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A new parametrization of the isobar-model type is proposed for Neer final states. It incorpoiates the major
subenergy-dependent variations induced by unitarity (rescattering) corrections to the conventional nonunitary
isobar model. These corrections have been calculated in J waves 1/2+, 1/2, 3/2+, and 3/2 using the
dynamical theory based on subenergy unitarity and analyticity recently developed by the authors. All the
corrections vary relatively smoothly with subenergy. It is argued that this result implies that the conclusions
of the existing nonunitary fits will not be seriously modified by the inclusion of the rescattering corrections.
There are, however, some significant subenergy variations. In all the important cases the detailed results
exhibit one of two distinctive subenergy effects„which are interpreted physically; each effect occurs in a
systematic fashion and can be succinctly parametrized. Some of the variations may be detectable with
improved statistics.

I. INTRODUCTION

In the usual isobar model, ' constructed for
phenomenological applications, ' the partial-wave
amplitudes are taken to depend only on the total

- energy 8" and not on the subenergy variables.
The assumption is inconsistent with two-body uni-
tarity in the isobar channels. ' The search for a
model based on the isobar expansion, which is
unitary in the subenergy channels and has the right
analytic structure, leads to a set of integral equa-
tions4 for new isobar amplitudes, each now depen-
dent on its subenergy variables as well as on W.
For the Nmm system specifically, these equations
have been derived in a previous pape~' (to be
referred to as I) for J states —,', —,', —.'=', and —,

' .
All isobar states likely to be important for, say,
TV( 1.5 GeV, are included; these are: the /fan iso-
bars $„, S„, P„, and P„, and the p-p isobars in
s-wave I=0 and I=2, and P-wave I =1. The pur-
pose of this paper is to show how the dynamical
equations governing this system can be put to
phenomenological use.

In Sec. II we explain how the theory developed
in I is applied to the problem of calculating uni-
tarity corrections to the conventional &zz isobar
model. These corrections amount to multiplying
each subenergy-independent isobar amplitude of
the conventional model by a function which de-
pends on the subenergy variable of that isobar, as
well as on S', and is obtained from the solution of
a set of coupled linear single-variable integral
equations. These equations, derived in I, are of
the general type commonly encountered in the
three-body problem. Their numerical solution is
still a formidable task, especially for J states

in which the number of coupled isobar amplitudes
islarge, as is the case for the present problem.
For the purpose of calculating those unitarity cor-
rections which exhibit the most substantial sub-
energy variation, and thence providing an im-
proved phenomenological parametrization of the
isobar amplitudes, the complete solution of the
integral equations can be avoided, at the expense
of introducing some additional parameters. This
simplification of the problem is discussed in Sec.
III. After giving details of our parametrization of
the two-body amplitudes in See. IV, we present in
Sec. V the numerical results of our calculations of
the unitarity corrections, and give some physical
interpretation of them. Here we note the occur-
rence of chiefly two systematic effects in the de-
-pendence on subenergy. Each effect can be given
its own distinctive parametric form; the inter-
pretive parameter is a scattering length for the
one kind of effect and a barrier constant for the
other. The phenomenological implications are
discussed in Sec. VI. An Appendix contains the
algebraic details.

II. FORMAL CONSIDERATIONS

In our approach the general form of the unitarity
corrections to the isobar model is contained in
the formalism developed in I. Let us begin by
noting that the "isobar factors" introduced in I
play a role, in the partial wave analysis of a three-
body state, comparable to that of the partial-wave
amplitudes in a similar analysis of a two-body
state. When unitarity is applied to the. latter
problem, one obtains an expansion in terms of
phase shifts; this effects, in the elastic case, a
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reduction in the number of independent quantities,
at a given energy, from the two of the original
amplitude to the one real phase shift. Since the
partial-wave expansion is perfectly general, one
can of course contemplate calculating the phase
shifts from some dynamical theory; but one can
also treat them as parameters in a phenomeno-
logical analysis of the data. In the three-body
case, the imposition of unitarity (and analyticity)
on the isobar factors provides powerful constraints
on these quantities, which take the form of sets of
coupled linear single-variable integral equations
for the isobar factors. These equations, which are
set down in detail in Eqs. (I.40a)-(I.43b), have the
general structure

