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Hadronic corrections to the annihilation rate of heavy vector mesons to lepton pairs are considered to
leading nontrivial order in gluon exchange and in the quark-confining potential. It is shown that, to an
excellent approximation, the rate is T'(V —I*1") ~(16ma’, /MD)jpo(r = 1/m)f, where M ~2m is the
vector-meson mass and ¢y(r) is the solution of the zeroth-order nonrelativistic quark-antiquark bound-state
problem. This has the effect of reducing the Van Royen-Weisskopf prediction for the rate.

I. THE PROBLEM

An important feature of new-particle spectro-
scopy is the annihilation of heavy-quark-antiquark
(@®@) bound states into lepton pairs and hadrons.
Appelquist and Politzer! have given a plausible
argument that this class of processes may be des-
cribed by decay amplitudes written in a factorized
form when the quark mass m, is sufficiently large,
i.e., in the limit mgy —~~. In a schematic notation
the decay rates for these bound-state decays take
the limiting form

T, = (kinematical factors)|¢y(0)|?
X(annihilation)?, (1.1)

where ¢,(0) =the wave function at the origin for
the zero-order nonrelativistic bound-state problem,
and (amnihilation)2 is extracted from the amplitude
for Q@ annihilation of mass-shell quarks to photons
and/or gluons, computed to lowest order. Equa-
tion (1.1) has formed the basis of a number of
phenomenological analyses, which have been thor-
oughly reviewed.?

In order to apply (1.1) to realistic Q@ systems,
it is important to understand the nature and mag-
nitude of the corrections to (1.1) for finite my. It
has been emphasized many times that the natural
expansion parameter of quantum chromodynamics
(QCD), aj, is not proportional to the average quark
velocity if the average size of the Q@ system ex-
ceeds those distance scales for which QCD per-
turbation theory is valid, which typically might be

7y (2 GeV)™'~0.11. (1.2)

Since the average size of ground-state charmonium
is approximately 0.5 f, and that of ground-state

T approximately 0.25 f, the average velocity of

the quarks in these states is strongly affected by
the quark-confinement mechanism, which compli-
cates the discussion of corrections to (1.1) in ap-
plications to charmonium or T states. There-
fore, corrections to (1.1) even for nonrelativistic
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QQ systems divide into two distinct (phenomeno-
logical) cases depending on the characteristic dis-
tance scale of the bound-state relative to (1.2):

(1) The low-lying @@ bound-state spectroscopy
is dominated by distances 7 <7, in which case
lowest-order radiative corrections are similar to
those of positronium.

(2) The bound-state spectroscopy of the Q@
states is dominated by the quark-confining poten-
tial, in which case nonperturbative effects must
be considered.

Case (2) will require model-dependent considera-
tions, since quark confinement is not a feature that
can be derived from an underlying Lagrangian. As
a result, some ambiguity occurs in the separation
of residual short-distance effects of QCD from
those of the quark-confining mechanism.

It is the purpose of this paper to present the re-
sults of an investigation of the simplest of the
QQ annihilation processes, the annihilation of a
vector meson to lepton pairs for both these cases.
We begin in the next section with a discussion of
the corrections to (1.1) for V—~1*I" in case (1)
when QCD perturbation theory is applicable. In
this case one is tempted to read off this correc-
tion from the analogous one-photon contribution
to the 3S, positronium ground-state energy3~®
(with the vacuum-polarization. correction to the
annihilation-photon propagator omitted). The
difficulty is that in quantum electrodynamics (QED)
the renormalized electron charge is defined at
zero momentum transfer and the electron mass is
an empirically measurable quantity. Because of
the infrared singularifies present in Yang-Mills
theory, one cannot renormalize the gauge coup-
ling constant at zero momentum transfer. Simi-
larly the quark mass must be defined so that it is
also free of infrared singularities. This essential
difference in renormalization conventions between
QCD and QED is significant in that o Ilna correc-
tions to (1.1) may appear in QCD even though no
analogous corrections appear in QED. [The ab-
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sence of O(a lna) effects in QED has been explained
by noting that nonmoving charges cannot radiate in
electrodynamics.’ This argument is not applicable
to QCD, where the charges carry color.] If one
chooses a renormalization mass of O(mQ) in de-
fining ay, then in case (1) a correction of O(a Inay)
appears because of the required invariance of the
physiéal decay rate under changes of the renorm-
alization mass scale. A more detailed discussion
of this issue is presented in Sec. II.

As we argue in Sec. II, the O(a lna,) correction
is due to the gluon and light-quark vacuum-polar-
ization correction to the Coulomb potential (in
Coulomb gauge). If the renormalization mass is
chosen at the typical momentum transfer to the
quarks in the @@ bound state, then the O(a;lnay)
may be absorbed in I¢0(0) | 2 by a redefinition of
the zeroth-order problem to include the vacuum-
polarization corrections in the Coulomb potential.
This course of action is not useful for charmonium
and T spectroscopy, since this will involve dis-
tances for which QCD perturbation theory is not
valid, and for which the (vacuum-polarization-
corrected) Coulomb potential is negligible com-
pared to the confining forces. That is, the radius
of the light quark vacuum-polarization cloud is
Ver0ea ™35 F, which is well outside the domain of
perturbation theory. This means that the results
of Sec. II are not applicable to 3 or T annihilation.
These decays belong to case (2), a situation for
which the vacuum-polarization corrections to the
Coulomb part of the potential probably should not
be included. Rather, screening should be treated
nonperturbatively and associated with the Q@ con-
fining potential.®

Experience with the phenomenology of charmon-
ium and other meson spectroscopy suggests that
the correct zeroth-order problem is obtained from
the potential?

