and at most two multipli-
catively conserved quantum numbers. We then
demonstrate how these conservation laws can
naturally enforce Cabibbo universality in the
light- (u, d, c, s) quark sector even when the theory
contains six or eight quarks. Finally, some pheno-
menological features and tests of the models are
briefly sketched. In most cases the crucial test
of the model is whether the b quark decays purely
semileptonieally, and always with lepton flavor
violation. ' Section VI contains the conclusion.
Here we also discuss the incorporation of T vio-
lation into the theory, and the extension of S„-
generation symmetry to grand unified gauge mo-
dels.

II ' [SU2 X Ul ]gauge X [Sn ]generation

The ingredients of the model are as follows:
(A) The usual' SU, x U, Yang-Mills gauge bosons

A and B„which produce y, S", and Z physical
gauge bosons.

(8) The n generations of fermions and Higgs
bosons in the theory, each generation containing

(i) one left-handed (LH) lepton isodoublet l,
= (v, , e,-. )~,

(ii) one right-handed (RH) charged-lepton iso-
singlet r, =(e, )R,

(iii) one LH quark isodoublet P, = (o „st,.)~,
(iv) one RH 6'-quark isosinglet (g, )„,
(v) one RH 'X-quark isosinglet (X,)s,
(vi) one Higgs doublet Q,. = (&f&', , Q,'. ).
In all the above categories except (A}, the gene-

ration index i runs from 1 to n. This means that
all particles. except the gauge bosons are assigned
to n-dimensional reducible representations of S„.
[One such n-dimensional representation can be
decomposed into an irreducible S„singlet and an
irreducible (n —1)-tuplet of S„. Most of the proofs
below, however, can be understood without making
use of formal group theory based upon these
representation properties. ] Quantum chromody-
namics color indices, have been suppressed since
(SU,)„„„commutes with the flavor group. S„in-
variance requires that all interactions be invariant
under the n I permutations simultaneously acting
on the n generation indices i of all fields.

We do not display the gauge-boson self-interac-
tions here, nor their couplings to the n Higgs
bosons; these are similar to the standard SU, && U,
model with one Higgs doublet, and lead to the
usual' W and Z interactions with M~/Mg = cos 8„
after symmetry breaking.

The coupling of A„and B„ to all leptons and
quarks is independent of the generation i, and
therefore already S„ invariant. (It wa.s this S„in-
variance which we abstracted. as the generation
symmetry of the whole theory. )

The Yukawa couplings of Higgs bosons to leptons
and quarks are given by

&r= [ )»I;&erg+ &»&&&&(%}a+ &»&&&g g +H c.]
ig g

where A.,», 8,.», and C, ,~ are real if we assume T invariance, and where the whole expression must be
symmetrized under the n. S„permutations on the i,j,k labels. For n - 3, this results in the n coefficients
A,.» depending upon only five independent coupling constants, so that the first term in (2.1}can be written
after symmetrization as

Sr(leptons) = al, Q,r, + bl, gp &+ cl, Q&r, + dl&Q p, + el, g~r„,

(2 1)

(2.2)

where i,j,k in each S„-symmetric term of (2.2) range from 1 to n subject to the constraint i4 jwk. A simi-
lar form is valid for the 8&» and C,» coefficients in the quark Yukawa couplings. [The existence of only
five independent coupling constants instead of n' for each term in (2.1) can also be seen by decomposing the
n fields into the above-mentioned irreducible representations of S„and using the S„Clebsch-Gordan coupling
coefficients to construct only five possible invariants. ]

The Higgs-boson self-interactions are
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(2.3)

F = ~[a', e, ] r-[e,'e, ]+&[(e',e, )']+ .'B-[(~to, )(e', e,+H'. )]
+ lC, [(e'0 )(4'e. +H c )]+ lC.[(e',0 )(e'0 )+ H c ]+ lC.[(e'0 )(e,'e, )+ H.c ]

+ ,'D,-[(y', yy)'+ H.c.]+D, [~ 0', 0, ~']+ D, [(4',e, )(4 peg)]+ E[(4'g4 g)(4'e$)]

where in each square bracket [ ] one sums over all independent permutations of i,j,k, 1= 1." n, subject to
the constraint i&jeka/. Equation (2.3) is valid for n~ 4; for n= 3 (2) the terms with coefficients E (E and

C,.) are absent. We take A, B, C, , D, , and E real by assuming T inva. riance.