Sg

f„(s„s)=c + K &(s;, z&, s)f8(z;, s)dzj, (1)
8 -ce

where f„(s„s)(defined precisely in I) is the isobar
factor inthe isobar channel n with subenergy s, , and
where s =W'. The s-channel quantum numbers J
and 7 (in the notation of I) are suppressed in (1),
and the matrix structure implicit in the equation
spans the three different subenergy channels, as
well as all the quantum numbers of the isobars in
a given subenergy channel which can contribute to
the J~ state. The integration over the invariant
subenergy z~ sweeps down from z„ the upper limit
of the Dalitz-plot boundary. The expression indi-
cates the coupling of the isobar channel n to the
other isobar channels labelled P. A parametriza-
tion based on (1), in which the c„are arbitrary
apart from having no unitarity cut in s, , will
satisfy two-body unitarity and analyticity in all
three subenergy variables.

The kernels K &
are given in I, and are com-

pletely determined (up to possible questions of
convergence, which we shall take up below) by the
two-body amplitudes in each isobar channel; apart
from these, they depend only on certain angular
and isospin crossing coefficients which have al].
been tabulated in I. It is precisely the integral
part in (1)—describing isobar coupling —which is
responsible for the f satisfying two-body unitarity
(and, indeed, three-body unitarity, ' at least ap-
proximately7). If this part were. entirely omitted,
the f would be given simply by the c„, about
which all we know, in the absence of further input,
is that they have no unitarity cut in s,. The inte-
gral in (1) therefore unitarizes any given non-
unitary c . That this unitarization requires the
solution of integral equations makes for greater
numerical complexity than in the corresponding
two-body partial-wave problem, but it is not at
all surprising, since the three-body problem has
some resemblance to a coupled-channel two-body
problem, in which the "channel labels" 'contain a

continuous variable, the subenergy.
As in the case of a phase-shift calculation in po-

tential theory, we could attempt a full numerical
prediction of the f„, taking the c to be the ap-
propriate production Born terms, as indicated in
I. In the spirit of the usual isobar model, how-
ever, we adopt here a more modest approach,
and are prepared to introduce some phenomeno-
logical parameters to be determined by fitting the
data.

We begin by taking the c to be independent of
Since they have no unitarity cut, they' may be

assumed to be approximately constant in s;, at
least in some limited energy region. The c~ can
then be interpreted as the amplitudes of the stan-
dard nonunitary isobar model; they are the "bare"
amplitudes for producing a certain isobar a, with
no unitarity corrections. The observed amplitudes

f„then dress the c„with the unitarity corrections
represented by the integral in (1). This is illustra-
ted in Fig. 1. If we replace the integral by matrix
summation by means of a suitable quadrature
formula, the solution of Eq. (1) can then be written
as''

Kadj(1 -K)~
det(1- K)

The quantity in square brackets has to be obtained
by numerical inversion; it depends only on K and
hence only on the two-body amplitudes and not on
the constants c. Thus the c's can be retained as
phenomenological fitting parameters, and the uni-
tarity corrections take the form of multiplicative
functions obtained by a once-for-all numerical in-
version; the integral equations do not have to be
solved anew for each choice of c„.

We note that det(1-K) is the Fredholm deter-
minant Dz for the system (1), depending only on s.
Qn the other hand, the Fredholm numerator Ã~
=Kadj(1-K),depends on both. s; and s, and of
course has the requisite matrix structure. In the
nonunitary isobar model, the partial-wave ampli-
tudes are factorized into a part (the two-body am-
plitude) depending only on s; and a part (the non-
unitary isobar factor) depending only on s. It is
characteristic of the unitarity corrections con-
tained in (2) that they do not, in general, exhibit
such a factorization.