Vir)=-

w|u>

SLt V), (1.3)

where V(7) =the Q@ confining potential (including
the long-distance screening) and a, =the QCD
fine-structure constant renormalized at mass
scale M ~2m. [That is, the strong-coupling con-
stant is normalized so that ay(¢®=-M? =a,, with
m=~M/2, the quark constituent mass.] Notice that
this:residual Coulomb interaction is renormalized
at distances of the order M™!, which is less than
the QCD Bohr radius, for reasons discussed above.
In a sense, this is the major difference between
case (1) and case (2). With this difference in
mind, we consider the corrections to the process
V~U'I" for case (2) in Secs. IIT and IV, using the
basic tool of the bound-state problem, the Bethe-
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Salpeter equation.” Since the portion of the Bethe-
Salpeter kernel describing the confinement of Q@
pairs is infrared singular, we also verify that all
infrared singularities are absorbed into |$y(0) |2
In Sec. IV we obtain the infrared-finite result,

L(V-1'T)

16 160, /A
————~"A‘; €9 | ol 0>12[1 = z(m—z) ]

(1.4)
to lowest order in o, and A, where

6x =~ -mV,(0) .
Further, we show that
(ha) P
(1.52)

bo () > o (0{1 =2 Gaym) v = [A = frm
+0(r3)}
~¢o(0)e™ exp [-4(za,m)r]
+0(r) + 0(ay’) . (1.5b)

Equation (1.4) may therefore be rewritten
1 2

¢0("’=;[>,

x[1-@/m-1Eay+---]

_16ma’ey? _1\P
- M2 ¢0 ‘r"'m

o 167aley?
T(V=17) ~ =y

x[1-(0.2732)(F ) + - -+ ] (1.6)

to the accuracy of our calculation. In going from
(1.4) to (1.6) one has made a selective (nonper-
turbative) summation of the effects of quark con-
finement, and included them in ¢(» =1/m), so
that, in principle, (1.6) contains more information
than perturbation theory. Physically (1.6) sug-
gests that Q@ annihilation takes place at an aver-
age distance of »=~1/m, rather than at »=0 (cf.
Appendix B).

If »(1.6) correctly sums up the dominant effects
of quark confinement, then the Van Royen-Weiss-
kopf formula® may possibly be used even when
perturbation theory is not valid if one makes the
replacement [¢¢(0)|2~ |p)(r=1/m)|?. Perhaps
(1.6) has some degree of validity for lighter
quarks as well. A similar correction for the an-
nihilation processes of Q@ —gluons is also ex-
pected. It seems clear that (1.6) is preferable to
(1.4) in applications to practical problems, since
the correction in (1.4) is large even for a;=~0.2
and (v/c)*~}. By contrast, the radiative correc-
tions have shifted the effective annihilation radius
to » ~1/m, with a small residual correction.

A more detailed discussion of these problems,
and a derivation of results is presented in Secs.
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II to IV. Certain technical details are given in
Appendices.

II. QCD PERTURBATION THEORY

Suppose that one is dealing with a hypothetical
QQ bound state with the mass m of the quark @
sufficiently large so that the low-lying bound-state
spectrum is determined from one-gluon exchange.
The zeroth-order bound-state problem for these
low-lying states is given, to a good approximation,
by the solution to the Schrddinger equation, with
quark confinement neglected. Then .

2
(=5 ) en =-con, (2.1)

m 3

where the QCD fine-structure constant is defined
at an arbitrary mass scale . [Highly excited
states will be sensitive to the quark-confining po-
tential, and one must use (1.3) for those bound
states.] The quark mass in (2.1) is the constituent
quark mass defined at a mass scale such that?

2m=M+¢€, (2.2)

where M is the ground-state vector-meson mass
and

e=3(}a,)m. (2.3)

In other words, in every respect Egs. (2.1)—(2.3)
are identical to the analogous positronium problem,
except that the gauge coupling is defined at the
arbitrary mass scale u. .

The lowest-order formula for the decay width
V-1l for the °S; ground state is

1670 %eq?

TV -17) ="

[6.0;5a,)]%, (2.4)
where ¢,(7;a,) is the solution to (2.1) with the
gauge coupling renormalized at §°= —p?, as dis-
cussed above. As is well known,

3
| #,(05,) |2=}T—[1§—<§au>] : (2.5)

Since the binding energy is O(auzm), to leading
order in «,, .