Note that because three Higgs doublets cannot be
combined into an SU, invariant, Z~ and V are ac-
cidentally invariant under the discrete symmetry

where W is.a symmetric third -order polynomial
symmetric in p~ for k = 1 ~ ~ n, k&i. Suppose two

p, , say p, and p„are different. Then

R:
l, - -l& for alii.

IH. RESIDUAL SYMMETRIES OF THE VACUUM

AFTER SPONTANEOUS SYMMETRY BREAKING

(2.4)

W[p, ; p„]—W[p, ; p ]=0. (3.3)

Since (3.3) is an antisymmetric polynomial under
1 and 2 label exchange, ( p, —p, ) must factor out,
l..e. ,

W[P, ;P, ] W[p.—;P,]= (P, —P,-)1'[P„p.;P,]= o,
(3.4)

We are now interested inthe residual symmetries
maintained by the vacuum (i.e. , minimum) of the
S„- and A -invariant potential V in (2.3) after spon-
taneous symmetry breaking. As explained in Sec.
I, here we shall restrict ourselves to examining
only real (i.e. , T-invariant) minima because of the
strong and attractive constraints they yield on the
fermion generations. Some remarks about com-
plex minima will be made later. '

First, we assume the charged fields P; to have
zero vacuum expectation values at the minimum
in accord with charge conservation. The neutral
fields (t(,

' are assumed to have vacuum expectation
values of the same phase (i.e. , effectively real
and T invariant) at the minimum. ' The conditions
necessary to ensure this have been illustrated
for the case n= 3 in Ref. 6. The potential for the
real c-number neutral fields (t(', = p, then takes the
form [analogous to Eq. (2.3)),

U(p, )= -~[p, '] r. [p,p, ]+&-[p,']+ B[P,'p, ]

+C[p, p,p]+D[p, p. ].+E[p,pp p, ], .

(3.1)

eU
=- W[p,. ; p»]=0,

'i
(3.2)

where C=C, +C,+C, and D=D, +D2+D3. For
n=3, E=O, for n=2, both E=O and C=O. The
following theorem then constrains the symmetries
of the T-invariant vacuums of the potential (3.1):

Theorem 1. At any extremum (and therefore any
minimum) of U( p,. ) for i = 1 ~ ~ n, n ~ 4, no more
than three p,. can naturally have different values.

Proof. The extrema of the S„-invariant U(p, ) are
given by the n equations

where F is symmetric under both 1 2 exchange,
and under the S„,permutations on the k = 3 ~ n
labels. Assuming p, 4 p„

I'[p„p, ; p»]=0, kW 1,2. (3.5)

Similarly if p, 4 p, ,

I' [p„p, ; p»] = 0, k 4 2, 3 . (3.6)

(3 8)

where n and P are linearly dependent upon A, B,
C, D, E in (3.1).

Similarly if P, W p, k p„(3.8) implies

(3.9)

Subtracting (3.8) from (3.9) yields

(o' P)(p, p, )=0.--
If p, g p„ then n = p, which is an unnatural con-
straint on independent quartic coupling constants.
Thus no more than three p,. can be naturally dif-
ferent and the theorem is proved.

Subtracting (3.6) from (3.5) and making use of the
antisymmetry under p, and p, exchange yields

1'[p p. p, ] I'[p„'p. ; p-. ]=(p, p.)R-[p, p. -p. ' p ]
= 0, kW 1,2, 3 (3.7)

where R is symmetric under p» (kW 1,2, 3) permu-
tations. By repeating the above argument with

p» p» and p, treated in reverse order, one can
see that 8 is in fact also symmetric under
( p„p„p,) permutations. Furthermore, the suc-
cessive factorizations imply that 8 is a linear
function of p, , so that if p, & p„ then
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For the potential (3.1) it is easy to check that

@=4' -B+C —2D,

P = 3J3 —3C+E.
(3.10)

This theorem severely constrains the symmetry
of the vacuums of U(p&) in (3.1). For example, for
n = 4, S, cannot be broken completely (with real
vacuum expectation values) since at the minimum
at least two of p„p„p„and p, must be equal by
the theorem, and therefore there is always at least
a residual S2 symmetry in the vacuum. " We will
shortly categorize the residual symmetries of the
real vacuums for low n in this model. First, how-
ever, we prove a special result for n=. 3 not cover-
ed by the above t;heorem.