FIG. 1. Integral equation for the isobar factor f~.
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III. APPROXIMATIONS AND SIMPLIFICATIONS

In the present work we have not carried out the
full inversion indicated in Eq. (3). We are princi-
pally interested in calculating the subenergy vari-
ation of the amplitudes f, in view of the impact
that a very pronounced variation might have on the
validity of the established isobar-model analyses. '
We believe that past experience" strongly indi-
cates that an excellent picture of this variation can
be obtained by consider ing just the first iteration
of the full equations. This is obtained by replacing
fs by c8 on the right-hand side of (1), yielding

One then has only to evaluate a finite number of
one-dimensional integrals. These integrals cer-
tainly contain the important normal threshold
(unitarity) branch points in s, by construction,
and also the well-known logarithmic singularities. "
Higher iterations of Eq. (I) would give rise, in

analyticity terms, to singularities progressively
further from the physical region, and would serve
largely to alter the overall scale of the corrections.

The approximation (3) will certainly be good if
the iteration series converges rapidly. But this
will be the case only if the unitarity corrections
are in some sense "small, " and therefore prob-
ably uninteresting. Qn the other hand, the 3p cal-
culations showed' that even when the corrections
were so strong as to generate a three-body reso-
nance, the subenergy variation was still largely
given by the first iteration. In other words, if we
refer to the form of the Fredholm solution, the
major s, variation inNF is contained in K. The
remaining s; variation in &F is likely to be mini-
mal, but the s variation in DF can be substantial,
and there will also be some s variation in N~. We
can subsume these unknown s variations into new

s-dependent quantities cs(s), and rewrite (3) as

(4)

Thus at the expense of introducing the additional
parameters c8, we can hope to apply our approxi-
mation even in cases where the corrections are
not "small. " We emphasize, however, that the
introduction of the c8's is not a necessary feature
of the theory; we could have solved the full inte-
gral equations instead. We also note that the c&'s
are proportional to the bare amplitudes for the
production of isobar P; one has to recognize, how-
ever, that the s dependence of c„and ca in (4}
may differ, owing to the s dependence in N~ and,

more particularly, in DF which has been absorbed
into cz.

At this stage we may consider the evaluation of
the integrals appearing in (4). The reader may
consult Eqs. (I.40a)-(L43b) to see that the K s
are products of three factors' . a two-body ampli-
tude denoted by P& in I, an isospin crossing ma-
trix given in Appendix A of I, and a kernel integral
listed in Eqs. (L44)-(I.55). For values of z& in (4)
above the two-body threshold, and no doubt for
some distance below it also, the $8 can be reli-
ably parametrized to fit known two-body data.
This parametrization will be given explicitly in
Sec. IV. As z,. runs further away from the physical
two-body region, this parametrization will be-
come progressively less reliable. Qne is there-
fore led to consider truncating the integrals in (4)
at some finite lower limit. We have found by
numerical calculation that such a truncation cor-
responds to an approximately constant difference
in the value of the integrals, for a given s, pro-
vided of course that the lower limit selected is not
too near the two-body threshold in z, . This con-
stant difference can be absorbed into the parameter
c„in (4); it in no way affects the calculation of the
s, variation. We have found that the point z; =0
is a convenient choice of lower limit. We have
therefore arrived at the approximate form

Equation (5) is our basic formula for calculating,
and parametrizing, unitarity corrections to the
isobar model; it is illustrated in Fig. 2, The inte-
gral over K„6 corresponds to the rescattering
process shown in the second term on the right-
hand side in the figure: Isobar p is first created
(with amplitude cs) and then decays, the products
rescattering to form isobar o.. We note that, in
terms of the discussion of Sec. VII of I, the trun-
cation of (4} to (5) is equivalent to the statement
that the short-range contributions to K are slowly
varying in subenergy; the possibility that these
contributions generate substantial s dependence in

DF is, however, preserved via the parameters
cs(s).