I"(V-»l‘l'):-é—(ozzeqzm)(%czu)3 . (2.6)

The trouble with (2.6) is that the decay rate is not
invariant to changes in the renormalization mass
1 and higher-order corrections must be consid-
ered to ensure renormalization-group invariance
of the experimental rate. Recall, however, that
the solution to (2.1) gives :

(0;5a,) ~ ()% ?, 2.7

which is nonperturbative in character and arises
from the infinite number of Coulomb exchanges

between the @@ pair. We therefore anticipate
that if we are to obtain the renormalization-group
invariance of the decay rate, we must suitably
modify the zeroth-order problem, so as to guaran-
tee that [qbc(O) | % is renormalization-group invar-
iant to the appropriate order in perturbation
theory. [We are tacitly assuming that the quark
mass is already renormalized at i¢¢s characteris-
tic mass scale by (2.2). If we had chosen a dif-
ferent mass scale for the quark mass, then we
would also have to consider the renormalization-
group properties of the quark mass.’ Thus, by
our choice of quark mass as the constituent mass
we presumably have avoided this particular issue.]

We now discuss how one may understand the
renormalization-group invariance of I'(V-~1'I") to
one-loop order. The static Hamiltonian in Cou-
lomb gauge for the Q-@ interactions has been ob-
tained in Yang-Mills theory, to one-loop accuracy,
from calculation of all fourth-order diagrams.
For color-singlet Q@ states the static interaction
Hamiltonian in momentum space is!®

Hype = +0( l.‘il)[l + 0@/ m?
+0((/m?) Ing*/m*)], (2.8)

where, for SU(3) of color
oo _aan@uf; L, (22 lm?)
U(1Q|)——§(4W)Tq‘§‘"[1—ﬂau<3—ll)ln(uz )

(2.9)

[One may renormalization-group “improve” (2.9),
but this is not needed for our discussion.] In the
above, n=number of light quarks in the theory.
Only those quarks whose vacuum-polarization
cloud is larger than the average-size of the Q@
system need be included in (2.9). Heavy-quark
vacuum polarization and terms of O(q%/m?) in (2.8)
will give corrections of O(a,% or O(a,’Ina,) to
(2.6). Here we focus on a possible O(a, Ina,)
correction to the Van Royen—-Weisskopf formula.

Let us modify the zero-order problem to include
the vacuum-polarization-corrected Coulomb po-
tential given by (2.9). Then

2
[-—;ﬂ—+ v(r)]cbo(r):—s%(r), (2.10)

where v(7) is the Fourier transform of (2.9). We
now argue that the rate for V—7'I" will be renorm-
alization-group invariant, to one-loop level, with
this starting point. Suppose that the average mo-
mentum flowing through the Coulomb propagator

is y, where
ygmta,)+--- (2.11)

to leading order. Then
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wlah =zt (ga,>[1-;—(%’i-n)ayln<lfy1?{2 )]
(2.12)

where

oz,:oz“'[ -1‘11—(25"—* 11)01“111(21/—2—) + .. ] (2.13)

is the gauge-coupling renormalized at §*= -y. The
important point is that the term (1/|§]) In(|§*| /7"
does not contribute to the decay rate in O(oz, Ina,)
because of the special choice of renormalization
mass at u=1v. Therefore, one can now solve the
Coulomb problem

2
(—-Y-—4— > )qbc(r;ay) =—e¢(r;a,) (2.14)

to obtain the prediction

DV~ 1'T) = bateqim(ba) [1+ Ola) + - - -]
(2.15)

Equivalently,

(V=-I'T) =3a%e, ' mta,)’

x[l - 3(117) (%L— 11> a, 1n(—Z—)+ ()(au)] i
: (2.16)

Equations (2.15) and (2.16) are equivalent renorm-
alization-group-invariant predictions to one-loop
order.!

There are two different choices of renormaliza-
tion mass p which are of special interest. If one
chooses u =1+, then the prediction for the decay
rate is given by (2.15) when effects of confinement
are negligible. It is also popular to consider re-
normalization at mass scale y =M, in which case

O(V=-IT) =3aeg*mEa,)’

(- 11) e nta ™ + 0.
’ (2.17)

(Note the sign of the correction.) It is also possi-
‘ble to renormalization-group “improve” (2.16) or
(2.17) by considering the renormalization-group
improvement of (2.12), which is equivalent to con-
sidering the one-particle irreducible (1PI) vacuum
polarization-corrected Coulomb propagation.

To recapitulate, one may state the result of this
section more generally. If the renormalization
mass for the Coulomb exchange is chosen to be
1~ O(am), then the prediction for the leptonic. de-
cay rate will be of the form (2.15). If the re-
normalization mass is chosen so that u~ O(m),
then an O(amlnam) correction will be present, as

in (2.17). It should be reemphasized that (2.16) or
(2.17) are not applicable to presently available

Q@ systems, since their validity depends on the
premise that the average size of the @@ system

is 7~ (am)"!, and sufficiently short-ranged to be in
the domain of validity of perturbation theory. This
excludes the ¥ and T problems.

