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In this paper the methods of cut vertices are applied to deeply inelastic electron scattering, single-particle
hadron production in e+e annihilation, multiparticle inclusive production in e+e annihilation, p, -pair
production in hadron-hadron collisions, wide-angle inclusive hadron production in hadron-hadron collisions,
and single-particle production in deeply inelastic electron scattering. A generalized Wilson expansion is
discussed in detail for two-particle inclusive production in e+e annihilation. The question of soft and wee
partons is discussed and the cancellation of wee partons demonstrated. The relation of cut vertices to the
parton model is briefly discussed.

I. INTRODUCTION

In this paper we shall discuss some of the pre-
dictions which quantum chromodynamics (QCD)
gives at high energies. We shall use the method
of cut vertices which was developed in Ref. 1.
Suitable moments of certain high-energy proces-
ses factorize into several parts, one of which is
a dimensionless factor which obeys a Callan-
Symanzik equation. This factor is the analog
of the Wilson singular function which appears
in the operator product expansion. The other
factors are the cut vertices, V,. The cut verti-
ces may refer to incoming particles, spacelike
cut vertices, in which case they correspond to
matrix elements of composite operators for
positive integral. o'. The cut vertices may also
refer to outgoing particles, timelike cut ver-
tices, in which case they have no known con-
nection with l.ocal operators.

Section II describes the QCD predictions in
detail. . After listing the Feynman rules for cut
vertices in Sec. IIA we go on to discuss deeply
inelastic electron scattering in B, single-particle
production in e'e collisions in C, multiparticle
inclusive production in e'e collisions in D, two-
particle production in e'e collisions in E, p. -pair
production iA hadron-hadron collisions in F,
wide-angle hadron production in hadron-hadron
collisions in 6, and single-particle production in
deeply inelastic electron scattering in H. In each
case we discuss only those predictions which
firmly follow from QCD at high energies. Some
of these sections have considerable overlap with
the work of other authors. ' ' Many of the results
have been anticipated by the practitioners of
the parton model. ' " However, since we have a
precise formalism we are able to see which of
the parton-model results are unambiguous QCD
predictions and which are more model dependent.
Let us briefly summarize Sec. II.

A. Cut vertices are given for QCD. Both space-

like and timelike vertices are listed.
B. Deeply inelastic electron scattering is dis-

cussed from the point of view of cut vertices.
'This section contains no new results, but may
serve to show the reader how cut vertices act in
a familiar setting.

C. Single-particle inclusive hadron production
in e'e annihilation is 'discussed. Moments of the
cross section obey a Callan-Symanzik equation.
It is observed that by taking differences of cross
sections the singlet cut vertices are eliminated.
Thus it is relatively easy to obtain a cross section
whose moments behave as a single unique power
of In@'. In particular, certain differences of
multiplicities approach a constant at large Q'. If
it'were not for the complication of heavy-quark
thresholds and the necessity" of removing those
hadrons coming from the weak decays of charmed
hadrons and 7's, this process would serve as an
exceptionally easy test of QCD Whet.her in fact
the tests of QCD are easily made here will de-
pend on how easily the above complications can
be overcome.

D. This section, multiparticle inclusive pro-
duction in e'e annihilation, is presumably of
formal interest only.

E. In two-particle inclusive production in e'e
annihilation there are three separate kinematic
regions. In terms of the angle, 8, between the
outgoing observed particles in the center of
mass of the e'e these regions are (i) 8 0 0, w,

(ii) 6= @, and (iii) 0= 0. In region (i) the mo-
ments

tyg
"2 &2 "2 do

J M~ A2 d&~d422E~2E2dg
P]. P2

obey a Callan-Symanzik equation at targe Q'. In
the above v, =2p, q/Q' and ~, =2P, q/Q'. An
order-g' QCD calculation along with the Callan-
Symanzik equation gives the asymptotic form of
the moments in terms of timelike cut vertices and
calculable Q' and 8 dependences. Taking ap-
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propriate differences of cross sections allows
one to obtain a set of moments having a single
and calculable power of in@3.

In region (ii), the two-jet-dominated region, a
result analogous to the Drell- Yan formula re-
sults. However, in order to obtain such a result
it appears important to integrate over a region of
6} including zero. In this case a better coordinate
system is q = ((Q' +q'), ', q, 0), p, = (E3„0,0, —p, },
p, =(E3„0,O, p3}. Then in this coordinate system
the moments

1 ~2 +1 2 1 2 3 3d p2

factor into cut vertices times singular functions
which obey the Callan-Symanzik equation and
which can be calculated to dominant order from
a zeroth-order QCD graph. There appears to be
no fixed-q2 result for small q'.

Region (iii} is technically virtually identical
to the single-particle production proc.ess.

F. In massive-p. -pair production consider the
coordinate system p, = (E„O,0, p, ), p3
= (E„0,0, p3), q =((Q'+q')'~', q, 0). Then predic-
tions can be given simply for moments of the
form (i)

-a& e2
do'

d f COj &QP2 ~C3401d(d2 4

or of the form (ii)'

do'
(d j . (a)2 2d 4)g4 (02,4dq

where in (ii) q'/Q' =A. is fixed as Q3- ~; co,

=2P, .q/Q', and &u, =2P, q/Q'.
In case (i) the moments factorize into products

of spacelike cut vertices and singular functions.
The singular functions are determined from a
zeroth-order QCD calculation. In case (ii) an
order-g' calculation augmented by the renor-
malization group gives definite predictions in

terms of cut vertices and the calculable singular
functions. The cut vertices appearing here are
identical. to those appearing in deeply inelastic
electron and neutrino scattering. These results
are already widely believed to hold in QCD
though the necessity of integrating over q has .
perhaps not been widely appreciated. The

. question of wee partons is discussed for the
technical. ly similar process of two-particle in-
clusive hadron production in e'e annihilation.

G. Inclusive hadron production in hadron-, hadron
collisions appears to be the one case where the
renormalization-group predictions cannot be
reduced to moments. In this process there are
three invariants. One may take moments in any
two of the relevant seal. ing variables, but the

other invariant must remain as the large mo-
mentum in the Callan-Symanzik equation. An
integrodifferential Callan-Symanzik equation is
given and solved for this process. Our conclu-
sions are in agreement with the asymptotic pre-
dictions of Feynman, Field, and Fox, except that
we find no room for the idea of a transverse-
momentum smearing due to the hadron wave func-
tion.

H. Single-particle inclusive production in deeply
-inelastic electron scattering is technically similar
to p, -pair production and two-particle production
in e'e annihilation. In the coordinate system
P = (Ep, o, o, -P), Px = (E3&, o, o, Pg)
q =(0, q, (Q3 —q') ') one has predictions for mo-
ments in &o=2p q/Q3 and &o, =-2p, q/Q3 either
when, (i) q' is integrated over or when, (ii)
q3/Q3 =A, is held fixed. (P refers to the target
hadron, and P, the observed final-state hadron. )
At large Q' moments of the structure functions
factor into a spacelike vertex for p, a timelike
vertex for P„and a singular function which is
calculable in QCD. Region (i) corresponds to the
decay of the struck parton, and region (ii) is a
hard-scattering process.

In Sec. III the details of how a generalized
Wilson expansion emerges in two-particle inclu-
sive production in e'e annihilation are given.
Technically this process is almost identical to
p, -pair production in hadron-hadron collisions
and to single-particle production in deeply in-
elastic electron scattering.

In Sec. IIIA we discuss in detail how the over-
subtractions are done for the relevant amplitudes.
A generalization of Zimmermann's forest formula
is given.

In Sec. IIIB we discuss some examples which
illustrate the subtraction procedure. Illustrations
of soft and wee partons are also given.

In Sec. III C we discuss the question of the wee
partons in detail. Although this is not necessary
for deriving the generalized Wilson expansion it
is necessary in order to obtain a Callan-Symanzik
equation. A general. argument, using gauge in-
variance, is given for the cancellation of the wee-
parton contributions between various graphs. A
really complete discussion of why the oversubtrac-
tion procedure works cannot be. given without
a generalization of Zimznerman's complete for-
ests. These are forests that are chosen, to cor-
respond to a particular momentum flow in a
graph. Such a discussion seems too technical
for the purpose of this paper and so a heuristic
discussion of the generalized Bogoliubov-
Parasiuk-Hepp-Zimmerman (BPHZ) method as
applied to the process. at hand is given.

In Sec. IV the relation of cut vertices to the
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parton model is considered. Many of the intuitive
ideas of parton distributions, such as positivity
of the number density for a particular type of
quark, do not follow in any obvious manner from
renormalized QCD.

Finally, only an Abelian gauge theory has been
dealt with in detail in this paper, as far as
questions of renormalization are concerned. We
presume, but we have not examined this in de-
tail, that the arguments can be carried through
for non-Abelian theories with some slight mod-
ification. All the phenomenological results,
however, are stated for a color gauge theory
with three flavors.

(a)

(c)

(b)

II. PHYSICAL PREDICTIONS FROM QCD

- In this section we shall discuss what types of
physical predictions one gets from QCD. The
following list is not meant to be complete but
includes those processes which we feel will be
of most experimental and theoretical interest
in the near future. We shall reduce all of the
predictions to those of moments, except in the
case of wide-angle particle production in hadron-
hadron collisions where this is impossible. We
believe that the predictions for moments are the
most certain tests of QCD.

jkp

FIG. 1. Spacelike cut vertices.

A. Cut vertices

We begin by listing the elementary (bare) cut
vertices' which are needed in later sections of
this paper. For spacelike vertices one has the
terms shown in Fig. 1. The arrows in Fig. 1
refer to the momentum labels and not to flavor
or color charge. The bare vertices are

Fig. 1(a): I' (p) =r p
' '&.jl8(p ),

Fig. 1(b):

Fig. 1(c):

I",' (p, k) =1V,g(r /k )(p+k) ' '&.',8(p-+k-),
I' "(p, k) =-&.g(r-/k-)P-' '~' 8(P-)

Fig, 1(d): I",'~ (k) =45,. [g k -k (g k +g k )+g g k']k ' '8(k ),
Fig. 1(e): I',"„'& „(k„k„k,) =(2igC;»/k, )8(k, )g~ [g „k, k, -k, .g„k,

-k3 gl kyar +go„gr kg kg]ks
'

+2igC;»8(ks )[ks (gs-ger gu-ger )+gr -(ksyga- kruger -))4-
+ terms where (i, o., k, )—(j, P, k, ) .

'I",;"~„(k„k„k,) is identical to F,"'~ „(k„k„k,)
except for a factor of (-1) along with the change
8(k, )k,

' ' to 8(-k, )(-k, )' '. In the above
N, =+1 if a is a fermion of momentum P and
P, =-1 if a is an antifermion of momentum p.
The C;z& are the structure functions of the color
group, G. The indices a, b refer to a representa-
tion, B, for fermions and a representation 8 for
antifermions. The vector index for the gluons is
understood to be + in Fig. 1(c) and Fig. 1(d).
Timelike vertices are shown in Fig. 2. The
formulas are identical to the spacelike case with
the replacement of o' by -a'+1 and the omission
of the 8(k ) factors.