FIG. 2. Isobar factor f~ with rescattering corrections
according to Eq. (5).
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We now turn to a consideration of the kernel
integrals appeari ng in K z, these are listed in

Eqs. (I.44)-(I.55). A typical such integral has
been expressed there as

H q(s, „z ~ s) =f )
dz,. ()))C(z;, z„s)

t t t t&

in which the integration f,. is, as explained in
Eqs. (I.56)-(I.58), over a set of traversals T;~ of
kinematic regions in the (z,z, ) plane. K, is the
kinematic quantity of Eq. (82) of Ref. 4, defined
such that K; j2W is the c.m. s. momentum of isobar
i. C is one of the quantities R „R„R»,0, Y,
and Z, appearing in Eqs. (I.44)-(I.55), whose ex-
plicit forms are given in I, Appendix B. The
power n in (6) depends on the orbital angular mo-
mentum of the final particle + isobar system. It
would, of course, be quite possible to evaluate
these integrals numerically, and insert the results
into (5) for a further numerical integration. 8ut
this is unnecessary. Most of the quantities C are
simple polynomials in the indicated variables; in

such cases the integrals in (6} can all be evaluated
in terms of the functions 6,&

given in Appendix B
of Ref. 4. The exceptions (see I, Appendix 8) are
R», Z, and Y, which involve square roots of the
z variables. The exact treatment of vz, terms in
(6) would lead to awkward elliptic integrals, "but
we have found numerically that the replacement
v z, - vs, , which completely eliminates this prob-
lem, is perfectly satisfactory. The net result of
this replacement is that the quantities f„may
differ from the exactly integrated ones by as much
as 10%, but this difference, at a given s, is to an
excellent approximation just a (complex) constant.
Hence this replacement merely amounts to absorb-
ing a constant difference into the parameter c„in
those cases where it is made.

There is one further, and important, point to be
made about the evaluation of the kernel integrals
(6). To illustrate it, we consider one such integral
in particular, called H»(s„z, ) in I; with the z,
integration in (5} truncated at z, =0, this integral
is

[2z,(z, +z, - 2p, ') —(z, + s - l), ')(z, +M' —p. ') ]dz,

12

B» is a traversal at fixed z2 of the Dalitz region
inthe (z,z, ) plane, as illustrated in I, Fig. 6. If
we write

z, +z, —2p,
' =(z, —s,) +(s, +z, —2g'), :

it is clear that we can separate out from (T) an expli-
citly s,- independent piece. When this piece is in-
serted into (5), it will contribute simply a constant in
the corresponding f (s,). Hence it also can be
absorbed into the appropriate c . Such a pro-
cedure can be followed in all cases where C in (6)
is of the same degree in z; as (z, —s;)K;" '. In
cases where 4 is of lower degree than this, the
kernel integrals contain no s;-independent piece.
In one case, that of the kernel H„, Eq. (1.53), we
have 4 = Y, which is of one higher degree than
this in z,. The evaluation of H» then leads to an
s y independent pie ce, a pie ce line ar in s„and a
remainder which contains the usual 6» functions. "
To reiterate, all s, -independent contributions to
the integrals (6) can be ignored, since they can be
absorbed into the c .

We close this section with some remarks about
convergence and subtractions. The occurrence
of s, -independent (or linear in s, ) pieces in the
integrals (6) is of course directly related to di-

vergences in these integrals, since K,. -z,. for
large z, ,' consequently when @ is of the same de-
gree in z, as (z, —s, )K;" ', the integral (6) will be
logarithmically divergent when taken over an un-
bounded traversal. If 4 is of one higher degree,
the divergence is linear, and so on. Now, if we
refer to Eqs. (I.56)-(L58}, we note that the con-
tributions to the kernel integrals (6) involving un-
bounded traversals enter only for z& ~0. Thus we
do not need to consider them at all if we cut off
the z,. integrations at z,- =0, as we have proposed
in (5). This fact, indeed, is an excellent reason
for choosing z~ =0 as the truncation. point. On the
other hand, we are not forced to truncate the z&

integration by the problem of divergences in the
Since it contributes an s, -independent piece,

a logarithmic divergence in K & can be eliminated
by a single subtraction in s, performed on the
original dispersion relation for f~(s, ), and hence
in the integral equations (1), and thence in (5).
The consequence of this would be the replacement
of the kernel integral H„z(s„z~, s) by

for a subtraction at s, =s«, and the introduction of
different constants c in (1), which would formallv
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be the values of f„(s,) at s, =s,, Since, once again,
the c are unknown fitting parameters in the pres-
ent application, such a subtraction is readily ac-
commodated.