Corolla'y A. The vacuum of the symmetric po-
tential U( p,.) for n= 3 in (3.1) always has at least
a residual S, symmetry.

Proof. The only way in which the minimum of
U(p&) could possibly have no residual S„symmetry
is if p, & p, & p, at the extremum. We shall show
that when this occurs, the three p, are constrained
such that there is still an effective S, symmetry at
the minimum.

Suppose p, 4 p, & p, . Then the arguments leading
to (3.8) and (3.10) can be similarly used to deduce

(4A 8+ C —-2D)( p, + p, + p, ) = 0,

so that the only natural condition is

(3.11)p~+ p2+ p3= O.

By substituting this into the equation BU/B p, + BU/
Bp2+ BU/Bp, =0 (also valid at the minimum), one
obtains

pgp2p3= O. (3.12)

Thus at least one p,. (say p, ) must vanish, and then
from (3.11) p, = —p, —=x, so that the Higgs-field
vacuum expectation values are ( p„p„p,) = (x, -x,
0).

The original Lagrangian was invariant under S,
and R [see Eq. (2.4)], and therefore invariant under
the subgroup" with elements (1,P,R,RP j, where P
is the .1 2 generation-index permutation operator.
The above-mentioned vacuum (x, -x, 0) is still
invariant under the subgroup (1,RP) which is iso-
morphic to S„and thus even in this case with

py ~ p2 + p„ there is still effective ly an unbroken
82.

Co~olin y B. The vacuums of the S, symmetric
potential U( p, ) for n = 2 in Eq. (3.1) can have either
py = p, with a residual S, symmetry, ' or p, 4 p2 with
no residual symmetry.

The proof is obtained by straightforward extre-
miz ation of U.

With these theorems, we can now construct the

allowed real minima of S„-symmetric Higgs poten-
tials after spontaneous symmetry breaking, and
examine the residual symmetries of such vacuums.
These minima and their symmetries are displayed
in Table I. These residual symmetries will yield
strong constraints on the fermion masses of the
SU, x U, x S„theory in the next section. Table I
covers n=3, 4, and 5. For n~ 6, theorem I shows
that there is always at least a residual symmetry
containing S,.

The theorems which constrained. the vacuums of
the theory to those of Table I held only for the
real minima we considered. For complex-valued
minima (i.e. , p,. complex), the constraints on the
residual symmetry of the vacuum of the S„theory
are much less severe. For example, for S, the
values [(g',), (P',), (&f&,') ]= p[1,e"'i ', e"'i '] can ex-
tremize the potential and lead to a Z, -symmetric
cyclic model" with all vacuum expectation values
different in their (complex) value, an option not
allowed in the real case. Such a vacuum results in
a theory" in which all particles carry a phase of
either 0, 2m/3, or 4m/3 under cyclic Z, permuta-
tions on the three generation indices, with all in-
teraction vertices in the theory constrained to con-
serve the phase modulo 2m. Other complex minima
which totally break S, or S4 in models with similar
Higgs-boson potentials have also been found. "'"
In view of this greater freedom for minima involv-
ing complex-valued (Q,. ), it is clear that once we
allow T-violating comple~ vacuums in the S„theory
we are no longer so attractively constrained to
the restrictive residual symmetries of Table I.
If, however, the idea of a multiplicatively con-
served generation quantum number that emerges
in the remainder of this paper as a consequence of
the residual real vacuum symmetries proves cor-
rect, these symmetries can be abstracted and
maintained even in the case of complex vacuums=
i.e. , complex minima which allow T violation but
still maintain the symmetry structure of Table I
and its implications can easily be found —although
their emergence in the presence of T violation is
no longer so compelling. '

IV. FERMION MASSES IN SU2 X Uy X S„

The mass-generating Yukawa couplings of the
n-generation theory were given in Eqs. (2.1) and

(2.2). The n Higgs-boson vacuum expectation
values determine the residual permutation sym-
metry of the fermion mass matrix and the whole
theory.

