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Ground-state baryons in a quark model with hyperfine interactions
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We discuss the ground-state baryons N, A, X, :-, 5, X~, :-~, and 0 in a quark model with flavor-
independent confinement and color hyperfine interactions. We include the effects of wave-function distortions
for unequal quark masses as well as interband mixing via the hyperfine interactions and find good agreement
with the observed masses.
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where V(x, &) is the spin-independent color poten-
tial introduced in Ref. 5.

Most of the machinery we have introduced pre-
viously for the excited baryons does not come into
play in the ground states so that here our discus-
sion can be considerably simplified. We will use
the masses of the X and 4 as input to fix the two
completely free parameters of the model: the un-
perturbed position Ep of the nonstrange sector and
an overall strength parameter 6 of the hyperfine
interaction. In addition we take the quark masses
to be m„=m~=0. 33 GeV and m, =0.55 GeV to give
x =m„/m, = 0.6 and reasonable values for baryon
magnetic moments' and, ~ approximating the

In a series of recent articles' ' we have shown
that a model of approximately nonrelativistic
pointlike quarks moving in a flavor-independent
confinement potential perturbed by color hyperfine
interactions is capable of explaining reasonably
well the properties of excited baryons. These cal-
culations were based to some extent on our prior
investigations of the ground-state baryons which we
belatedly present here.

The model we have been exploring is based on
the quantum -chromodynamics -motivated Hamil-
tonian

n,4= 3',
&,4= 3Km„,

with

3mm'
m ~ 2m+m

(6)

(7)

(6)

ground-state wave function by a Gaussian, ' we
take its shape parameter to be 0.32 GeV in the
nonstrange sector to give a reasonable value for
the proton rms charge radius. ' [We choose a in
this way since with V(r, ,) nonharmonic it is im-
proper to determine it from the excitation energy
of the P-wave baryons. "3'5]

We perform all of our calculations in the "uds
basis" introduced in Ref. 2. As pointed out'there,
when m3& m, = m„ this, is a more appropriate bas-
is than the totally antisymmetrized "SU(6) basis";
moreover, all results can be obtained from the
uds sector by taking appropriate limits. In the
udge basis m, = m, = m and m, = m-' so that the S = 0
sector is the case m'= m = m„, the S = —1 sector is
the case m=m„, m'=m„ the S= -2 sector corres-
ponds to m = m„m'=m„, and of course the S= -3
sector has m= m'= m, .

There are three steps in calculating the mass of
a given baryon:

(1) Calculate its zeroth-order energy by pertur-
bing &„ if necessary, by the operator

p'4Z= —Q(1-x, )- ' + Q 4m, ,

where x,. =m~/m, . and 4m,. =m, —m~.
(2) Calculate the hyperfine perturbation using

the zeroth-order wave function given by the har-
monic -oscillator model

~ 3/2~ 3/2

«p(- a,' p') exp(- r' o', ' ~'),
(5)

where
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and where

1
p= —(r, —r,),

A. = —(r, + r, —2r, )V6

are two appropriate relative coordinates.
(3) Take into account second-order effects in

+hyp by cal cu 1ating the mixing be tw een the ground
states and the positive-parity excited states asso-
ciated with the N = 2 level of the harmonic-oscilla-
tor model' using the masses and compositions of
these excited states from Ref. 3; then diagonalize
the resulting mixing matrix to find the lowest ei-
genvalue.

While obviously simple in principle, in practice
these calculations, especially step three, tend to
become rather numerical; consequently we do not
show them all here. Bather, in the Appendix we
explicitly display a sample calculation and list the
relevant matrix elements and parameters so that
the reader may, if so inclined, reproduce the re-
sults which we show in Table I. Our results for
charmed baryons, including excited states, are
presented elsewhere. "

'The agreement shown is such that the deviations
are practically at the level of electromagnetic cor-
rections. That the agreement is so good is un-
doubtedly because some of the inadequacies of the
model are hidden in the fitting of our parameters;
nevertheless, we believe that the model is des-
cribing several real effects. Of course the reduced
chromomagnetic moment of the strange quark plays
a central role in these results, and there are some
manifestations of this which are rather unusual.
Consider, for example, the Z and the = with
quark content dds and ssd, respectively. In each
case the two identical quarks must be in a spin-
one state and so repel each other by roughly
+ &(& N) a d+n-,'x'(&-N), respective-ly. The

remaining pairs attract each other in each case by
roughly --, x(4 N-) thus we see that in the " the
presence of an extra strange quark increases the
total hyperfine interaction and this fact is reflec-
ted in the spectrum. We believe this point to be '

worth mentioning because, although a hyperfine
interaction that decreases monotonically with the
number of strange quarks (as in the decuplet) can
be confused with a quark mass difference, this
sort of effect cannot be. Second-order effects also
play a significant role in the spectrum. The naive
g —A mass difference"

z-A=-', (1-x)(&-N},

APPENDIX

The relevant hyperfine matrix elements are

{A's-,"~a„„~A's-,")= --,' 5, (A1)

which of course also arises from the reduced chro-
momagnetic moment of the strange quark and which
is numerically correct, is modified by two com-
peting effects. Wave -function distortion brings the
strange quark in closer to the other quarks and
tends to compensate for x& 1." This effect reduces
Z -A by -30 Me&. On the other hand, the A. is
much more strongly mixed with N= 2 levels than
the Z and this tends to open up the Z -A gap. "
These two contributions in practice nearly cancel
so that the "naive" result is numerically accurate,
In general, of course, these two kinds of effects
may cooperate instead of compete in which case
they would not be negligible.