A similar discussion applies to the annihilation
of a bound Q@ state —# gluons. The only subtlety
is that although the typical momentum transfer to
the Coulomb gluon is O(am), the typical momen-
tum transfer to an aunihilation gluon is O(m).
Therefore, for example, a one-loop renormaliza-
tion-group-invariant prediction for the annihila-
tion (@) bound state - 2 gluons is given by

I'(QQ@ ~ 2 gluons) = (const)yma,’a, (2.18)

to leading-order, when Eqgs. (2.10)-(2.12) give an
accurate approximation to the bound-state problem,
with the factorization of (2.15) and (2.18) achieved
by the separation of the two distinct mass scales.
All terms of O(« ln€) have thus been absorbed into
the bound-state wave function by an appropriate
choice of zeroth-order problem. (Recall em ~»?).
The conjecture of Appelquist and Politzer,! that
the factorized form for I'(V —7*7") and T(Q®
-gluons) holds even when the confining potential
is significant, as described schematically by (1.1),
requires further analysis.

The remainder of this paper is devoted to a dis-
cussion of the corrections to the Van Royen-Weiss-
kopf formula® when confinement is important. As
discussed in Sec. I, we must begin with the appro-
priate zeroth-order problem. Consider the po-
tential

V(r)=—-§—9‘;l+ V), (2.19)

with the residual one-gluon exchange given with
the gauge-coupling normalized at u =M, and with
all vacuum polarization effects already absorbed
in the vacuum polarization corrected confining
potential Vs(1f).6 We do not include vacuum-po-
larization corrections to the Coulomb interaction
to avoid possible double counting. Adopting this
point of view, corrections of O(aMlnon) do not
appear in the phenomenological situation. Some
authors!? do permit vacuum-polarization correc-
tions to the Coulomb interaction by considering
(@) /3% with @@ a running coupling constant.
In this case, the O(a,, Ina,) corrections of (2.17)
are required, but our discussion in Sec. I and II
suggests that one should %ot use a running coup-
ling constant in (2.19)'3 if the confining potential
includes the screening due to light quarks.®
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III. FORMULATION OF PHENOMENOLOGICAL PROBLEM

The vector-meson decay into lepton pairs is’
obtained from the one-photon annihilation contri-
bution to the vector-meson energy shift by con-
sidering the decay to a virtual photon,

T(V =% =-2Im(AE),,, (3.1)

with the photon vacuum-polarization contribution
to (AE), omitted. The energy shift (AE),, can be
calculated by a bound-state formalism,’ such as
the Bethe-Salpeter equation, evaluated in a per-
turbation expansion around the nonrelativistic

limit. In this section we follow the strategy of
1

“Karplus-Klein® in their evaluation of (AE),, for

positronium, but modify the Bethe-Salpeter kernel
to account for the hypothetical quark confinement.
Since these bound-state methods are now fairly
standard, we will only emphasize those features
which distinguish nonrelativistic @@ annihilation
from the analogous pcsitronium case. Our pre-
sentation will be semiphenomenological, since
assumptions concerning that part of the effective
kernel giving rise to quark confinement will be
required. .

The two-particle color-singlet @,§, Green’s
function G(xy,x,;x/,x,) satisfies the Bethe-Salpeter
equation

iy -8 =m)(iy -8 = m)y"G (xy, 2556, %) ‘./ dtxyd 3, K (21,2355, %0) G (s 050 20) = 04wy = () 84y — %), (3.2)

. where the superscript () denotes the transposed
operator. In our work K(x,,x,;x3,%,) is the effec-
tive color-singlet Q@ kernel. A discussion of the
definition of the quark masses m; and m, in (3.2)
is required since they cannot be directly mea-
sured. In this work mz; and m, are renormalized
constituent quark masses defined at the mass
scale p, such that®

m () +my(p) =M +e¢, (3.3)

where M is the ground-state vector-meson mass
and € is the Coulomb binding energy,

2
<=%7§%§#£%385<§ M). (3.4)
Therefore, for the Q@ system (3.3) implies
2m(p) =M+ m(p(a,)?, (3.5)
so that
m(p) =M1 - 3G, (3.62)
~iM1+1(Ga,)’, (3.6b)

where (3.6b) is valid for sufficiently small «,.
Notice that the QCD coupling constant @, is de-
fined at mass scale M, while the constituent mass
m(u) is defined at mass scale pu.

However, for heavy quarks, ¢/M <1 and

w=M (3.7)

as emphasized by Georgi and Politzer.® Our de-
finition of constituent mass includes the lowest-
order “Coulomb” binding energy in (3.3), which
will allow us to make direct use of results from
electrodynamics, avoiding some lengthy calcula-
tions. ‘
Since we are focusing on the nonrelativistic QQ
problem, we assume that the effective color-
singlet kernel is approximately local, so that

T
K(x,%0;%35,%4) = 6(xy = x5)6(oy — x) K1(x; —%5) . (3.8)

Our goal is to calculate (3.1) in perturbation
theory, keeping the corrections to lowest non-
trivial order in a, and the average velocity of the
quarks, considered as distinct expansion parame-
ters. To begin this perturbation expansion one
must specify the zeroth-order problem which
forms the basis of the perturbative expansion.
The zeroth-order wave functions in the @@ cen-
ter of mass is defined to be the ground-state solu-
tion of the Schrodinger equation

2
<— %"“ V(’V))(Po(’i’) =—€¢y(7), (3.9
v where
4
Vi) = -3 S+ V), (3.10)

with V,(») the Q@ confining potential. In (3.9) the
energy scale is chosen so that the energy eigen-
value for the ground state is

1 4 2
€—Z7}’I(§(XM)

» exactly as in Eq. (3.4). There is no contradiction

between (3.9), (3.10), and (3.4) since one can al-
ways redefine the confining potential so that

V,(¥) = Vy(#) + constant .