So far we have explicitly indicated col,or indices
and suppressed flavor indices. In the following
parts of this section it wil. l be more convenient
to suppress color indices, since we shall deal
with physical states which are color singlets, and
exhibit flavor indices. We suppose that the flavor
group is SU(3), though the generalization to SU(4)
is trivial.

B. Deeply inelastic electron scattering

In deeply inelastic scattering off a proton one
is concerned with the matrix element

d'«'" P 2v &2p. O P &
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(0) (b)

C ' and C ' are singlet contributions, while C '
and C ~ are flavor octets. E ' and E 4 obey
the same Callan-Symanzik equation. The u, sum
goes over u, d, s, u, a, s.

Neglecting renormalization

I",= dkT„', P, k y „,k ' '8k (7) '

(c)

with

~;:(p,k)= 'jt d'k ""(Pig( )0:(0)lp)

(8)

jkp

for a =u, d, s and

2m 'E
T;:(P,k) = d'ke '"*(Pl4:(~)4;(0)I p)

(e)

lk)e

for a =u, 2, s. I', is given by

(9)

FIG. 2. Timelike cut vertices.

where a spin average over the proton is assumed.
One can write W~„as

F, = d4kT~p 4 g~gk —k go kg+ gp-k~

+g~ gs k2jk ' 28(k ), (10)

Vu4v ~i~,„=- g,„-

and

= g c'„'&E,",&(q')

m d& & '9
z, = tn dhx"'g'z

i 0

= g c"'P"(q')

where, "defining v, =P 'F„
0 P .tJ Op
( j.)

C, ~p p I' (—'A, )„=p e'( —'A. )„
S S=V~+Vff ~

c',"=p -' g r:(-,'~, )..= g v.(-,'x, )..
03 03,

=Vy +Ve

c". & =p
- g r:(y.,)..= g v.(y.,)..

08 08=Vty +Vly

P'0 (P e)'
2 pgPV 2 (pal fV+PVflb) +gllV 2

q

The moments of S'& and W, obey
OO j.

den ' 'vS;= dxx'vs,
0

(2)

(4)

with
2m ET" (p, k) = d'xe ""(PEA.'„(x)Ag (0)i p).

rn

There is a sum over i in (10) and (il) and a sum
over fermion colors in (8) and (9).

The renormalization necessary to give (7) and
(10) a real meaning is discussed in Ref. 1. The
renormalization prescription forces one to intro-
duce the bare vertices shown in Figs. 1(c), 1(d),
1(e), and l(f) along with higher vertices not shown
there. For 0'=2, 4, 6;... the vertices I'„
Q,I",(~&,)„, and Q,l",(-,'&~)„correspond to ma-
trix elements of the usual local operators oc-
curing in an analysis of inelastic electron scat-
tering. %e emphasize, though, that the moment
relations (1) and (2) and the corresponding Cal-
lan-Symanzik equations for the E's are 'true for
any complex values of o' so long as the integrals
converge.

C. e+ +e ~ hadron(p)+ anything

The formalism for the process e'+e -k(p)
+anything has been discussed in detail in Ref. i.
%e here list the results only for completeness.
The cross section for the process shown in Fig. 3
18

do 2m'' (
— (u 1+cos'8 ~ (12)d'p (q')' ( m 2

where
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do' =' 2m''(, , (u 1+cos'8
d3P (q2}2 ( L m 2

' 2 )I

FIG. 3. Single-particle inclusive hadron production
in e+ e annihilation.

V~Vv~(—
gyv -

2 WI.
q j

P-q
+ 2 IPuP~ 2 (Pyq +PvqI )

then

l 1
cu' 'd&ovW, ='- d„(lnq') "&,

0

1
m &o' 'd~Wz-d~, (inq') " .

0

Here

3c,(R)
22C2(G) —8T(R)

(16)

(P q)'&i-
+ g~. 2 )t W2-

q

For large q' the moment equations are
1 4

vW &u 'd(o=g C'."E&."(q'),
0

1 4
m W &o' 3d&o= g Vl'lFl, 'l(q'),

0 i=1

where the E and E obey

(14)

+P l 5; y—,' E-' (q') =o.
sq2 Sg] 4 0 (15)

Equation (15) includes all factors of (lnq')", but
neglects powers of m'/q'. In the above the C's
are defined by equations identical to (3)-(5),
but now with timelike cut vertices. The cut
vertices are given by equations identical to (7)
and (10) except that in (7) y k ' '8(k ) is re-
placed by y k ', and in (10) k ' '8(k ) is replaced
by k ' and where now, for spin summed ex-
terna& fermions

,(y P+mr,
2m

dgr=~ j (

P

In this cross section only the octet piece sur-
vives in (13) and (14). If one defines invariant
amplitudes for the process so that

x (T(4,( X)P;(0))T(4'„(z )P„'(~))) ~ (16)

In (16) the field 0 represents a composite particle,
and the propagator of the 4 is understood to be
amputated.

Probably the cleanest test of QCD available in
single-particle inclusive annihilation is in the
difference of the cross sections for, say, E'
and E0 production,

x(]-
(g I)(g 2)+ M(I+I)(I+o' 1)

(19)

In case o'-2 is an integer «2,

3c (R) (22C2(G)-8T(R) ( (o'-1)(o'-2) Z l

For color and flavor SU(3), 3C2(R)/
[22C, (G}—ST(R)]= —,'„and A, =0, A4 = —„,A, = 8', ,

A, = —,"„,etc. The same factor of (lnq'} "' occurs
in other processes, for example, in the differ-
ence, E~do~/d'p —E~do" /d'p, of the proton and
neutron production cross sections. Thus

40'

should be independent of q' and independent of
8 at large values of q'. Corrections to constancy
in r are down by a power of Q' by factorization.

In some cases it may be more convenient to
integrate over electron. angles in the center-of-
mass system of the e'e . Defining this cross
section to be do'/d'P (see Appendix A) one can
write

(2v)'2E &u' 'd &ul

dll'
d'p

2

,), g 8.'R, ;(Q,', Q')E.'(Q.', g(Q', Q.')),
iy

(20)

where the i,j indices take on values

g, S,S, 03 03 08 08. In particular, the average
multipl. icity is given by a moment like the above.
Unfortunately, the moment, o =3, is divergent.
However, "if one takes differences of multiplic-
ities to eliminate the singlet contributions one
firids, for example,
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(2v)s2E

(inc'/Q ') "'(8 '+8")

x E, '(Q,',Z(Q', 9,') .
Using A, = 0 and E, ' = 4m/3 from perturbation
theory, we obtain

277 CP 03 0~
Sq+ Ago —

~ (V3 +Vs )9 'o (21)

FIG. 4. N-particle inclusive hadron production in
e+ e annihilation.

with the v's referring to the I'. Similar results
hold for n~. -n~o, n~-n„, etc. The lack of any
in@' dependence comes from A~ = 0 and can be
understood in the following way. A., is equal to
the A. of Gross andWilczek" if their A.G" are
continued in n in the natural. way. n = 1 would
indicate that a vector current should be- occurring
in their Wilson expansion. However, their Wilson
expansion does not have odd n, and the continued
n =1 term does not refer to a local operator. In
fact, the n=1 continued term acts much like a
vector current except that quarks and antiquark
contribute with the same sign. To lowest order in
g' this does not bother the conservation of that
vector current, and so the resulting anomalous
dimension is zero.

Finally, we comment (see Appendix A) that (20)
can also be written as'

d~ 8m'n
(2w) 2Eds =

3(@P)g Q &dU ((d Q )E

where the E' are E =0 g = E = - w(-')'~'
03 . o3E B=E '=~3n', and E S=E 8=4m/3vY. This form

is exactly as in a naive parton model except that
v' has a well-determined Q' dependence. (20) is
general while the above form uses asymptotic
freedom explicitly.

D. e +e ~h&(p&)+h&(p~)+ ~ +hN(p&)+anything

Consider the process shown in Fig. 4. The
cross section is

d(r(k) (e')'
[(2v) ]"2E,~ ~ ~ 2E» ~ s =, „sE»„„(k,„k,„+k,„k,~-k, k,g„„),d p '''d pg 2(q J

where

(22)

EN„—— d x ~ ~ d4x y ~ ~ d ygd4xexp iqx-i p$ x$ -yg

x(&(0 (&|)~ ~ ~ 0 (~ )i.(x)&&(4,(~,) ~ ~ ~ 0 (y )i.(0))) ~ (23)

Equations (22) and (23) are written for the production of scalar particles and an amputation of the general
Q propagators is understood. If the angles of k, the e' momentum, are integrated over in the center-of-
mass system of the e'e, one obtains

r [(2s)3]»2E, ~ ~ ~ 2E» ~ 3
= [(2s)'] 2E, ~ ~ 2E» d~~l PN Pj, PE

Sn' cP

3( 3)2»t

where E» = Q„E»».
For ¹2,E„depends on 3N-2 variables. We shat. l find it convenient to use the coordinate system

where q =(Q, 0, 0, 0) and to label the other 3N 3variables by-the magnitudes of the momenta and the
angles of the outgoing particles. Thus

Plik (Elf P t Pl) s

P» =(E„-P,sin8„0, -P, cos8,),
P~„=(E„-Pqsin8q cosQ», —pq sin&q sinpq, —pq cos8, )

(25)
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The independent variables are taken to be Q, P;, 8;, and Q;. Define &u; =2P; q/q'. Then for large q'

J
1

' ' ' &dg & d4)~ ' ~ 'd(ogEg =Eg ...g (Q I 8q &p) q

0

with

&.,"'~(Q', 8, 4') =p, -" ' "p;-" '(8; 4~) ' "p~-'" '(4, 4w)(Q') "'

(26)

Ql QN

(Q2) F+1 Q 1 ~ ~ ~ +BE 1 N(Q 28 y)
Q~' ' QN

(27)

In (27) P (8, P) =E~+ ~p~ and the I', 's are the cut
vertices discussed in part C of this section. n
takes on values 1 to 7. a= 1 refers to the gluon
vertex, while a=2, 3, 4 refer to u, d, s vertices,
and a = 5, 6, 7 refer to u, 2, s vertices. The Cal-
lan-Symanzik equation is

Q ~ ~ ~ Q ~ ~ ~ QlXE ' =0 (28)

Equation (28) is very complicated for all but
small h'. If one were content to take only the
truly dominant part at large In@', the term given

by the maximum eigenvalue of the y's, the result
would be

E.,' '„"(Q', 84)- C™,'".„"(0',8, %)(in@')',

(29)

In the coordinate system where q =(Q, 0, 0, 0),
pig (EPgt t I pl )t p2P
=(E~,, -P, sin8, 0, -P, cos8), these regions are (i)
8 fixed and 8 0 0, v, (ii) 8=v, and (iii) 8=0. In
each case timelike vertices rather than spacelike
vertices enter since the particles p, and p, are
outgoing. We begin with (i).