Finally we mention that the N= 2 mixing not only
causes significant energy shifts in these states,
but it also mixes non -N = 0 configurations into the
ground states. We have recently discussed the ef-
fects of the admixture of 'S„(i.e. , [70, 0'j) com-
ponents into the nucleon and shown that there is
good evidence for these admixtures from SU(6)—
violating decays and moments. 4

Ep AZ H„~ H~ Predicted Obs erved

N 1135
A 1135
Z 1135

1135

0 -130
160 -130
160 -80
320 -100

-65
-55
-25
-30

940
1110
1190
1325

940
1115
1195
1320

TABLE I. The masses of the ground-state baryons in
MeV. (A S~„~ ~ah ~il'S ) 0

(A's„-,")a„„,)A s-,")=+

(A2)

(AS)

(A4)

(A5)
1135

Z* 1135
1135

0 1135

0 +130
160 + 105
320 + 85
480 + 70

-25
-10
-10
-10

1240
1390
1530
1675

1240
1385
1535
1670

'We compare to the most negatively charged state.

{z's„,—,"ia„„iz's-,")=+ x5,

(z's„-,"ia„ iz's-,")= x5,

(A6)

(A7)
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where 6 is defined below and where

(A8)

(A9)

(A10)

Finally, as an illustration, we explicitly display
the calculation for the A ~ . Following the steps
outlined in the text, we begin with E,= 1135 MeV
and add

(&&) = ( —(1 x)-p, '/2m~) + m, —m„

= m, —m~ —0.4 (o."/2m~) = 160 MeV .

In step two we add the first-order hyperfine inter-
action which in this case is simply —

~ 6= —130
MeV, Finally, using Ref. 3 for the masses and
compositions of the relevant N= 2 A —„.

' states
A 2m+ 1x=, 3 2 ~ &y2 and g

k&J +~) 3
(A12)

In the above we have neglected p~4 n, effects in
the N= 0 N= 2 matrix elements. As mentioned
in the text and discussed in Ref. 2, the matrix
elements relevant to the sectors N, ~, "*, and
Q follow from these by simple replacements. We
have not included tensor matrix elements here
because their effect is negligible.

The parameters of the fit are, aside from m„,
m„and & which we have previously mentioned,
E,=1135 MeV and

, =260 MeV=&-N.4&,n'
3v'2z m„'

This value of 5 differs slightly from values we
have used elsewhere as the result of our inclusion
of second-order effects; it corresponds to n, /n
= —,

' (see, however, Refs. 7 and 9).

110 1555 0 0 A,

80 0 1740 0 A,

, 100 0 0 1860 A~

which has 1110as its lowest eigenvalue.

A, (1555)=+0.75 A2S~+ 0.09 A 'S
~

+ 0.66 A 2S + ' ' '
PP

A (1740)= —0.56 A2S~~ —0.46 A Sp~

+ 0.69 A ~S + ' ' '
PP

A,(1860)= —0.84 A S~~+ 0.85 A' S,~

+0.28 A2S + ''',
and using the matrix elements (Al) to (A4) we find
the mixing matrix

1165 110 80 100 A
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If the quarks were pointlike and the ground-state baryons
pure nonrelativistic S-wave states, then m„=m&=MN/p&
= -2M&/3p„= 0.33 GeV and m~= -M&/3' = 0.51 GeV.
Since one must expect deviations from these naive for-
mulas of at least 10 due to renormalization effects
alone, the masses we use are certainly acceptable. See
also Ref. 9.
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Assuming pointlike quarks and a pure nonrelativistic

S-wave nucleon, this value for n gives

somewhat smaller than the observed rms proton charge
radius. Since the quark charge is smeared out by
strong interactions, this is presumably desirable. Un-
fortunately, this calculation alone cannot distinguish
between a small decrease in n and a corresponding de-
crease in ma —m&, so whether such an effect exists re-
mains moot. Incidentally, this accounts for our ability
to use ma —m&=280 MeV in Ref. 2 wi. th no appreciable
change in our results; this interplay also means that
the values for n, m&, and m~ given by the pointlike
formulas of this reference and Ref. 7 are in practice
acceptable.
The interaction (2) is actually an illegal operator in
the Schrodinger equation, and this step must be taken
with some care. To make (2) bounded one must in
principle consider higher-order corrections to one-
gluon-exchange which, for example, smear out the 6
function of the contact 'term. Here we take a more
phenomenological view and, recognizing that such a
smearing will limit the mixing to nearby states, trun-
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.cate the mixing series. Alternatively, one could ex-
plicitly regularize the hyperfine interactions; for ex-
ample, one could introduce a finite radius for the interac-
tion (we are indebted to Paul Fage for this suggestion).
See also Refs. 7 and 9.
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