In other words, V,(0) is chosen so that the binding
energy computed from (3.9) coincides with (3.4),
which means that the absolute energy scale of
(3.9) and (3.10) is adjusted to coincide with that
of (2.3) and (3.4) by adding a suitable constant to
V(r). [We also shall require V,(#) to be finite as
1’~0.] The detailed » dependence of Vs(r) will
play no role in our considerations, and need not
be specified further.

One can develop the zeroth-order problem in
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terms of the Bethe-Salpeter equation as well.
For the nonrelativistic system we further ap-
proximate K,(x) by the instantaneous kernel K
where we divide the one-particle kernel into an
instantaneous part and a correction GKI(x). That
is,

K (%) = 6(x")K (T) + 6K (%) . (3.11)

Since considerable circumstantial evidence exists
to suggest that the confining potential transforms
as a Lorentz scalar,'! we take

K () =i[(r) ((vo) o=,y /7) + V)], (3.12)

which relates the instantaneous kernel to V()
defined in (3.10). The perturbative expansion for
(3.1) will be computed in terms of 6K,(x), defined
by Egs. (3.8), (3.10)-(3.12). Therefore, 6K, in-
cludes both the retardation and transverse gluon
contributions to the lowest-order result. Since
the treatment of the effective confinement portion
of the kernel as a relativistic propagating local
interaction leads to problems with unitarity, we
do not have a clear idea of the retardation effect
of confinement. Such technical complications
prevent us from including that correction in this
discussion, so that we only feel safe in discussing
the static effects of confinement, and we omit the
retardation correction to confinement in our work.
As is evident from (3.1)

T(V—-1'l") = (kinematical factbrs)(AE)h (3.13)

computed to lowest order in a'=e?/47. Following
Karplus and Klein® we may write

(3B) = 2 {Tx[FO)n,CI{Tr[C v (O)]},
(3.14)

where C is the charge-conjugation matrix and ¥
is the matrix

Y5 (0) =9(0) X a5 » (3.15)

with x4 a (4X4) constant spin matrix. Equations
(3.14) and (3.15) define ¥(0), with

9(0) = po(0)(1+ -+ +), (3.16)

where ¢,(0) is as in (3.9). If the effects of con-
finement and vacuum polarization are neglected,
then
8a

9(0) = ¢,(0) (1 - ) : (3.17)
where ¢.(0) is the solution of the Coulomb problem
and not (3.9). We shall compute (0) in the next
section, keeping the leading effects of quark con-
finement in addition to the correction exhibited
in (3.17). From this result we will present the
leptonic decay width of the vector mesons as the
corrected Van Royen-Weisskopf formula

2, 2 2
r(v=ee) =100 WO (3.18)

where e, is the quark charge.

IV. LOWEST-ORDER CORRECTION

Following Karplus and Klein,® the one-photon annihilation contribution to the 351 Q@ mass is

(BE) = -i(Z)" [ d'xd'ye, (DK, (x,) 6, (3)

—i(Z1)"f d'xd'yd*zd*we (%) [0K(x,2)S,(2,w) K, (w,) + K, (x,2)S,(2,0) 0K (1, 2)] b, (y) , (4.1)

where K, =one-photon annihilation kernel, 8K, is as in (3.11),

[Sc(z’w)]-l = (17 M 83 - m)i”(l'}/ * aw - m)Z’

$o(¥) = 9(F) Xag » (4.2)

with ¢,(§) obtained from (3.9), and .4 as in (3.15), and (Z,)!/? the vertex renormalization, which must can-
cel the ultraviolet divergence of the vertex. (Of course the one-gluon part of 6K, must be regulated in a
gauge-invariant fashion.) As Karplus and Klein show,® to the accuracy of our calculation,

bp () zz‘f d*yS,(x,9) K (F)6(v°) ¢ (F) .

(4.3)
In fact, we require only .
) 1 . d’q
x=0)=3 Kp(-@-1))¢,@), .
@ ( ) f(211)4 [y -GP-p) —m,]D - (AP +py) — m, _/(217)3 =@ -1 (@) (4.4)
where we have reexpressed (4.3) in momentum space, with P?>=M? = (vector-meson mass)?, and
£ d4k ikex T2
Kl(r)G(t) :-/(Z_’n')Te KF(—k) . (4.5)
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Specializing to m,;=m,=m, one extracts (0) from (3.1) with the aid of (3.14), (

1
sP-p) -

4.2)-(4.5).