(i) When 8 is fixed away from 0 or v we are in

effect requiring that three jets' form the domi-
nant production mechanism. Equation- (27) can
now be written as

Es,s (q , 8) = —,p, " 'p
1, 2

Qg, Q2

where 2EQ1Q2

QgQj

(31)

4=/

and A, is the maximum eigenvalue of y, . If
one restricts the 8; to lie, say, in the hemisphere
0~8; ~v/2, then

C.,'-.„"(Q', 8, 0) = C.,'".„"(8,0)(in@') "",
(30)

It is simplest to change to a basis where the I"s
are written as

z~ —z~
Op

and C is determined from the tree graph structure
of @CD. If the angles are not restricted, the'n

several of the particles may belong to the same
jet and the behavior of C™,'...,„"(Q', 8, Q) is not so
simple. Since the case of 2V&2 appears, to be only
of formal interest for the near future, we shall
now go on to a detailed discussion of the situation
when X =2.

7r."= g r. (-,'~,.)...

(32)

E. e+ +e -+hg& }+fg(p&}+anything

The reaction e'+ e -h(p, )+h(p, )+X separates
naturally into three different kinematic regions.

There is an analogous formula for the v's. There
are five possible independent vertices for each-
outgoing particle and thus 25 possibl. e terms in

(31). In fact there are only 13 independent terms.
These are S,S„S,S„S,C„S,O„S,O„Q,S„
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for example, G,O, means that the term
I', (p, )I'o,(p, ) occurs. Clearly 13 terms is too
large a number to comfortably consider. For-

tunately, by forming differences of cross sections
it is possible to get down to a simple result. To
this end form the difference of m', m', + m, m, —n', m,
—m, m', cross sections. One finds

f ( do "' do"'
'd&o, (v, 2E,2E,

l d3pd3 d3~ d3P2 g P2

640m'
243 v(11 —,' n&)—

I

x F( „o„o,o+&x, -2, 1/(1 +A))[B( ,o-2, o,) +B( ,o-2, o,)]+

(33)+ (2/y)B(o, - 1, o', —l)F(o', —1, &, —1, &, + &, —2, 1/(1+ A) )

where A. =(1+cos8)/(1 —cos8), B is the beta function, and F is the hypergeometric function. Of course, it
is not necessary to fix 8 in (33). Regions of 6 can be integrated so long as one stops away from 8=0 and
6) =m. A similar relation holds for moments of

dgIC+IC+ d( ICOED dgK+ICo
2E 2E +

d&p d3p d3p d&p dsp dsp
(34)

In each case the C...,(8) is determined from an order-g' perturbation calculation, and the I' are the
same as occur in single-particle inclusive annihilation.

(ii) When 8=x the analysis outlined above breaks down as discussed in Sec. III. What must be done is to
integrate over a region around 0=m. To do this it is convenient to consider, temporarily, a prime co-
ordinate system where

q'=((Q'+q') ', q, », Pl=(E;, o, o, -pl), Pl=( E;, ,oops)

The relation between q and 6 is given by q'=Q'(1+cos6)/(1-cos8) when E~, E~.&&m. The amplitude

2(Q 1 lt 2) q 3(Q & 1t 2&q ) Q J . (I cos6)2 2(Q t 1 at
2 2 2 d cos6

(35)

is appropriate for taking moments. The region of 6) integration may be any region including m = L9 but ex-
cluding 6)=0. %e find

2E,2E, , (d", '&d, '& 'd'qdv, d(v, = »» p (v', v', )Q;; R;,' (Q,', Q')R& (Q,', Q').
1 2 j c

(36)

(37)

The Q' dependence of (37) is characteristic of a
two-jet process. The matrix Q;& is

This simplifies considerably if singlets are avoided by taking' differences. For example,

( g+ + ir+ ff™dv dG 2 02E,2E, l c~ „s —„~ „~ (v, (o, 2 d qd&u, d(v, 320n(dpdp dpdp

Equation (36) can be written in the alternative
form

03

08

Ra5 Rso o

Va vS 3 O O

G S 03 08 S 0, 0,
0 0 0 0 0 0 0

0 0 0 0 4 v6 v2

o, o o o o Pe 5 vs

Q= —O~ 0 0 0 0 W2 P3 3
1
9 8

4 &6 v2 0 0 0

d0'
2Ei2E2d3P ~3P

160.' g v,v'(&u„Q')&u, v (&u„Q )Q(,
C g

(iii) When 8=0 it is convenient to parametrize
the momenta by q~ = (Q, 0, 0, 0), p» = (E~, 0, 0, -p),
p» ——(E~,,p~, -xp). For fixed (d, =2P, q/Q' and
fixed P~, 8- 0 as Q'- ~. The relevant amplitude
[see Eq. (24)] is F,(Q', u&„x,p~). Define

(36)
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Then

F.(q'...p, ') = g'(, p ')E. (Q'), (39)

where E, is the same E as appears in single-
particle inclusive annihilation. In this region of
fixed x and fixed P~' two-particle inclusive an-
nihilation is not essential. ly different from a
single-particle inclusive process.

d&z 4mcP W(s, Q')
d4q 3Q' s

with
«

W=-16m'E, E, Q (2&)'5(P, +P, —q-P„)
n

(41)

(p,p, (+)li.(0)l &

x (sly. (0)lpga. (+)&. (42)

%e suppose that a coordinate has been chosen so
that (p )„=(E,O, O, -p ), (p ) =(E, O, O, p, ),
q„=((Q'+q')", q, 0). Then there are two situa-
tions for which exact equations can be given at
large Q'. The first case, (i), is when an integral
over d'q is performed. The second case, (ii),
is when q' =AQ' and & is fixed.

(i) We begin by considering the case where the
variable q' has been integrated over. Consider
then

where &u, =2p, q/Q' and &u, =2p, q/Q'. As dis-
cussed for two-particle inclusive production in
e'e collisions, it is crucial that a d'q integral
be taken. There appears to be no simple result
if q is held fixed on the order of hadronic masses.
For large Q' one can write

F. h(p ~ ) + h(p2 ) ~ p+ p (q) + anything

The Drell- Yan" formula for massive p.-pair
production states that

, , Q Q,' dx,dx,v'(x, )v'(x, )
do 4mn'

d'q 3N,

x 5(x„x, —Q'/s) . (40)

s = (p, +p, )' and p„p, are the momenta of the in-
coming hadrons. The a sum goes over
u, d, s, u, 2, s. Q, is the charge of the a quark.
v'(x) is the parton number density, discussed in

more detail in Sec. IV. E, is the number of
colors, which is always taken to be 3. When the
radiative corrections of QCD"" are taken
seriously, Eq. (40) does not remain exact but
the resulting structure bears a recognizable
resemblance to the Drell- Yan formula. Define

g 0 (Q ) 3(Q2)g~ ~ 0 8

~04

x Q R;,'.(Q,', Q')R(,', (Q, ', q')Q, , ,

(45)

As discussed in Appendix A we suppose Q,' is
large enough that the y's can be taken from low-
est-order perturbation theory for the evaluation

' of the 8; s. Thei, j,i', j' sum goes over
G, S, 03, 08, 03, 08, S. It may be convenient to
write (45) as

J',;(Q') = 3(, ,~ Q v', (Q')v!,(Q')Q~g,
Ct j

where

v.'(Q') = g v'. R';;(Q, ', Q')
j

= g !R;;(Q,', Q').

Another alternative form to (45) is

(45')

E(x„x„q')=,), g x,v'(x„q')
&eJ

x x,v~(x„q')Q;~,
where

J'(x„x„q'}= „, d'q
4 Q'

and x; =Q'/2p; q. The v'(x, Q') are defined like
the corresponding timelike vertices with cu re-
placed by x. The Q;, are as before.

(ii) When q' =A,Q',"we write

(46)

Then for large Q'

(4'f)
$ J

where the i,j sum goes over
,S, 03, 08,S, 0„03,08 and the E'~ obey a Callan-

Symanz ik equation

8 ' 9

Bg

(46)

(44)
~ «f

where-the i,j sum goes over G, S, 03 08 S, O3, 08.
The v,' are the same spacelike cut vertices as
appear in deeply inelastic electron scattering.
The E", , obey a Callan-Symanzik equation with
usual spacelike y,'~'s. Using asymptotic freedom
we can write
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Using the graphs shown in Fig. 5 and the Callan-Symanzik equation we find .

Qf& is given by

) l„g ( ', ', ) P & l (Q
' Q')& '

(Q, ', Q')Q,' ~;l l(~) . (49)

G 0

S 03 08 8 0, 08

6 ))'2/3 3 2((3 6 v'2/3 3 v 3

S 6 v'2/3 0 0 0 4 &6

03

Os

3

03 3

Q' = —0 2(3
1
g 8

S 6 v'2/3

0 0 0

0 0 0

R6 v%

v6 5 R3

v2 v3 3

0 0 0

0 0 0

0 0 0

For quark-antiquark terms

V'2'2=
9~ (1+&)E~ o'„c'„o',+o, +2,

1 ~
[B(o'„c,+2)+B(o„o',+2)22 22 2 2 . ]+2g] 22 2

1
+22)(~, +), 0', +1)F(v, +1, 2, +1, v, +s, +2, )

For quark-gluon and antiquark-gluon terms

(50)

+ B((J2 + 2, o'2 + 1)E
~

v2 + 2, c2 +2, &2 + o'2 + 3 2

—2B(o + 1, &2 + 3 )E
~

0'2 + 1, &2 + 1, &2 + c2 + 4,
( 1

(51)

kt Q' kp k~ q k2 kt q k&

(a)
k) Q k~ k) Q k~ k) q

(b) (c) (d)

f2
k2

G. h(pj ) +h(P2) ~h(p3) + anything

In this section we shall discuss large-trans-
verse-momentum inclusive hadron production in

hadron-hadron collisions. '0 %e shall see a dif-
ference in this process from all the others we
have so far discussed. In the above process two
spacelike vertices (parton distribution functions)
and one timelike cut vertex (parton decay func-
tion) appear. However, it is not possible to
perform a diagonalization so that a simple Cal-
lan-Symanzik equation emerges.