In the single case of the kernel H», there is a
linear divergence, which would necessitate two
subtractions in s,. Thus in this case we cannot
assert that a truncation of the z, integral at z, =0
differs by only a constant from a truncation at
some lower value, say z, =-A: In order to specify
the kernels over -A ~ z, ( 0 we have to make two
subtractions in s„ thereby introducing an uncal-
culable linear variation in sy In view of this, the
piece of H„explicitly proportional to s, [see Eq.
(A17) below] may be of doubtful significance.

We present in the Appendix the full content of
Eq. (5) for the J~ waves we are considering, with
the kernel integrals evaluated after replacing Jz,
by Ms,. as needed, and with all s, -independent
pieces dis car de d.

IV. PARAMETRIZATION OF THE ELASTIC
TWO-BODY AMPLITUDES

In the present application of the theory, we shall
ignore all left-hand cut structure in the two-body
amplitudes; such features could be introduce'd ex-
plicitly, but. their effect in the present context
would be similar to that of subtractions, and con-
sequently is already to a large extent included
among the parameters of the theory. In more
physical terms, the left-hand structure should
not cause substantial s, variation in the physical
region.

We therefore adopt a parametrization of the
relativistic effective range type, which is con-
sistent with elastic unitarity, and which is such
that the two-body amplitudes have only the'normal
threshold br anch points required by unitar ity.
Such a parametrization was first introduced by
Chew and Mandelstam, " for the mm problem. We
adopt the same approach, suitably generalized to
the unequal mass Nm case, and with the inclusion
of nonzero orbital angular momentum.

As in I, we introduce Nw amplitudes M~ (s,) and
ww amplitudes M', (s,), and relate them to reduced
amplitudes P by extracting the threshold behavior
and other convenient factors:

M~ (s,) =(32w'/M )(4s,@,'}' g~ (s,), (8)

M', ,(s,) = 128 (4ws, k, ')'f', (s,), (~)

where l and l are the orbital angular momenta in
the Ãp and wz channels, respectively. We refer
to I for definitions of all other kinematical quan-
tities. The amplitudes M satisfy elastic unitarity,

Im(M~t ) '=-wp, , (1o)

Im(M', )
-' = -wp„

and

p, =M@,/16w'w,

p, =0,/6 4w'm, .

(12)

(13)

Ag (s|)= Q A„si +
1 0

(16)

where on the right-hand side the quantum numbers
j~f, are to be understood, and where the pole only
appears in the P» channel.

The A„are chosen so thai the phase shift de-
fined by

Mfp( )-e"sin5
1 (17)

fits the data of Carter, Bugg, and Carter. " One
has to ensure, for all but the Pyy case, that f '
v0 below threshold, or else spurious poles in (8}
will result. The P„amplitude itself, of course,
must contain the nucleon pole, and in this case
we require that

g '(s,)-— (M' —s,)
4w (4M'- p')

4m

as s, -M', where g'/4w=14. 5.
The ww amplitudes satisfying (11) are param-

etrized in a similar way, by setting

t't (s.) =[AI,(s,) +(4s,~.')'J, (s,)] ',

We discuss first the &m amplitudes. Equation
(10) is satisfied by setting

g, ,(s,) =[A, (s,) +(4s,g,')' J(s,)] ', (l4)

where, for s, ) (M+p)',

~.,) =(;-"'Ii.(—„)

Ki si —(M p, ) —2' @i

For s, ( (M + p)', J(s,) is found by analytic continu-
ation of (15); its imaginary part vanishes below
threshold. J(s,) is constructed so as to be
analytic everywhere except for the square-root
branch point at s, =(M + p}', and so as to have the
discontinuity across the associated cut correctly
given by unitarity. The functions A~~ (s,) are then
meromorphic in s,. For the 8», 8», and P» Nm

amplitudes, we express the corresponding A's as
polynomials in s,. In the case of the P» amplitude,
we require that there be a zero in (8), corresponding
to the known zero in the elastic phase shift; A(s, )
then has to contain a pole. Thus we write in gen-
eral
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TABLE j:. Parameters of the two-body amplitudes.