3
— k-5

The result is

1
-1
mIPC Y TP p) -

Tr[Cc Yy ¥(0)] = -i(Z,)""/? (‘21 1)’4 Tr{[y i

PN da 1 .
)" Gy Tr{[y-(ép—p)—m]‘”c (8% (P+1>) f(z 7 Ol o, (B - q“"")("‘)}
(4.6)

As indicated in Sec. IIl, we are omitting retardation corrections to the confining kernel, owing to difficul-
ties with unitarity. Therefore, 6K, includes only vector-gluon contributions. Since K (- kz) is the sum of
two terms, due to single-gluon exchange and the confining potential, one may divide Eq. (4.6) according to
these exchanges. The vertex correction due to the confining potential is ultraviolet finite, and we set
6Z,=0 for this portion of the vertex correction. (Possible finite corrections to 6Z, due to the confining
potential are omitted for reasons identical to the omission of the retardation of the effective confining ker-
nel.) Since we are using a confining potential which transforms as a Lorentz scalar,'’ to the order we are

working

Tr[CT'*¥(0))or = Tr[CT'%*¥(0)gearar + Tr[C7*¥(0)ector » (4.7)

where

1

. [ dY L. 1
1,6 — tw_ -
THC Y Y Ohnsar =~ @n)! Tr{[y-(%P—p)—m]“’ CY TGP p-m

and

Tr[c-i'}’ud)(o)]vector = —Z(

/ d4xe“”"‘DF(x)¢0('f)} (4.8)

R d'p 1 v .
Z) 1/Zf(h2_1r)—4Tr{[(yx)(“[7-(%P—1>)-m]“’ Che

) 1
y-GP+p) -m y"]

X f d“xe*f"m;(x)%(?)} . (4.9

We have defined
Dp(x) = Vs('r)é(to) (4.10)

in order to write the confining potential as the
static portion of an effective propagator. Sim-
ilarly, D‘}(x) is the regulated version of the Four-
ier transform of the vector-gluon propagator

Dp(p) =3 (4.11)

pi—ie”
Equation (4.9) is identical to the vertex correction
of positronium, except for the replacement ¢ (»)
-~ ¢,(r). However, since we show (Appendix A)
that

Bo()5 $0(0) [1 —%(—Ofg—m—)w 0(72)], (4.12)

the vertex renormalization constant Z, is identi-
cal to that of electrodynamics. We can further
subdivide

\I’(O)vector = {I’(O)QCD + ql(o)correctlon 4

where ¥(0)qcp is obtained from (4.9) by means of

(4.13)

1->2+[( M+m)2 2

d)(o)scalar

f (21r)4 [GM - py)* —E21[2M+p0)2 E?]

L]
the replacement ¢(F) — ¢ (F), and ¥(0).o,reotion 15
obtained from (4.9) by means of the replacement
Go(F) = [¢o(F) = ¢ (F)]. Since ¥(0),yrrectiog iS ultra-
violet finite as a result of (4.12), we set Z,=1 in
this term since we calculate only to leading ovder
in @y. In Sec. III we very carefully chose the
mass scales of the problem so that the binding
energy has its lowest-order QCD value

e=(Fay,)’m,
with the Coulomb propagator renormalized at

mass scale u=M. Hence, writing ¥(0)qcp,
=9(0)qcpXass WE have

(0)qcp = 64(0) [1 - %(‘3’— aM> e ]

directly from the positronium result,*® without a
new calculation being required. We now turn to
the evaluation of (0),.a14r and $(0) orrections Which
do require some calculation.

In the rest system of the vector meson, where
Pt = (M O)a

(4.14)

fd3 V() (7) (4.15)



1182 ENRICO C. POGGIO AND HOWARD J. SCHNITZER 20

with E?=p*+m?. Similarly
. iy d4p L'§2+(LM+m)2-—p 2 i 1;
zl)(o)corx'ecti(m - 7’[ (2,”)4 [(%M _SPO)T_ZEQ][(%M +b0;2 — EZ] (%au)f dSVe ® (’T)[(p()('r) - ¢c(’r)] . (4-16)

Note that only the static, longitudinal part of the gluon exchange appears in (4.16) to leading order in @,
and that (4.16) vanishes as A -0, with X defined in Appendix A. Let us proceed with the evaluation of
$(0)gea1ar- The momentum-space version of Eq. (3. 9) is

f EretP TV, (r) by (1) = ( )¢0 p)+401,,,v/d3

This can be inserted in (4.15), and the p, integration can be performed in both (4.15) and (4.16). It is then
useful to reassemble the various pieces of (4.7), obtaining

¢o( (4.17)

d3
W0 ot =1 O)QCD f(zﬂp) (‘2 )57 +me fd37’e“’ TV(T) o (T)
d IDI‘
—+Ga,) [2m(M + 2m)] (2771;3 2 /d3 @o(7)
. P eii‘-F' o
) [ Gl b [t [0 - g, (4.18)

where (0)qcp is given by (4.14) and

2yt +2m)_f 2L oo +p)1,2 (D) - (4.19)