Theorem 2. If the residual permutation sym-
metry of the S„-symmetric original theory after
spontaneous symmetry breaking is 8, , l~ 3, then
at least (l —1) fermions of the same charge will
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TABLE I. The possible real vacuums and their residual symmetries allowed by theorem I
in the SU2 && U& && S„model considered in the text.

No. of Higgs
fields ri

Vacuum expectation values
[&@&), &0,'& "&e.')]

Residual S„symmetry of
vacuum and theory

fx xx]
[x,x, y]
fx, y, z]= [x, -x, 0]'
[x,x, x, x]
[x,y, y yl
fx, x,y, y]
[x, x, y, z]

[x,x, x, x, x]
fx~ysy~ysy]
[x,x,y, y, y]
[x,x, x,y, z]

b

Sg

S &S2b
qb

S5

S4

S2x S3

QxQ

See Corollary A to theorem I.
These vacuums, characterized by a residual symmetry smaller than S3, are the only ones

allowed by theorem II of Sec. IV. They are employed in Sec. V.

be exactly degenerate.
Proof. A residually S, -symmetric vacuum pro-

duces an S, -symmetric fermion mass matrix M,
since S, is still an unbroken symmetry of the La-
grangian. To examine the degeneracy of eigen-
values of M, it is sufficient to consider the l x l

generation submatrix of the n && n matrix M. The
most general form of M~M restricted to this l-
generation subspace is then

A B B B ~ ~ «

M M= B B A 8 « ~ ~

B B B A ...
(4.1)

~ ~ ~ ~

with l equal diagonal elements, and all off diagonal
elements equal. This is easily seen to.have one
eigenvector (1,1, . ..1) with eigenva, lue A+ (/ —1)B,
and (/ —1) degenerate eigenvectors

1 1

with eigenvalue A -B. Thus if the residual vacuum
symmetry is S, , there are l —1 degenerate fer-
mions of a given charge.

The large mass differences betweenknownquarks
(and leptons) of the same charge suggests that a
residual degeneracy is incompatible with experi-
ment. 'This theory can therefore tolerate only
those vacuums whose residual symmetry is
smaller than S,. This restricts the vacuums of
Table I in Sec. III further to those marked with a
superscript b for n ~5; for n&5 the residual
symmetry is always S, or greater, with unac-
ceptably degenerate leptons and quarks, so that not
more than five quark doublets can be incorporated
into the theory.

In an S„-symmetric theory with only singlet (S„-
invariant) Higgs bosons, no S„breaking can occur,
so that (4.1) is the general form of the mass ma-
trix. As noted in Sec. I, for n& 2 (more than four
quarks) such a. theory must have some degenerate
fermions. Since six leptons (and probably six
quarks) are already known, with no charged-parti-
cle degeneracies, we were forced to introduce
flavored (nonsinglet) Higgs bosons too.

0 0 Og

V. QUARK AND LEPTON PHYSICS FOR n = 3,4,5

We have shown that the need to avoid fermion
mass degeneracies restricts us to n ~ 5," and to
vacuums with a residual symmetry smaller than

S3. The only allowed vacuums are then those
marked with a superscript b in Table I.

All of these allowed vacuums have either one or
two residual S, symmetries which are maintained
in the full theory. We demonstrate below that these
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lead respectively to one (m) or two (m and v') multi-
plicatively conserved generation quantum numbers
in the theory. Only multiplicative generation num-
ber is conserved; additive flavor or generation
number is always violated by the Yukawa couplings
to Higgs bosons. These couplings to any fermion
are generally of order v'G~m, where G~ is the
Fermi constant and m the mass of the heaviest
fermion (quark or lepton) of the same charge as
the fermion considered. Since m =m, for the lep-
tons, and m= m, or m, for the quarks, these
couplings are of order 10-' and therefore not
negligible compared to the gauge couplings, un-
like the standard model' with one Higgs boson,
where a light fermion's mass determines its
Yukawa coupling. The gauge couplings are simi-
lar to the standard case. The Yukawa couplings,
however, lead to Higgs-boson-mediated, additive
flavor-violating decays that serve to test the mo-
del. Finally, we shall show that m conservation
for n = 3, and m and e' conservation for n = 4 na-
turally produce exact Cabibbo universality in the
light-four-quark sector, even in the presence of
two or four extra quarks in the theory. If this
mechanism is the correct explanation for the ob-
served universality, its consequence is easily
testable: The b quark can then decay only via
Higgs-mediated interactions, always semileptoni-
cally, and always with additive lepton-flavor viola-
tion, as discussed in Ref. 6. Thisuniqueprediction
will be unambiguously confirmed or invalidated as
soon as b-flavored hadrons are produced in e'-e-
colliding-beam machines. All these results are
outlined below for the allowable n = 3, 4, and 5
models.