Since we shall not be able to completely diagon-
alize the high momentum equation let us begin by
reminding the reader, for notational purposes,
how a diagonalized and undiagonalized equation
are related. Consider, for example, E(l. (20)

2) ) q 22P k) Q k2P
kgb

k)

FIG. 5. The hard-scattering graphs used as input to
the Callan-Symanzik equation for large-q2 p-pair pro-
duction. With a reversal of various arrows of the k~,
k2 lines, these graphs are also the relevant graphs for
a similar region in e+ +e —h(p&) +h(p2) +X and in
~+&(P)—~+ ~(P&) +X.

2 28m o. B!j ((Q22Q 2)

&Id

x z.(Q;,g(Q', Q, )j.
dv/d~P is the single-particle inclusive cross sec-
tion in e'e collisions with an average being taken
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-P,', .+P —, ~'"(y„y.,p.') = ' p~" (x,)I" "(y,/x„y„P~')

+ '
y X V' y„y, „P3'

2

+ Qy (x~)V (y,xs, y,x~, x, p~ ).
a'

Equations (56) and (57) exhibit the information one obtains from the renormalization group in wide-angle
scattering. It is possible, and straightforward, to diagonalize the y, and y, dependences of (56) leaving
only a dx, /x, integration. In that case the first two terms on the right-hand side of (58) become matrix
multiplications rather than convolutions. It appears impossible to do any further diagonalization, so that
the Callan-Symanzik equation must always remain a convolution equation.

Equations (56) and (57) can also be written in the form

3 0 1 2 3
(59)

where the V"" can be determined from lowest-
order perturbation theory. An equation like (59)
is the starting point of an analysis of the type
done by Feynman, Field, and Fox.'

Finally, it has been a common practice'
dealing with wide-angle scattering as well as in
p. -pair production to distinguish between a trans-
verse momentum due to the hard scattering and
pne due tp the wave functipn pf the hadrpn.
%e are unable to find any place for such a sepa-
ration, in our formalism, and we suspect that the
concept of the "intrinsic transverse momentum
in a hadron" is a difficult one to talk about sen-
sibly. Ne think that any analysis that depends
crucially on the existence of a wave-function
distribution of transverse momentum is probably
not a tight test of QCD.

H. e+h(p) ~e+h(pg)+X

electron angle of scattering in the laboratory
system. In order to obtain a somewhat simpler
amplitude to deal with, consider the coordinate
system

q„=(0, 0, 0, Q),

P~ =(E, o, o, -P),
k„=e(1, sin8costP, sin&sing, cos 8),

P,„=(E„P,sin 8, cosQ„P, sin8, sing„P, cos 8,),
k'=k -q.

Then one can easily verify that

&(~, &„Q'&,) = —~ (k p)'(15 cos'8- 7) cos'8

2Egdo'x d cos'8d@,d d, dg, ,

E= I (k P)'(15cos'8-7)cos'82v f

SZm j
In single-particle inclusive hadron production

in deeply inelastic electron scattering one has'4
d0'

dQ dvdv~dK~
(62)

d(T

dQ'd vdz, d v,

l
[%'2cos (q8)+2'VV, sin'(~8)j,

Q2 2

where

(60)

2vmmu'
m Q2I

E is given by

cF(2v)'
(2v)2(@2) EP (2 w) 'EP

(62)

4vEppd p p, }l ( p, ql
m „'(' m

&
(' m,

(pli. (0)lp, )( P, li. (0)IP)

x g (pli. (0)l pp)(p, nl~. (o)l p)

x (»)'~'(P+q -P, P.)-(64)
x (»)'~'(P + q Py -P.) (61-)

In the above & is the energy of the initial electron,
e' the energy of the final electron, and 8 the

In the following we shall understand a spin sum
over P, and a spin average over P. &u =2P .q/Q',
(d~.= 2P~ 'q/Q q Ic~ ~p 'p~/m.
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The predictions of QCD are most easily ob-
tained in a somewhat different coordinate system.
Consider the system where

P,.-(Ep, , o, o,P,),
q. =(o, q, (Q'-q')'").

In this system we view E as a function of
2 2

(d), (d»Q, q .
(i) Suppose q' is not necessarily large. Then

we must include an integral over q in order to
get definite predictions from the renormalization
group. Def ine

or

E„(Q )=, Q Qg)v,'(Q')v, (Q')
4j

E(x, (o„Q')

16m'u' P Q;;xv'(x, Q')(qr, v~((o„Q'),
ij

where x =1/(o and

B(x, rr„rq') =f d'q»' —,rr„r)', q') .1

Cal. lan-Symanz ik equation. Us ing asymptotic
freedom we may write

(67)

E.B,(Q')

qdcod(d Ir co co
2 q2 & 1 2 ~ 65

then for large Q'

Sn'n'
E„,(Q') =, P v,'v, E,',~(Q'), (66)

lj
where v,' is a spacelike cut vertex referring to
the target particle and v', , is a timelike cut vertex
referring to the produced particle. E,'~ obeys a

(ii) Suppose q'/Q'=& is fixed. Now one must
calculate graphs l.ike those shown in Fig. 5, but
with 0, an outgoing line. Using asymptotic free-
dom we find

(Pg (Q ) I)

rr(Q')' 1-~

& g Q,'Jv,'(Q')v, (Q')V,', (A.) . (68)
ij

For quark-antiquark terms

„() = — B((r, —2, o'+2)E (r„g, —2, g+ g„1—— +B((r„o)E g, 2, g, g+g
I

+1 ~B(g, —l, g+1)E~g, -1,g, —l, g+o„l ——
~

For i =quark or antiquark and j = gluon

(69)

V (A) =- — B(g 1 g+])E o o -1 o+g„l- — +r'B(g„g)E (r, -2, g„g+g„l- —
)

q

+2gB(g 3 g~3)E g, 1, g, 3, g+g„l-—2 1
(70)

For i =gluon and j =quark or antiquark

1 1 1 1V„(A,) = —— 8 (g„o')E g, —1, g„g + g„1—— + A2B (o, —2, .o+2')E o; '—1, g, —2, g+ (r„ 1 ——

—11'B(rr —1, ir+1)B(rr, —1, rr —1, rr+rr„ 1 ——

III. A GENERALIZED WILSON EXPANSION FOR
MULTIPARTICLE PROCESS

In this section a discussion will be given as to
how a generalized Wilson expansion emerges for
multiparticle process. Rather than deal with all
the processes discussed in Sec. II, we shall limit
ourselves to a detailed discussion of e'+e -lr(P, )
+Ir(p, )+X. The derivations of the other results
listed in sec. II take a similar form though the

details differ considerably from case to case.
We shall only discuss the case of an Abelian
gauge theory where both the fermion arid gauge
field have mass nz. The equality of masses is
taken only for convenience. %e shall. first state
the result of the generalized Wilson expansion.
Then some examples il.lustrating this result will
be given. Finally, arguments supporting the con-
clusions will be given.
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r,

p) ))q p
b p&

f'k
~ gk2 cP~

i&

FIG. 6. The Feynman graphs contributing to F.

a p~ ek~ q hk~ dp~
1

FIG. 7. A particular decomposition of a given graph
of F.

Let

A. The form of the expansion

do 8n'n'
2E12E2 ds d3 (2 )63(q2)2

+ +1p ~2k @ k

(72)
where E is the set of all cut Feynman diagrams
.with contracted current indices shown in Fig. 6
for outgoing fermion lines. We choose the co-
ordinate system q~ = ((Q2+q2)~2, q, 0), p»
=(Ep, p 0, 0, 0, —P, ), P,„=(Ep,, 0, 0,P,).

We begin by reminding the reader of some no-
tational conventions. " A renormalization part,
y, is a proper subgraph which has superficial
degree of divergence greater than or equal to

. zero, with one exception. The exception is the
four-photon vertex which has superficial. degree of
divergence equal to zero, but does not diverge
when a gauge-invariant combination of graphs is
taken. Thus a subgraph, y, having only four
external photon lines need not be considered a
renormal. ization part. A forest, U, of a graph G

is a set of nonoverlapping renormalization parts
of G. U may include the null set and the graph G.

Define t2 to be the usual subtraction operator"
for a massive vector-meson theory. That is, if
y has degree of divergence equal to zero, then

f2yy(p„p„. . .) =y(0, 0, . . .). If y has degree of
divergence equal to one,

E= ' -t." E"- (73)

In order to ensure gauge invariance, we suppose
that a gauge-invariant regularization is per-
formed.

The usual way of obtaining a Wilson expansion
is to do additional subtractions on the amplitude
E. Consider a particular graph G contributing
to E. Suppose G can be decomposed topologically
as shown in Fig. 7. All external propagators are
contained in ~, and ~, rather than in 7. We further
suppose that P, is a fermion, P, an antifermion,
k, a fermion, and k, an antifermion. (We shall,
of course, later add in the contributions having
k, an antifermion and k, a fermion. ) Then

&2r(p„p„. . . )
a

=r(0, 0, )+p»sk r(k, o, . . . )I,=,

9
+p„sk r(o, k, . . . )lh. ,+ ~ ~ ~ .

If y has degree of divergence equal to two, t," gives
all terms to second order in the Taylor series.

The fully renormalized E is given in terms of
the renormalized E" by the BPHZ' ' formula

P{P„P„q)=(y P, +m)„(y P-m)„ f d k d pygmy(P„k)T ', „(P,k )qy „(k„k„q),

where the k, and k, propagators are contained in T ' and T, respectively. We define t'by the rule

t V f h(k k2 q) =V f h(k„k„q),
t

where k„=k~=k, =k~=0, k, =k, , k„=k... and V' means that only the (y ),f(y. ),„ term of V' is kept.
Another way of writing this is

(74)

v f h(k„., q) = (r ).f(r, ),.—,'. g (r.)f" (r )h' ' 'f ' '2-'( „„q)
elf I

g hg I

=(r-) f(y. )hh" (k (75)

Call
)

(p(p„p„q)=(y p, +m), .(y p, -m)..fd'kd'k, r.'„,(p„k,)y,"„„(p„k,)q'y,'„„(k„k„q).
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Then the coupling of T to V is only through k, and the coupling of T to V is only through k„. We can
also write E" in the form

E'{p„p„q)=(r p, +m)„(y p, -m)~, fd'k, I, T(, (pi„k, )(y. ) I
ef

Define

X d'k, T„~h P„k, y, ,„V'k„k„q .
gh

(78)

(77)

Then

2
Z'...,(Q') = —(', ." '(|' P, ),.f u'a, p r l, (D„a.,).(r ) f):,- -..

ef

"0,.'*'lr t', 1,.f&'a, Q &,'!"(P., ):,)(&.)~s,. "
gh

2

+(I
(78)

Thus

2

=v, v, 2E,'... (Q'),

where

Remember, I', involves a bare fermion cut vertex and I", a bare antifermion cut vertex. At this point
Vy '2

the v, 's are unrenormalized cut vertices. If we renormalize the cut vertices by applying the subtraction
operator t', to renormalization parts of ~, and ~„considered now as graphs of cut vertices, we get an

e{luation just like (79) except that v, , and v,, are now renormalized. The subtraction operator, f,", for cut
vertices is described in detail in Ref. 1.