\

Since ¢,(D) ,o pooe = -m (%) 2$,4(0), Eq. (4.19) is both infrared and ultraviolet finite. It does not appear possible
to evaluate (4.19) exactly; however, for the Q@ bound state in question, the dominant three-momentum is
B2 ~6x (and not —me) [see Eq. (B8)]. Therefore,

L Bm=—2¢ &p 3\
11_(1+6>\/7V12)1/2./.(27T)3 ¢0(p)_8m (1 _W-F"')d)()(o) (4.20)

to the order we are interested. We also obtain Eq. (4.20) by a different method in Appendix B when the
gluon correction is neglected, which verifies the evaluation of (4.19).
The remaining integrals in (4.18) are easily evaluated

f, (%“ (p;)(p +m€>/ dre TV, 0)9,(0) f @)’ E f dre™ TV (1) po(r) + Ole)

~~f f (2r )3 B AGINGE V(O )$(0) (4.21)

and

S #r g ) = o 2180 pix (4.22)

v pP+imGa

from the explicit behavior of the Coulomb wave function. To leading order in a, and zeroth order in A,
we have '

Ge(r) = Do(r) = [6,(0) — ¢4(0)] exp[~£ (3, m) 7]+ O(?) (4.23)

which is all that is required to evaluate the last integral of (4.18) to the accuracy of our calculation.
At this stage we insert (4.19)—(4.23) into (4.18) to obtain

3
B0 =8 0aco + (1= ) 800) = o V01640 - sy 0) f EEr 2 L

4n (4 a*p /p 1
) < aM)(qﬁc(O) ¢°(O)~/(2n) & )(p2+me) toeee (4.24)
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It is trivial to see, by standard perturbation argu-
ments, that, as A -0,

[6,(0) — ¢4(0)]~0. (4.25)

Since the last term in (4.24) is dominated by the
ultraviolet region, it cannot have an infrared di-
vergence, and therefore it may be neglected as a
higher-order effect. Further

dp 1 1 ”‘l‘f &p 1
@m® E p*+me’  mJ @n)® p*+in’Ga,l’

s

(4.26)

which is trivially integrated. Equation (4.24) now
reads

501 = 0501 - 2 ~(Br+ - ,0) |

+[p,(0) - ¢c§0)][%<§-au>] e, (4.27)

However, from Appendix A, Eq. (A5),
mV,(0) = —[6x+me]. (4.28)

Since the last term in (4.27) is higher order, the
final result is

9(0) ot = $9(0) [1 - :—(g—a,,,) - (}?TZ’) +. ]

=¢,(0) [1 —727(-3—%) +Yg%))—+ .. ] . (4.29)

As a check, we have verified (4.29) in the limit

a, =0 in Appendix B, with the integrations carried
out in a somewhat different way, which confirms
(4.29). We conjecture that the retardation correc-
tion to the confining potential for a linear poten-
tial is of O(VS'(O)/mZ) ~0(v%), which is higher order
than the terms retained in (4.29). If so, (4.29) is
the complete correction to ¥(0) to O(a,) + O().

V. DISCUSSION

Combining Eq. (3.18) with (4.29) one obtains the
modified Van Royen—Weisskopf formula

B 16 2, 2
T(V—e'e) =_%Ow%’—l¢o(0) |2

4 /4 A
X{l——;(gau)—2<;n—2-)+...].
Since

ERY RETOS M T

+O(73)}

~¢(0) exp[-3 a,,(m/2)r] exp(-2r?)

+0(%) + O(a,?) for small r. (5.2b)

Therefore,'s accurate to O(a,,) + O())

4’0(”:,:,,_)
x[l—%au(%—-— 1) +] R

At a more fundamental level one may inquire
whether the factorized form (1.1) is valid to all
orders in QCD, with the factor (annihilation)?
computable and infrared finite in terms of the
short-distance of the theory. Superﬁcially Eq.
(1.1) is of the same form as the factorization
proved for the parton model. However, here we
are concerned with threshold processes, where
the understanding of the factorization is on a
weaker footing. The only careful general discus-
sion, aside from specific calculations, is that of
Appelquist and Politzer,! who considered the
limit mg —e. It would be useful to our under-
standing of bound-state annihilation processes if
the analysis of threshold processes in QCD could
be given a firmer theoretical basis than presently
available. This study is a beginning in that di-
rection.

Finally we remark that Eq. (5.3) predicts that
the ratio of the leptonic rates

_ 1670%eq’ 2

T(V—-ee’) e

Th'~ee) 4 (5.4)
T(—e'e)

even for a pure linear potential. (By contrast
this ratio is 1 if only the naive QCD correction®
is employed.) We obviously also predict

T(Y'~e*e)
rY—-ee) <1 (5.5)
and its analog for other heavy Q@ systems. The
actual ratio in both (5.4) and (5.5) is approximately
0.9 for a pure linear potential.’® Further, since

[¢olr=1/m)|*<|9,(0)]?, , (5.6)

the naive absolute rate is reduced accordingly.
(In charmonium this is roughly a 20% effect.®)

Note added. The procedure of Karplus and
Klein is valid only for corrections dominated by
the relativistic region p*~m?, and does not treat
correctly effects for which §°<<m?. As a re-
sult, if we consider a confining potential of the
form