SU2 -X Ul X S3

This model has six quarks and leptons, and is the
smallest one consistent with currently known
particles. The only allowable vacuums in Table
I for n=3 a.re [x,x,yj with an S, symmetry under.
1 2 flavor exchange, and [x, -x, 0j with an effec-
tive S, symmetry as discussed below (3.12). This
latter vacuum can easily be shown to lead to one
exactly massless charged lepton, one massless
charge -', (up-type) quark, and one massless charge
-3 (down-type) quark. Only the [x,x, y j vacuum is
therefore acceptable.

The theory built upon this vacuum was extensively
discussed in Refs. 5 and 6. Because of the 1 2

symmetry in the whole theory, the 1 2 permuta-
tion operator commutes with the Hamiltonian.
Every state in the theory must therefore be even
(multiplicative quantum number w =+ 1) or odd
(v = -1) under 1 2 flavor exchange, and all in-
teraction vertices must conserve m multiplica-

tively. %'ith this information it is easy to con-
struct physical particle eigenstates and count the
number of allowed weak mixing angles.

Let the three bare fermion flavors (one to each
generation) in any sector (neutrinos, charged
leptons, up or down quarks) be denoted

)
1), )2),

and )3). The fermonic v eigenstates are then

I

)II) = cosg)1+ 2)+ sing)3)

)III) = -sing)l+ 2)+ cosp)3)
(5 1)

q

-1 +1 -1 +1,
(5.2)

with manifest lepton-flavor violation 100% of the
time. This unique prediction will serve to test the
model. Observing the different leptons emitted by
decaying b quarks will also allow the determina-
tion of leptonic m eigenvalues.

The scale of flavor-violating Yukawa couplings
to any lepton is set by v'G~m, where m is the lar-
gest lepton mass of similar charge. This occurs

with Q determined by the Yukawa coupling coeffi-
cients and the Higgs vacuum expectation values. '
The gauge bosons W', Z, y carry no generation
number and therefore have m = 1. Since ~ is con-
served at all vertices, the w =+ 1 up quarks )II),
and )III) can decay weakly via W' into any of the
w =+ 1 down quarks of the type )II) and )III), but
not into type )I) quarks with v= -1. Thus only
four quarks are linked to each other via the gauge
weak interactions, allowing for only one weak
mixing angle. Similarly the m= -1 up and down

quarks couple weakly only to each other. To be
consistent with the existence of a nonzero Cabibbo
weak mixing angle in the u, d, c,s quark sector,
these quarks must be identified with the ~ =+ 1
states. The heavy t and b quarks must therefore
carry m = -1. Since b is lighter than t, and cannot
decay weakly to light w =+ 1 quarks via the W', b

is gauge stable and Cabibbo universality emerges
naturally in the light-quark sector.

Neutrinos have been presumed massless, go that
leptonic weak mixing angles are by definition zero
and cannot be used to assign m values to e, p. , and

As in (5.1), two of e, p, , and v' must carry
m =+ 1, the remainder carrying ~ = -1.

Since b is gauge-stable, it can only decay to a
light m =+ 1 quark (u, d, c, or s}by emitting a
virtual m = —1 Higgs boson. The only on-mass-
shell state such a Higgs can decay into consists
of two light leptons with opposite v values. (Total
lepton number and total quark number are conser-
ved by all interactions. ) b quarks therefore al-
ways undergo the decay
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because of the permutation symmetry in the origi-
nal Lagrangian. 'The analogous statement is true in
the quark sector. A Yukawa coupling strength of
this magnitude [v'Gzm, = 6 x 10 '] leads to peculiar
leptonic decay modes (e.g;, radiative 7' decay) at
appreciable rates, as discussed in Ref. 6.