' If we now sum over v and over all graphs we obtain

(d & co 2 d(d dc' d QE p, p, g (80)

In (80) y, is a renormalization part of A.„con-
sidered as a graph contributing to a cut vertex.
y, is a renormalization part of ~„considered as
a graph contributing to a cut vertex, and y, is a
renormalization part of 7. U, is a forest of ~„
U, is a forest of A.„and U, is a forest of T 'u(&,).
is the set of all forests of A,„%t(A.,) is the set of
all forests of A,„and 'u(r) is the set of all forests
of 7.

Of course, so far we have only taken the con-
tribution to v, , which consists of a bare cut vertex
having a fermion below the cut. The contributions

involving an antifermion below the cut along with
the fermion-antifermion many-gtuon bare vertices
and the two-gluon bare vertex will be added in
shortly. However, before doing this let us indicate
the relationship between the E, , given by2

5'...,({)') =f w,
' 'e " 'de dtd d'q

xQ II ( f2)+ (~ii~2~Q ~{I )
U ye U

(81)
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and the expression (80). This relationship is

EO (» (Q ) =Vll (»2 2 @(»k(»2(Q )

f k + k)+™+k„

(82)+
U yeU

In (82) the "renormalization parts, "
y, consist: of

three types of subgroups. {i)p may be any sub-
graph having superficial degree of divergence
greater than or equal to zero. (ii) Z may consist
of any amputated graph of the type shown in Fig.
6, with Pq replaced by k;, where k, is a fermion
and k, an antifermion line. (iii) y may be of a
type to be specified below.

In (82) the forests U consist of sets of non-
overlapping renormalization parts with the re-
striction that each forest contains at most one
element of class (ii) and, further, that a forest
contains elements of class (iii) only if it contains
an element of class (ii). We can now define an
element, y, of class (iii) in the following manner.
Let 7 be an element of (ii). Then the full graph
is topologically broken up as in Fig. 7. The
elements of class (iii) are renormalization parts
of ~, and ~, where ~, and ~, are considered as
graphs of cut vertices where the e,f lines are

D

&2

FIG. 8. A decomposition of F .showing many photons.

multiplied by a {Z ),p
and the g, k lines are

multiplied by a (Z, )d„. Then if Z is of class (ii),
t," is the same as the t' discussed above. If y is
of class (iii), t," is the same as the subtraction
operator for cut vertices discussed in Ref. 1.

Our next step js to consider decompositions
different than those shown in Fig. 7. Consider a
decomposition of the form shown in Fig. 8. There
are n photon lines of momentum k, ~ ~ k„connect-
ing ~, to v, the first i of which lie below the cut
in 7. There are m photon lines of momentum

E, ~ ~ ~ l connecting ~, to v, the first j of which
lie below the cut in 7. All propagators are in X,
and ~, rather than in v'. m or n but not both may
be zero.

This contribution to E is given by

P(P„P„q)=(y P, +m)(y P, -m, ).,.fd'k, ~ ~ .d k d l, ~ "d'('d(„'k'd'(T, ',y, (P„k,k„k„)
X T~~(k (p2» l» Lk». . . l»)))Veydpk(k» kk». . . Ik» l» q), (83)

The photons with momentum k„.. . , k„end on y, 's in v, while the photons with momentum L„.. . , l end

on y 's in v. v may be disconnected, but the photon lines must end on some part of v'. No sum of photon
lines may form al.l the external. lines of a disconnected component of v.

We define

t'V'z'p, (k, L, q) =V p,'(, (k, l, q),
where the - on V indicates that only the (p ),~(p, ),), part of V is taken. k, =k=t =l=0, k =k, l, =/, . V

obeys the Ward identity

n mk„'] l,.V'pd), (k, k„.. . , l„l, q) = (-I)"' ' g "V'p „(k+0,+ ~ ~ -+5„l+ l, + ~ ~ +l „q) .
S=g

(84)

The Ward identity clearly determines V"~. The further discussion for the decomposition shown in

Fig. 8 now follows parallel to the discussion for the decomposition shown in Fig. '7. (The Ward identity
makes the two discussions almost identical. ) We arrive at a formula identical to (82) where the. v's stand
for the bare two-fermion many-photon contributions to the cut vertices.

Next consider a decomposition of the sort shown in Fig. 9. Again 7 is completely amputated. The con-
tribution to I' is

P(P„P„q)=(y P, +m)m(y P, -m), f d k d k T.„' (P„k)T„,y(P„k)y: q(k„k„q)y.m

Now V,'q () can always be written as (see Appendix B)

Vq»f qq() (k„,k„q ) = Q V(df qqqf»q{kk» k2» q)[gqq() k, qk»k, () .+ glkqq g() ()qk,
' g«q k, () k2(). -g()—()qk2qqk, qq ]

~ppt

(85)

(88)
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We define t' by the rule

t Vef()( () ~ (k„,k„q) = 4(r )ef Q ) 8 (r.)f ~ Ve f (ku k2& q)g(d g();
glf I

=4g .,g()., (y ),qv'(k„k„q) .
Then

f Vef()(8 (kl~ k2~ q) = (r-) f4[g()(g k„-k„(g„k,g+ gg, k, ) + g, g(),k, ']v (k„k„q).
Further, define

(8V)

(88)

&'(p„p„q)=(r p, +~)&.(r p, -~)&.J d'k, p &.~g. (p„k,)(r ),g
gf

X d'k, T«~y P»k2 4 g~yk2+ -k2+ g~+k2y+gy+k2

Taking moments we obtain

I":,.(Q') = 2Q'P, "'(r -P, ) .,t d'kp'. ny. (P„k,)(y-).y(k, )"-
+g, g(),k,']v'(k„k„q) . (89)

«(«(, )..f d ) T !s'(u. .&. )4(z., a,)' -. .)'.,.(.z'..)'.,+(~)',.)+z..zs, &.')(&..) " '

2

(90)

We can write this as

(Q') =v'v' —&'"(Q')1
(91)

where

and with the vertex 1" defined by

()'~,)„=fd'k, T,'„(p„).,).
x 4[g pk„' —k„(g,k, z + gz, k, )

+g,g(),k, ']k,. '2 '.
As in our previous discussion we now use the t,"

operation to renormalize v,, and v, . We then
arrive at a formula exactly like (80) with v, re-
placed by v,, and E„„replaced by E, , We
immediately arrive at

y may consist of any amputated graph of the form
r shown in Fig. 9. (iii) y may be of a type to be
specified below.

In (93) the forests U consist of sets of non-
overlapping renormalization parts with the re-
striction that each forest contain at most one
element of class (ii) and, further, that a forest
contains elements of class (iii) only if it contains
an element of class (ii). We can now define an
element y, of class (iii) in the following manner.
Let v be an element of (ii). Then the full graph
is topologically broken up as in Fig. 9. The
elements of class (iii) are renormalization parts
of ~, and ~2 with ~, and ~2 considered as graphs
of cut vertices. The ef lines are multiplied by a
(y ),~ factor, and the aP lines by a

4[g()(()k2, - k2, (g()(,k~() + g(),k2(I) + g~, g(),k2 ]

factor. If y is of class (ii) t", is as t' in (8"t). If

bp) fkt ~ CP2

U teU

where now, in (93), the renormalization parts,
y, consist of three classes of subgraphs. (i) y
may be any subgraph having superficial degree of
divergence greater than or equal to zero. (ii)

pp) ekt

I 2,

2 4P2

FIG. 9. A decomposition of E involving two fermions
and two photons.
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bp) tk k) kJ 2

y is of class (iii) the f," is the same is the sub-
traction operator for cut vertices discussed in
Ref. 1.

aP) ek ) pk2 dP~

FIG. 10. A decomposition of I' involving two photons
and two fermions along with many photons.

bP& Pk~ yk2 cP2

,t iz
„

ap~ ak~ $(2 dP2

FIG. 11. A photonie decomposition of I .

Decompositions of the type shown in Fig. 10
are simply related to those of Fig. 9 by the Ward
identity and so will not be discussed in detail.
We must finally consider decompositions of the
type shown in Fig. 11. Then

E(p„p„q)= (y.p, +yn),.(y p, —m)„J d'k„d'k2r,"„(p„k,)r~y, (p„k2)V'a2y, (k,., k„q).

Now V' can be written as (see Appendix B)
7 2Valya —"a'2'y'6'[gay~qa'~el'+ gau'g 2'~2z gaa'kx2kls' g25' au kz a]

X [gy2k2yik22 i + gyy gwik2 gyyik k222' 2gMik2yk2y i],2

We define t' by the rule
A A

f V 2 2(k k q) =V~y, (kq, k2, q)ga g2 gy, g2, =16ga ga~y+ga+ (k~, k2, q).

Then
A A

f V' „(k k q)=4[g k -k (g k +g k „)+g g k ]v (k, k, q)

x4[gyok2,
' -k2+(g'y+k2, +g2 k2y)+g g yk 2]2.

(94)

(96)

(97)

Defining F' as usual and taking moments we ob-
tain E...(Q') = P v, v, —,E...,(Q')

Ey(Q2) va vc ~y, GG(Q2)
1

(98) .P II (-f,)"E"...,(Q }, (101)

where

v.' =p ' 'l trr pr'. (p),
with I', as given in (92} and

n2PE'aa = 8d2q ( ' d(v d(o &u'& 'ui'2 '
O&U2 Q2 +q2 1 2 1 2

x v '((u„(u2, Q', q2) .
Following the procedure discussed several

times already, we obtain

(99)

U weU

where o., P equals G, S,S. U is any forest of the
type previously discussed in this section, and y
is any renormalization part previously discussed
in this section. The first term on the right-hand
side of (101}is the generalization of the Wilson
expansion. %e have yet to argue that the second
term on the right-hand side of (101) is small
compared to the first term by a power of Q
Q' is large We sha. ll give this argument after
some examples are discussed.

B. Some examples

+ t 2'~ Q 2

U t~U
(100)

Finally, we should add in antiparticle contribu-
tions for particle P, and particle contributions
for particle P,. When this is done we may write

In this section we shall exhibit some examples
of Eq. (101). That is, we shall show at what rate
the second term on the right-hand side of (101},
E,",',,(Q'), vanishes as Q' becomes large. In par-
ticular, we shall see that E,"', (Q2) is of the order
of (I/Q')E. ..,(Q').
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P) Pp b p,

Pi $Q P2

FIG. 12. The lowest-order graph contributing to the
Drell- Yan process.

q p~d0 P

~ ~FIG. 13. The second-order radiative correction to
the Drell-Yan process.