Vo(r) = V,(0) +ar, (5.7)
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then our calculation is accurate only to O(a ) and
O(x/m?), and to zero-order in 8, where

B=(a/m»'"*. (5.8)
It has been estimated!’ that
@*/m*y~ 0(8") + O(a,B°) (5.9)

and hence the correction

S (V) /m?y/ ne,~ B (5.10)

Therefore, the omitted contributions to 5¢,(0)/¢,(0),
coming from these corrections to the Bethe-Sal-
peter kernel, are of O(Bz), and hence negligible to
the order we are working. Moreover, Eq. (5.10)
is related to the difficult question of retarding a
confining potential. By contrast, the correction
of O(x/m?) ~ O(V,(0)/m) is dominated by the ultra-
violet region $°~m? (cf. Appendix B), while correc-
tions related to (5.9) and (5.10) require a more
careful treatment of the region p*<<m? than is
possible in the Karplus-Klein method. Notice
that the average size of a heavy Q@ system such
as charmonium may be estimated to be!?

@y~ (Bm)'>m™ (5.11)

since 62~O.15 for charmonium. Hence, our re-
striction to zeroth order in 3, but first order in
A/m? and ay, is consistent with our formulation of
the problem, where

N/m*=-V,(0)/6m + O(a,? . (5.12)
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APPENDIX A: SHORT-DISTANCE BEHAVIOR OF

WAVE FUNCTIONS
Given,
v2
(-;; +V(7)>¢0(’i’)= ) (A1)
with
4 o
Vr)=-3 S v, ), (A2)

we compute ¢,(7) for -~ 0. Let us expand

oY) = po(0)(1 ~A7r —=Br2+--+) . ' (A3)

Substituting in (A1) we find
]

YO = f L

$or) ~ %(0){1 ()

r >0
mr? m (4 2
L [—£+Vs(0)+——z (-3—01”)]

o (73)} (A4a)
= ¢,(0) exp [" %—-(";—(IM>7]e-Xr 2
+0(r) +0ley?) (A4b)

where we have defined
A:-%[5+VS(O)], (A5)

The momentum-space version of (Al) is

(o

= d’q = a7 (4may) .
-~/ G [V 69 ], we

Therefore,

— 3 - e
. ‘Po(ﬁ) = m f (inﬂ;ls [Vs (p - q)

p?+me

4nta,)

-~ L@, @

We assume that V, (r=0)# », so that

PV (3*) 0,

>
pe -

with the result that

> m d3q - W B
$o(D) - )2 f 27)° ¢o(@) = )z Bo(r=0) .

p2->eo

Both (A4) and (A8) assert that the leading behavior
of ¢,(f) as -0 is identical to that of the Coulomb
wave function.

Finally, standard Schroédinger-perturbation-
theoretic arguments imply that

[ $(0) = ¢ (0)] —— 0. (A9)

A—>0

&y fixed

APPENDIX B: ALTERNATIVE CALCULATION
OF \D(O)scala[
Let us evaluate (0), , defined in'Eq. (4.15) in
the limit that o, =0. Combining (4.15) with (A6)
when a, =0 gives

@' [GM —;o

D+ (EM +m)* —p? B\ .
F=E*ric]l S+ p P —E7vie] (e ! E)‘P"(p) : (B1)
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The p, integration is easily performed, with the
result

lp(o)scalarz 1 f (21;1) m +3p ¢0( ) (BZ)

where terms of O(e) are neglected. Since
¢o®) .~ @)
P2

from (A8), the integrand of (B2) can be expanded
near p2~0 and

3 =2
Zp(o)scﬂlalgf (di;si (1‘%' T_np_z“" ”>¢o(§)
u¢0(0)+%§.0)_+..._ (B3)

It is important to note that one cannot expand Eq.
(4.19) in P* when a, # 0, since in this case

lim, ., , V2¢,(¥) diverges linearly, as can be ver-
ified from Eqs. (A1) and (A2). Therefore, Eq.
(B3) is valid only when a, =0. From Eq. (A4)
and (A5) we find

$O) = 8000 1~ o) (B4)

for a, =0 with 6A=—m[V,(0)+€] from (A5). The
result of this Appendix gives an independent
check of our result (4.29). The computation in the
body of the text must be performed somewhat
carefully, since a,#0.

We can give an alternative interpretation of Eqs.
(B2)-(B4). From (B3)

1O ia = fap(1-r 40+ ),

of B fene

_l,mz.
(B5)
Therefore,
3 o .\
VO = ( a7 ""’(r)),z:, Jm? - (B6)

However, the ground-state wave function has no
angular dependence, so that

d)(o)scahr = ¢0(’r = l/m) (B7)

to the accuracy of our calculation, This conclusion
does not depend on the details of V (7). Further,
we note from (B3) and (B4) that

-t [ Gk B®, (B8)

which relates X to the typical (velocity)?® of the
state. This will also be approximately valid when
a,# 0 as long as the confining potential determines
the average velocity of the state, which is the case
for both ¥ and T states.
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