~1-2}, v=-1,v =1,
~3-4}, .=1,.= 1,
cosQ

~

1+ 2)+ sing
~

3+ 4)

-silly (1+2)+ cosy~(3+ 4)
(5.5)

n=4: SU2xU, xS4

This model will contain four physical up quarks
(u, c, t, h) and four down quarks (d, s, b, I). From
Table I, there are only two allowable vacuums
with no fermion degeneracy:

vacuum A: [x,x,y, z]: S, symmetric

vacuum B: [x,x,y, y]: S., x S, symmetric .
(5.3)

Vacuum A has a residual 1 2 symmetry, so
that all states must be even (v = 1) or odd (v = -1)
under 1 2 exchange, with all interactions con-
serving ~ multiplicatively. Denoting the bare
fermion flavors by ~l}, 2), 3), and ~4}, there
is one physical eigenstate ~1

—2) with m= -1, and
three m =+ 1 eigenstates which are orthogonal linear
combinations of ~1+2}, ~3}, and ~4}. Analogous
to the n. =3 case, the three m=1 up quarks can de-
cay via W' into any of the three m = 1 down quarks,
with the usual weak mixing angles for six quarks.
Since u, d, c, and s already display experimental
Cabibbo mixing, these four quarks must be as-
signed to the m'=1 states. A possible assignment
is therefore

(5 4)

where the lighter t and b could be exchanged with h and

E as another possibility. The lighter of k and l is now

gauge 'stable, decaying purely via the Yukawa inter-
actions, again semileptonically with lepton-flavor
violation in order to conserve m, analogous to the
b quark in the n= 3 case. Exact Cabibbo univer-
sality for u, d, c, and s is now unnatural because
there are six weakly mixing quarks with three
mixing angles and one CP-violating phase possible.
We do not discuss lepton assignments here since
the analogy with quarks is clear.

Vacuum B has both an independent 1 2 sym-
metry and a 3 4 symmetry. If this vacuum is
chosen for the theory, all physical energy eigen-
states must be exactly either even or odd under
both of these label permutations, with two multi-
plicatively conserved quantum numbers w and m'

corresponding to 1 2 and 3 4 exchange, re-
spectively. The physical eigenstates are therefore

The 5"bosons clearly carry m =-v''= 1.
conservation forbid the ~ =~'= 1 states from de-
caying via 8"bosons into m = -m' states; thus the
two up quarks with m=m'=1 can decay only into
both of the two down quarks with m =m''=1. These
four states must therefore be identified with the
u, c, d, and s quarks. We thus arrive at the
assignments

m=m''=1: u, d, c,s,
n = -w'=1: t, b,
r = -m'= -1: h, /.

(5.6)

n= 5: SU& X U& X S5

From Table I, the only allowed vacuum is
[x,x,y, y, z] with a residual S, x S, symmetry under
1—2 and 3 4 exchange. In this ten-quark and

ten-lepton model, the eigenstates in one charge
sector are

m and m' conservation now naturally ensure exact
Cabibbo universality in the light-quark sector,
despite the presence of four heavier quarks. Both
b and the lighter of h and l are gauge stable, and

can only decay to a light quark with m = m''= 1 by
emitting a virtual ~ = -r' Higgs boson; the only
light state this virtual Higgs boson can decay into
is one consisting of two oppositely flavored lep-
tons, so that in this model the characteristic sig-
nature for b decay is a flavor-violating semilep-
tonic final state, as in the n = 3 model. The n and
m' values of the four charged leptons are best dis-
covered by examining the leptons appearing in the
final states of heavy-quark decays, in accord with
m and w' conservation. Once these are known, rare
lepton decays (e.g. , radiative decays or decays to
three charged'leptons') can be calculated and pre-
dicted. Finally it is interesting to note that the
(I, b) quarks and the (h, I) quarks cannot couple to
each other by emission of one gauge or one Higgs
boson, because w and n" conservation would re-
quire emission of a w = ~'= -1 boson. It is straight-
forward to see that no linear function of