We begin with the trivial example of the graph
shown in Fig. 12. Take P, a fermion and p, an
antifermion. Then

Ei "l((u„&u„Q', q') = e'(2v)a5'(q —p, —p, )

&& tr(y p, + m)y„(y p, —m)y„

= -128m'e'(u, (u, 5(1 —(u, )

x q(1 —tq, )il'(q)+0 (—,)
Thus

E&") (q2) =-12Sv'a+O —,i.1 2

In this case E, , (Q') is given by

E.'.,(e') =E!,"!,(e') -f,E!,"!,(e').
Now the dominant term in E,",, (Q') does not de-
pend on external masses so it is clear from (75)
that E,'", is down by 1/Q' from E...,.

Now consider the somewhat more complicated
example shown in Fig. 13. In this case

-2 5 — — ' -m'Ei"l =g'[ „,', „, '
), ,]tr((y p, +m)y [y ~ (q-p, )+m]y„(y p, -m)y [y ~ (p, -q)+m]y„).

(102)

For convenience in writing we define some new amplitudes. Let

(103b)

(103d)

[~z ™a]a((a((= ( z )aa (~g)a(y ~

We can write (102) as

-(2m@5(k'-m')y [y ~ (p, +k)+m]
(2t)'[(P, +k)' —m']

(2w)g5(k' —m')y [y ~ (p, +k) —m]
(2w)'[(p, +k)'- m']

ya ya [y (P, k)+- ]ym„(»)'&(q -p, -p, -k)
(103c)

2+

y, [y ~ (p, +k)+m]y„8y„(2s)'5(q -p, -p, -k)
)

The graphs corresponding to the I"s and V's are shown in Fig. 14. The 8 in the above formulas indicates
the Dirac-index structure to be found in Fig. 14. That is for the graph shown in Fig. 13 with Dirac indices
a, b, c, d

E"=(y P, +m)a, (y P, —m)a, ]t dak[I'. ,(P„k)V,(P„P„k)],a,a. (104)

The oversubtracted amplitude, E,';, (Qa), is given by applying the formula (101). We obtain

y."'. (q((=.fdtqd~dqtqtq" (y'q, ,"+'m(,,.(y *q, -m)„
(y

~~ ~]. Pj ~ V2 Py P2 ~ ~g Pj ~ V2 P]. P2f~ Vg Pj P2 ~ ~2 P2

—I', (p„k)V,(p„p„k)+I',(p„k)V, (p„p„k)+V,(p„p„k)I',(p„k)]„, .
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In (105) we have not explicitly done the y-matrix projections which (75) and (84) require. However, in
this simple case the appropriate projections are guaranteed by the (y P, +m)„and (y P, —m)~, terms. In
the aboveP„=P, =P, =P~=0, P, =P, , P„~P„. When evaluated in V„k, =k =0, 5 =k . When evaluated
in V„k =k =0, k, =k, .

Let us consider four separate regions of k integration in (105). (i) (k+p, )~=0(m2), (k+p, )' =O(Q'};
(ii) (k+p, )' =O(m'), (k+p, )' =O(Q'); (iii) (k+p, )' =O(Q'), (k+p, )' =O(Q'); and (iv) (k+p, )'(k+p, )' both of
order (Q')''. This does not exhaust all of the k integration volume, of course, but the other regions are
easily examined. The reader will note in our massive theory that it is impossible to make both (p+k, )'
and (P+k, )' the order of m' simultaneously. Begin with (i}. When (k+P, )' is finite and (k+P, )' =O(Q~),
V, (P„P„k)=V,(P„P„k)and 1",(P„k)=1,(P„k). This is true only after an integration over d'q has been
performed. Without the (Pq integral in (81) we are unable to derive a generalization of the Wilson expan-
sion. Corrections to the above equalities are always manifestly down by a factor of 1/Q'. In this case
we write (105) as

E,'", (Q') = d(d, d(d, d'q&u, " '((),'2 '(y p, +m)(„(y .p, —m)~,

d k I', P„k V P„p„k -V, p„p„k -F, p„k V p„p, k -V, p„p, k

—V, (P„P., k)[1',(P., k) —I', (P., k)]].~.~- (108)

Thus, there is a cancellation of the dominant terms in region (i). Region (ii) is completely equivalent
to region (i) by the symmetry of the graph In r. egion (iii) we still have V, (P„P„k)=V,(P„P„k)and

1,(P„k,)= I', (P„k) along with a similar relation for V, V, and I', —I', . Thus in this region the dominant
contribution also cancels in evaluating E,",~,(Q') for large Q'. Region (iv) is completely analogous to
region (iii).

Finally, we shal. l discuss the graph shown in Fig. 15. As in the previous example we define some new
amplitudes. Let

gy [y ~ (p, +k)+m] -i
(2w)'[(p +k)' —m'] k' —m' ' (107a)

gy. [y. (p, -k) —m]
(2m)'[(P -k)'-m'] k'-m" (107b)

2- (107c)

V (, k) gylx[Y (Pg ) + ]YJI @y/L

+ m
(107d)

There amplitudes are illustrated in Fig. 16. The graph in Fig. 15 can then be written as

E"= (y 0, +m)(r 0, —m)„f,.d'k()", (P„k)V.((„(.k)) (108)

The oversubtracted amplitude, E,'", (Q'), is given by applying the formula (101). We obtain an equation
identical to (105) in structure. Let us consider three regions of k integration. (i} (P, +k)' =O(Q'),
(P, +k)' and k' arbitrary; (ii} (P, -k)' =O(Q'), (P, +k) and k2 arbitrary; and (iii) (P, .+k)2, (P, +k), k' all
on the order of m'.

For region (i) we write

E,"', (()')=fdodd quito, ,' '(tdy'p, +m)„(y 0 -m),

x d k V, P„P„k -V, P„p„k l", P„k + V, P„p„k -V, P„P„ I.", P„k

—[I',(p„k}—r, (p„k)]V,(p„p„k}].„,
for k'(O((Q')"), while we write

(109)
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+:,(0')=f d~,d~, d'q~, " '~," '(y p, +m), .b p, -m),.
d k I', p„k V2 p~, p„k -I', p„k V, p„p„k

—[I',(P„k)—1,(P„k)]V,(p„P„k)—V, (P„P„k)[I',(P„k)—I', (P„k)])„, (110)

for k2&O((Q')"). In each case the terms in the square brackets cancel out, and the result is at least of
order 1/(Q')" down from the unsubtracted amplitude. Region (ii) works exactly as region (i).

Region (iii) is the region where k, =O(1/Q), k =O(1/Q) with O'=O(m'). We handle this region simply by
observing that the k contour can always be distorted out of the entire region. For example, the term of the
form

—) d'kr, (P„k)V,(j„j„k)

can be written as

dk+dk d'kJL

[2k,k -k'-m'+ic][2k, (P, +k )-k'+p, '-m'+is][-2k (p,, +k.)-k'-m'+i&]'~ ~ ~

P) -p2-k

k

P2

P)

(a)

p& +k

(b}

Pg

where X is a polynomial in P„P„k. The poles in
the I/(k'+is) term are not located near the origin
in the k„k plane for k„k smal. l. Thus we may
distort k, into the upper half-plane and k into
the lower half-plane and move completely out of
region (iii). Again we have found E,',",,(Q') down

by at least a power of 1/Q from E...(Q').
Finally, let us comment on these three ex.-

amples, the graphs of Figs. 12, 13, and 15, re-
spectively. For the graphs of Figs. 13 and 15 the
region where (P, +k)' =O((Q')~2), (P, +k)'
=O((Q')''), k' =O(m') is the wee-parton region'8
for gluon exchange. We note that the oversub-
traction scheme works graph by graph, though
for purposes of gauge invariance it is useful to
consider Figs. 13 and 15 together. For the gen-
eralized wilson expansion, the first term on the
right-hand side of Eq. (101), it is necessary to

keep the graphs corresponding to Figs. 13 and 15
together, otherwise the cut vertices do not appear
in gauge-covariant combinations. For the graph
of Fig. 15 the region where (P, +k)2, (P, +k)', and
k' are all of order m' is a softer region than the
wee-parton regio~, and it does not contribute at
all, graph by graph. The wee-parton region al.so
does not contribute a net result when all graphs
are summed to a given order. This will be dis-
cussed further in the next part of this section.

C. The correctness of the expansion

In this section we shall expand on and try to
elucidate a number of the arguments and rules
given in parts A and 8 of this section. We shall
also give a heuristic argument as to why the
second term on the right-hand side of Eq. (101)
is small by a power of 1/Q compared to the first
term. (In order to present this argument in its
most precise form, both for single-particle in-
clusive production in e'e collisions and in the
various multiparticle generalizations, it is nec-
essary to extend the idea of a complete forest
given by Zimmermann. 26 This has been done but
the complexity of the technical details make it
more appropriate for a separate paper. )

P2 q p2+k

k

P) +k P1 q P2

P2

(c} (d)
FIG. 14. (a) I'j(Pg, k), (b) I'2(P2 &) (c) &2(~1 ~2

(d) &&V&,P2. ~)

P)

FIG. 15. A second-order radiative correction to the
Drell- Yan process.
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P P+k p-k p

Pp P) Pp

p+k q Pz "

(~) (a)
FIG 16 (R) Pf (Pg, k ), (b) I'2(P2, k), (~) &2(Pi sP2& ~ )&

(~) &g(P& P2 &)-

1. The problem of the ~ee purtons

The question of the generality of the Drell-Yan
formula, even in a cutoff or soft field theory
version of the parton models, has been a topic

much discussion i.n the past '8' ""The
process e'+e -h(p, )+h(p, )+X is in many re-
spects similar to p.-pair production in hadron-
hadron collisions though the interpretation of the
cancellation of wee gtuons is more direct in the
e' —e case. Firstly, we shall call gluons having
k, . k &&m' soft gluons rather than wee gt.uons.
As we have already seen in the example of part B

of this section, this region, though potentially
dangerous, does not contribute graph by graph in
perturbation theory. The contour distortion argu-
nient given in the last section is almost trivially
generalized to an arbitrary graph as it only makes
use of the ie prescription. (It should be noted that
such soft photons can never cross a cut in a graph
and so all relevant propagators have either a +i&
or all relevant propagators have a -ic.)

Now, as we have seen in part B of this section
and as we shall. see further in Sec. III C 2, Eq.
(101) does not require any special cancellation
among wee partons between different graphs.
However, the singular function Z, ~, (Q') does not

- obey a Cal. Ian-Symanzik equation until such a can-
cellation occurs. This peculiar situation comes
about because the renormalized cut vertex shown
in Figs. 17(a) and 17(b) is' finite for each graph
separately. However, the unrenormat. ized cut
vertex has cancelling dk /k integrals between
the graph in Fig. 17(a) and the one in Fig. 17(b).
[See Eq. (30) and (31) of Ref. 1.] This means that
the soft-mass insertion does not lower the di-
mension appropriately unless the two graphs are
considered together. The cancellation of the k
divergence between the graphs 17(a) and 17(b) is
in fact an example of the cancellation of wee
gtuons between different graphs.

Let us examine the above cancellation a little
more closely. The graphs corresponding to Figs.
17(a) and 17(b) have the expression,

(2m)' & (p+k)'-m'+is f . k k'-m'+is k

It is straightforward to see that I'",(p) —1"",(p) has no difficulties in the integration region around k =0.
The same is true for a soft-mass insertion on the fermion line. To do a soft-mass insertion on the photon
line it is convenient to eall the photon mass p, and to consider 8/8„2. I'",(p), where now we would like not to
have to perform any subtractions. The graph with a photon mass insertion is, however, ambiguous at
present. We can make it precisely by adopting the following definition for the unrenormalized integral:

d k
y- [y ' (p+k)+ m] y- i p-

(2v)' (p+k)'-m'+i ~ e k'- p, '+is k -ie

g' d, y [y ~ (P+k)+m]y i (P+k)
(2v}4 c (P+k)' —m' O'- P,

' k

where C indicates a small counterclockwise contour in the k plane enclosing only the k =(k'+g')/2k.
pole. The above definition does not change the renormalized vertex functions and gives results for mass-
inserted graphs equivalent to dimensional regularization in transverse variables. We may write the
above as

g( )
g 4 y [y'(p+k)+m]y i p

(2s)' c. (p+k)'-m'+is k' —y,
' k

g' d'ky [y (p+k)+m]y i 1
[( ), ,

] ( )(2x)' c [(p+k)'-m'] k'- p,
' k
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Then, so long as co„~, are not near 1

j d'q, (p„p„q,k) = J d'q3R, (p„p„q,k)
(113)

{a )
(b)

FIG. 17. Particular cuts of a cut vertex.

where the contour C' is on the real axis except
for small detours helot the singularities in

k at k =0 and at k =(k'+ p.')/2k, . Now mass
insertions in either fermion lines or photon lines ren-
der 1", convergent while the renormalized vertex
function is unchanged. The contour C'makesthe can-
cellation of wee partons more apparent. The
above argument is easily extended to higher-order
graphs.

Let us now consider the question of wee partons
in the process e'+e -k(P, )+k(P, )+&. Consider
the two terms shown in Figs. 18(a) and 18(b). We
suppose k /P, « 1 and k, /P„«1. The minus in

the figures means that one end of the photon ends
on a y in a region of the graph where the minus
component of the momentum is on the order of

P, . At the other end of the photon line there is a
y, ending on a line having plus component of the
momentum on the order of P„. We suppose that
the coordinate system is p, =(E„O,0, -p, ), p,
= (E„O, O, P, ), and q =((Q'+q')", q, 0). We further
suppose that an integral over d'q has been done.
(If q' is of order Q', this integral is not neces-
sary. ) v, and m, can either be fixed away from 1
or moments can be taken. Call the contribution
due to Fig. 18(a)

E,(Q', &u„e,)
1

= —j' . . ..Ãi, (p„p„q,k)d'q,

I et us outline how (113) can be seen. Consider
the terms shown in Fig. 19. Using the Ward
identity the terms shown in Fig. 19 can be written
as shown in Fig. 20. Now the terms in Figs.
20(a) and 20(b) do not immediately give the result
(113)because the momentum labellings are not
the same on the graphs. Consider the term shown
in Fig. 20(b). We may change q into q+k since
there is a d'q in (113). Then the transverse-mo-
mentum labellings are the same in both 20(a) and
20(b). We may let 1 l —k in the right-hand
part of the graph in Fig. 20(b) without changing
the left-hand part of the graph because P is
large and cu, is not near 1. Now the momentum
labellings are the same in Figs. 20(a) and 20(b)
except for the + component differing by a k, on
the right-hand side of the graph. However, so
long as (d, is not near 1, the k, momentum is
negl. igible in the right-hand part of the graph
end can be dropped. Thus for the decomposition
shown in Fig. 19 we obtain (113). (113) can
similarly be obtained for the other classes of
graphs. We can now combine (111)and (112) into
a single term with the k contour C' as described
in our previous discussion of the cut vertex.

For our purposes the precise meaning of the
cancellation of wee partons is that soft-mass in-
sertions lower the dimensions of graphs appro-
priately. The dangerous situation is a mass in-
sertion in a photon line connecting opposite-
moving fermion lines which are not too far off
mass shell. The contour distortion just exhibited
is what allows this photon to act much as if it
were in the Euclidean region.

and the contribution from the term in Fig. 18(b)

E~(Q, (d&, (d2)

4
—2mb(k' —p. ')3II,(p„p„q,k)d'q . (112)

2. The smallness ofF&I 02 (Q )

We shall now present a heuristic argument as to
why E,",', (Q') is small compared to E...(Q'). For
a really proper treatment of this problem one
should choose a particular momentum flow, de-
fine a set of complete forests with respect to that

Pp
Pp

{a)
(b)

FIG. 18. {a) An uncut wee-photon exchange. (b) A
cut wee-photon exchange.

Pl I+k q-
q

(a) (b)
FIG. 19. (a) A particular decomposition of Fig. 18(a).

{b) A particular decomposition of Fig. 18(b).



20 HIGH-ENERGY PREDICTIONS IN QUANTUM CHROMODYNAMICS 141

k -is

+II Q- P

Pp terpretation one usually has in a BPHZ subtrac-
tion scheme. The addition of the ideas of com-
plete forests and a power-counting theorem make
the above heuristic arguments rigorous. Complete
forests can be defined for the processes of this

paper, but a rigorous power-counting theorem has
not yet been devel. oped.

Pp

IV. RELATION OF CUT VERTICES TO THE
PARTON MODEL

I+k q-
P2

FIG. 20. (a) An evaluation of Fig. 19(a) from the
%ard identity. (b) An evaluation of Fig. 19(b) from
the Nard identity.

multiplied by renormalized cut vertices, where
v' is given by (75) as a part of t'V'. It is this
term which exactly cancels the term where the
momentum flows through r but not through ~,
and ~2.

The breakups shown in Figs. 9-11 correspond
to the momentum q flowing through the 7 portions
of these graphs but not through the ~, and ~, parts.
The subtractions indicated in the E,",g, part of

Eq. (101) subtract these momentum flows off also.
Thus no matter what route the large momentum q
chooses to flow, the subtraction in (101) deletes
that particular route.

The above description is, of course, the in-

flow, and show that the subtractions take away
the dominant term. However, it is possible to
understand directly from (101) that the subtrac-
tions do indeed remove the dominant power.

We begin by considering the. particular breakup,
of a graph contributing to F...,(Q'), shown in Fig.
7. We now interpret this graph as a particul. ar
momentum flow in which the large momentum q
flows through 7', but not through X, and ~,. This
means that k, is parallel to P„and k, is parallel
to P,. If the large momentum flows through v

then v depends on k, q, k, q, and k, k„but not
on k, ' and k2'. Thus the operator t' does not alter
the values of the invariant ampl. itudes when the
l.arge momentum fl.ows through v'. The subtrac-
tion indicated in Eq. (75) further picks out only

the y Sy, part of the tensor structure of V'.
However, this is the dominant tensor structure
after the traces are taken with y P, and y p, .
In Eg. (101) there occurs in F,",',,(Q') a term of
the form

2

-BQ' f d'qdtq, dtq,
+(g

In this section we shall. discuss the relationship
between cut vertices and the parton model. We
shall do this only for deeply inelastic el.ectron
scattering. The discussion would go pretty much
the same for all spacelike vertices. The inter-
pretation of timelike cut vertices in terms of
parton decay distributions will not be discussed,
since even in the naive parton model the physical
meaning of a parton decay distribution is not so
clear and appealing as for parton distributions
inside a hadron.

A parton-model description of deeply inel. astic
electron scattering gives, for example,

vW, (x, Q') =F,(x)

=x 9 Qx +Qx

+-,' [d(x)+d(x)'+s(x)+s(x)]J,

where x =Q'/2mv and Q' is assumed large. u(x)
is the number density for uP quarks having z
component of the momentum equal. to xP, where
the momentum of the proton is P" =(E~, O, O, P).
In the context of the naive parton model this in-
terpretation is correct so long as xP && 1.

In terms of cut vertices

t 1 4

pW x dx= C~, i

0

where the C, are given by Eqs. (3)-(6). In the
naive parton model the i =1 term, the gluon
contribution, does not exist and the E ' are
independent of Q' since scaling is exact. In this
model the values of the E ' are

E,' =-, , E, = —, , and E, =1/(3 v3).
Thus

vW, x'dx = v'„,

u u x & g d d s s=
9 (~q+2 + ddt/+ 9 (~qq2 + qq2 + dq2 +Vq„2) .

This means that u(x) =v "(x) etc. , where
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, v'(x) = —ltdvx 'v', .
2w~

The cut vertices are then moments of the quark
number densities. In a theory with no ultraviolet
divergences other than in the self-mass, the
number density is also given in terms of the
Fock-space wave function of the proton, ~l[)~), by

~(~)= Jd'&~(* &, /P, )(-t);I()farl(;),

where p is along the a direction and xp, is large.
Flavor, color, and spin indices have been sup-
pressed in the above formula.

The naive parton model cannot be a realistic
description since all lnq' terms have been neglect-
ed. I et us go back and write our previous equa-
tion as

r
1 7

vW, x'dx = P v„,E„,(Q'),
0

where the notation is such that e = j., 2, 3, 4, 5, 6, 7
means gluons, u, d, s, u, d, s, respectively. The
E, obey

& = Q Q'. Jl
—v'(x),

0 X

dxv'(x) .
0

Here Q„=—„Q~=-—„~~ ~, and Q„=Q~ = —„~~ ~ .8 8 j.

However, we can see no reason, for example,
for insisting that v'(x) is a number density for
strange quarks inside a hadron. v'(x) is a re-
normalization-dependent quantity, and we cannot
even see any reason why it must be positive.
Thus in @CD the parton number density distribu-
tion may very well not have all the attributes one
usuall. y assumes for a number density.
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E. (Q') = Pr.-'E.'(Q'),
Bg

which can be solved as

E0(Q') =&so (Q', Qo')Ee (Qo'ig Q' Q.'

where
Q2 I2

)('(()', (),*) = o exp (-,. r.[g(q'*, Q,*)[).
Q 2

In the above 0 is a Q'-ordered integral and

g(Q', Q,') is the usual running coupling constant
normalized so that g(QO', Qo') =g. Then

1

vW, x'dx = p v„2ft"'.(Q', Q,~)
0 NR

APPENDIX A

(2x)'2E„, = (2x)'2E, ,
do dQ(k), do

where the dQ(k)/4v integral averages the cross
section over electron angles in the center-of-
mass system of the e'e .