~
1),

~
2),

~
3), and ~4) can be made simultaneously odd under

both 1 2 and 3 4 exchange, so that no such
physical Higgs boson exists. Both b and the lighter
of (h, l) therefore decay via Higgs bosons predomi-
nately to the four light quarks.
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(5.7)
~3-4&: .=1, .= 1,

and three orthogonal mixtures of
~

1+ 2),
~

3+ 4),
and ~5) with w=~'=1. Since only states of the
same m and m

' can mix weakly, u, d, c,s must be
assigned to the six m =m'=1 quark eigenstates, to-
gether with two other heavier quarks, one of which
could be the b. There is therefore room for three
weak mixing angles, and one phase, so that there
is no exact Cabibbo universality. Two of the four
m= -m' quarks in the states (5.7), however, must
be gauge stable, and therefore cannot decay to
lighter quarks via n = m'= 1 gauge bosons. Leptons
can be analogously discussed.

VI. CONCLUSION

We have discussed the implications of using the
permutation (symmetry) group S„as the symmetry
group for n fermion generations. In order to avoid
fermion degeneracies between different generations
we were led to deduce the existence of different
generations of Higgs bosons, analogous to the fer-
mion generations. Restricting the theory to have
real Higgs-boson vacuum expectation values, we
found that only a limited class of vacuums to the
theory existed, all with some residual permuta-
tion symmetry in the vacuum (Table I). By insist-
ing on no degenerate fermions, we found that
n- 5, i.e. , that no more than five generations of
fermions could be incorporated into the theory. ".

For the physically allowed cases n= 3, 4, or 5,
all possible allowed vacuums (the four marked
with a superscript b in Table I) have either one
(m) or two (m, w') multiplicatively conserved quan-
tum numbers. Given the experimentally observed
Cabibbo mixing between the light quarks (u, d, c, ),s
these must be assigned to m = 1 (n = m'= 1) states in
the case of one (two) multiplicatively conserved
quantum numbers. The b quark can then fall into
oneof twodifferentclasses. Class lvacuums [(x,x, y)
and (x, x, y, y)j in Table I can only accomodate the b

quark in a m = -1 or m = -m'= 1 state with different
~, w' values from the light quarks. In all these
cases light-quark Cabibbo universality is natural
and the b quark decays purely semileptonically
with lepton-flavor violation. In class II vacuums
[(x,x,y, z) and (x,x,y, y, z)] in Table I, the b-quark
assignment is not unique. If the b quark carries the
same m and m' as the light quarks, it can decay
via ordinary gauge-boson-mediated weak interac-
tions. Then one of the heavier quarks in the theory
must carry a different ~ or w and m' and decay

semileptonically. If, alternatively, the b quark
has a ~ = -m' assignment, it decays only semilep-
tonically. An unavoidable Prediction of the model
is therefore that some heavy quark must decay
Purely semileptonieally saith /epton-flavor viola-
tion, no rnatter sohether n=3, 4, or 5. If n= 3 or
4, this may well be the b quark, in which case the
prediction and the model will soon be tested in
e'-e colliding beams.

Note that even though our discussion has been
given for n generations in the SU, x U, gauge group,
it is obvious that many of our results on sym-
metry breaking and the existence of multiplicatively
conserved quantum numbers can be trivially ex-
tended to different gauge groups or to grand uni-
fied models such as SU, ."

'The real Higgs-boson vacuum expectation values
we have constrained ourselves to in order to ob-
tain these restrictive symmetry schemes after
spontaneous symmetry breaking have made the
theory naturally T-invariant. Once we allow com-
plex Higgs-boson vacuum expectation values, the
vacuums with m and m' conservation in Table I are
no longer the only allowed ones. However, com-
plex-valued vacuums with the symmetry structure
of Table I abstracted from the real case can still
be found, and T violation can be incorporated into
the theory in this way while still preserving multi-
plicative scheme for generations. (The choice of
such vacuums in the presence of T violation, how-
ever, is no longer as compelling. ) T violation can
also be incorporated into the theory by explicitly
allowing complex Yukawa coupling coefficients a
fpriori.

Finally, we note that we have not tackled the
problem of predicting quark mass ratios and non-
zero weak mixing angles. Some attempts in this
direction have been made by the authors listed in
Ref. 8. Within the framework of our model here,
some solutions to the problem could conceivably
be obtained by incorporating the S„generation
symmetry within a larger and more restrictive
finite group.
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