Write

(Al)

In- this appendix we shall write the solution of
the Callan-Symanzik equation in a convenient
SU(3) basis for comparison with experimentally
measured quantities. If d&/d'P is the cross sec-
tion for e'+ e - hadron(P)+ anything, define

Often in the literature
do'

(2'�)2E
dg (A2)

x 'do g v, R ~ (Q', Qo') =v (x, Q')
27ri

is taken to be a Q'-dependent parton number den-
sity. We shall continue to discuss v (x)
= (]/2') fx 'dov, , th.ough our co'mments would

apply equally to v (x, Q').
The question is whether, after renormalization,

it still makes sense to view v'(x) as a number
density. It is true that the electric charge, the
baryon number, and momentum sum rules s.till
can be maintained in the simpl. e form

(=+Q.f —„~'( ),
a

where

d4 d4~d4 cqy+cp(z g)

x g &2 (4(x)i.(y) P'(4 (z)i.(o))&

(2[[)'2E~ (o' 'd(u =, , Q v, E, ,f

dic
, , 8p2(P

dp (AS)

where the a sum goes over g, u, d, s, u, 2, s. It is
conveneint to change to an SU(3) basis. Define

and the external propagators have been amputated.
Then
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8+ = Va &~paas

V~ = Ve 2~paar
a=u g4 g8

Vy = Vg 2~3 aa y

uo ~ ~

Ve = V~ &A.s aa,
a uoo0

(A4)

&'(Q', g) =Rjj(Q,', Q')&'(Q, ', g(Q', Q,'))
R has the property that R (Q,', Q')
=R'(Q,', Q, ')R'(Q„', Q'). If g(Q„', Q') is small,
one can use the lowest-order calculation of y for
evaluating R(Q, ', Q'). Defining

v', =v~jj', (Q,', Q,'), (A10)

one has

where g(QO', Q,') =g and the 0 denotes an ordered
Q' integral. 3' We shall also use the notation

Uo ~o 2~3 a
a=u" ~

J (2n)'2Z~, &u' 'd(u

V — 50 2A8aa
a u4 ~ 0

The relationship between the bases is

v' —-'v C '
2

for i =g, S, 03, 08,S,03, 08. C C = 2 and

(A5)

(As)

In the nonsinglet sector
I '

R'(Q ' Q')=5 [ln(Q'/Q ')] "'
where

(A11)

(Q2)q Q vfjR jj (Qq, Q )E (r(Qo, g(Q ~ Qo ) )
j,i

g S

g &2 0

O~ 08

0 0

8 03

0 0 0

SC,(R }
22c,(c) —sr(R)

d 0 v'2/3 -1 -I /v 3 0

C ' =s 0 v'2/3 0 -2/v3 0

0 0

0 0

0 00

0 0 0

0 0 0

v'2/3 1 I /PS

v'2/3 -1 1/v5

v'2/3 0 -2/PS

0 42/3 1 1/vS 0 0 0

+4 2
(1+1)(I+a'—1) o —1) ' (A12)

2F 2E 3
— (d 44)

For differences of cross sections it is possib1. e
to eliminate the singlet pieces. For example,

The pecular normalization of C is due to the re-
quirement that trodi~& ——25;&.

(AS) can be written as

327t' Q
(

03
9(Q')'

where 8, ' refers
have used

(A13)

to m' matrix elements and we

or, in the new basis,
I

i ijD&e =ye'Eo ~

where

(As)

i

where E,'= &E, C '. The ballan-Symanzik equation
is

Dgo Qo ga

and

1
v'((u) =2, . (u 'vga

L, ~ g oo
(A14)

4'(Q, ', g(Q', Q,'))= —,
'

~

from lowest-order perturbation theory with the
v', normalized so that they are equal to the num-
ber of colors for elementary external particles.

An a}ternative form to (A10) is to define

jj RR'ClxjCR'j/2

Then

v'(&u, Q')=2 .Jt u 'g v, R,', (Qo', Q').
2m', q i„

E,'(Q', g) = 0 exp —
JI

—y[g(x, Q,')]
Q ' j

X Z'.(Q,', g(Q', Q,')), (A9) Then

I+i
&u 'v,'(Q ).

2xg
(A15)
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Sw
(2w)'2E&, =, „,g iiN'(&u, Q')E', (A16)

where E =0, E =E =-,' n'( —', )"', E '=E '=-, w, and
E =E '=4m/(3 PS). The form (A16) is closest
to the parton model differing only in that v' has a
Q' dependence. This form depends crucially on

the property of asymptotic freedom while the
form (A10) does not.

APPENDIX B

First we prove a simple theorem.
Theorem: Any rank-two tensor T B which is

made up of x' = (p', p', . .. ,p"q) and satisfies

(i) q T Ii =0 and qiiT ii =0,

(ii) T ii =Tii

can be written as

T r =[Aii(q)] , .ii.T';ii. ,

where

remembering that g B terms do not now exist in
7nB~

Writing

T., = g C'., (84)

such that upon contraction with q, a given C'
B

exactly cancels say C~
B and upon contraction

with qB cancels C~B, where k 0j k 4j because
this is possible only for the special case which
we have already taken care of. This can be
achieved by writing a given term as a sum of
many terms, in case the term cancels with more
than one term.

Now we define a procedure called clipping of
the tensor in minimal. ly current-conserving
tensors (MCC's). Rearrange the terms such
that C~B cancels C2~B when contracted with q~ and
cancels with C'B when contracted with qB.

Now assume that there exists a term E B such
that

[& a(q)] 's'=[g aq 'qn'+g 'giia'q

gau qsq-a ~ -gaii'q~q~']

and T'.B. satisfies

t
~I B' ~ Bri ')I.g~o'guB'ge0 ga'a gBrv gee

gu'i 'gii'~g~&] = 0 ~

(81)

qBC~B qB~0fB ~

3
q Cna=qnKna

(85)

(86)

dna+7 na ~

Then adding K 8 and -K 8, break T 8 into parts
n

Tn8 = Cns+ Cna+ Cns —Kns+ ~ Cng+ Kna
1 2 3

In the above P can be any four-vector; it can
include y's. The fermion indices on y will be
suppressed.

proof: Condition (ii) implies that there are no

&NB» terms in the tensor. Therefore, no term
becomes zero by itself under contraction with

q or qB, but they cancel with some other term.
Therefore,

T„-g„qf,+~~ x',x,f„.

where

Tne = Cns+ Cns+ Cna —Kns

Tna-- ~Cna+Kng ~
a

It is easy to verify that T'
~ and T 8 both now

separately satisfy. current conservation. This
process can be continued until all the pieces
clipped have just four terms. Rewriting

Write (82) as

Taii (geiiq qaqr)f1+ xexBf ij i ~ng Cna+ Cne+ Cna Kna ~
k2 f3 (88)

where

f';z=f;; fori on+1, jWn+1

and

n+1, n+1 =fn+1, n+1 +fj. ~

(g iiq —q qadi)f, satisfies conditions (i) and (ii);
so must Qiy xixpf ij Also (g~iiq q~qiigi is a
special case of the result (81), where T'.ii.
= ~g .r.fi. So, now we only have to prove the
theorem for a tensor T'B which is free of g B

terms. From now on we will drop the prime,

q„C'„8=x"'+/x" q . (BB)

C'„8 cancels C'& when contracted by qs. There-
fore,

Here the C's have been relabeled.
Now let us prove the existence of K' by explicit

construction.
Ci 8=x'„'x gf, where 0, and it', are functions of

the i index. For convenience, we write

f=E/x" qx" q,
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x„x8 I"a3 a2

x 3'gx 2'g

Similarly for C'8 we get

(810)
This completes the first part of the proof.

The condition on T' 8 is obtained by demanding
condition (ii). As [A„e(q)]„e 4([A.e (q)]„e, we
demand

ea kg. kg ~ [& e(q}) s T' e =[&e (q)) s T' s .
Then

C~a+ Cas+ Caf 8
=

I gf)fy g@Q& Q g g~'e g@gy Q g

ja js

Rnyge(q4 q((]fy((4( ~

with
» a

(~" q)(~"'q)W" q)(~" q)
' (812)

Substituting for [A„s(q)]„e from (Bl) and doing
a little algebra one obtains the desired result.
Hence the theorem. E(I. (86) is a direct applica-
tion of this theorem.

Corollary 1. Let T~ey«. . . be any tensor satis-
fying

QaT0tsy ~ ~ ~ 'VBTasy ~ ~ ~ 0 and Tasy ~ ~ ~ Teay ~ ~ ~

Clearly K„'s=g, gs-&qyq, f», &
satisfies require-

ments (85) and (86). Hence, we have proved that
a decomposition like (87) is valid. But

3

Toe g C&gs+ Kggs
4-x

= [~ (q) sl, e, sfye. (

where

Then,

patsy Q& ~ ~ ~ [~ iQ/ass] fx 8 & 0( 8 yQf ~ ~ ~ ~

proof. Introduce another set of 4 vectors R„
i=1, . . . , n. Define R,yR~R„R,) ~ ~ ~ T Syp, p. ..
=T'„e[R]. Now T„'s[R] can be written as

T's[R]=[&'(q} s] s& e [Rl

[~ (q)as]a's'Tuey6 (4
[B(q)us]y((4(, = [Zuy8'eeq4qL g u4gs((qy'qa

—qay qsa q4 q((+Zu4gs&qyq((] Therefore,

x R3yR~R 5~ R6 ) ~ ~ ~ (815)

can be written as

1T'e= —2[& e(q}1 e

»
x~ca&

(x'& q}(x" q)
a, ~2

xat&xa&

(g a o q)((( ~ q}

A3 y4
xf)f &x6i

W" q)(s'4 q)
A4

xfx&x8i

(X" q)(X'4 q)

7 cfSy f) & ~ ~ ~ p~ iQ/ a83 +'8'TOI' B' y « ' ' '

Corollary Z. Let T, ,&,.;,&,.;,z,. . . &„&„
(k„k„k„.. . , k„) be a tensor which satisfies cur-
rent conservation in indices i,j, with respect to a
vector A„ in indices i„j,with respect to a vector
k, and so on. Further suppose T is symmetric
under interchange of i, and j,. Then

T's=[& e(q}) s T"e .
Hence (87) can be written as

Tns [+as(q)]a's' Z Tn's'

=[& s(q}l sT' s .
(813)

~ ~ ~j3' ~ ~ ~ i' gP ' 2

= [~(k }(,~,)(;(„[&(k.)(,(.)(;(;
XTi jl ~ isjf +it js ~ 4 ~ ~ (816)

(816) is an immediate conse(luence of (815) applied
repeatedly. Equation (95) is an application of
(816) where n=3, i,- n, j,-P, i,-y, j,-5.
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