A()
Parameters (GeV4' ) (GeV ' )

A~
(GeV4'")

A3
(GeV4' +)

'Vp

(GeV"")
Sp

(GeV')

l'= 0 S«(S,)
l'= 0 S„(S,)
l'= 1S»(&)
l'= 1P«@)

-42.01
6.63
6.55

0
42.31

-18.79
-18.63

Ap

(GeV')

0
-12.25

18.73
21.21

Ag
(GeV4'-')

0
0

-6.23
-7.50

(GeV"")

0.75 1.46

A3
(GeV4'~)

l=0, t3= 0 ep
l=0, f3= 2 cp
l=1, t3= 1 p

8
-15.0

1.00

-25
0

-0.32

10
0
3.19

0
0

-13.53

where, for s3~ 4p. ',
2k3 Ml3 + 2k,

Z, (s,) = ' ln ' ' —i7(.
$03 283 - 2k3

(20)

The imaginary part of J, vanishes when (20) is
continued to s, & 4g'. We express A', (s,) as a poly-
nomial in s, as in (16}, but without the pole term.
We require no poles in g't below threshold in s„'3
and we determine the A„by fitting the mm phase
shifts defined by

,
( )

e"sino
t3 3=

mp
(21)

For )=)3=0 we use Fig. 9 of Hosselet eI, al.;"we
are content to parametrize the small, less well-
determined, t3 =2, l =0 phase shift by a scattering
length term + only; for I=t, = 1 we fit the phase
shift given in Table VI of Protopopescu et al."

We list in Table I the values of the parameters
g„, xp and s, that we have used in our calculations.
They give a good representation of, the phase shifts
over the energy ranges considered, and may per-
haps be useful in other contexts.

pressions, and henceforth in the text, we adopt
the following compact notation for the isobar chan-
nels. For the Nv isobars, instead of using (g, t,)
as in Sec. IV, we denote the (-,",—,') state by 6, the
(-,",—,') state by X, and the (-,', —,') and (-,', —,') states
by S, and S„respectively. For the mm isobars,
instead of (I, f,) we shall write c, for (0,0), e, for
(0, 2), and p for (1, 1). Note that in the calculation
of I„8 the isobar isospin of P matters while that of
e does not; when S, and S, appear as n we shorten
them to simply S, and likewise &, and e, become
simply e. A guide to all the aP combinations con-
sidered is as follows:

SS~ SS3 SA Sg () Sq ~

AS, bS3 hh hqo Aq~ for Q= —'+

ES3

for J

V. NUMERICAL RESULTS AND INTERPRETATION

For the production of isobar n we calculate the
rescattering corrections to the nonunitary isobar
model, illustrated in Fig. 2, according to the re-
duced version of our theory given in Eq. (5). The
details have been spelled out in the Appendix;
for immediate reference we copy Eq. (AI) here

f (s, , s) = c, "(s) + Qw,"„, z(s, ,)s)c(( (s).

(22}

The quantities of interest are the integrals I~8(s, , s),
itemized in their entirety in Eqs. (A4)-(AV). In
our approach these contain the dominant s, varia-
tion in the rescattering corrections for the pro-
cesses n- P, appearing in Fig. 2. In these ex-

for J=—'
pA

As we describe the results of the numerical
evaluation of the I„s, it will be helpful to refer
to the orbital angular momentum quantum num-
bers (I.„, /~) and (I.S, IS) in the rescatterlng,
where L and l apply to the overall and to the iso-
bar center-of-mass frames, respectively. We
shall discuss first, in Sec. 7 A, the s,- variation
of the I „8, and then separately, in Sec. V B, the
s variation.

A word about the. dimensions of I 8 is in order
here because it has some bearing on how we may
compare their respective magnitudes in the follow-
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ing discussion. The dimensions differ with the
nature of the rescattering o.- p according to
whether the isobars a, p are baryonic (B) or
mesonic (M). A perusal of Eqs. (A4)-(A20) reveals
that each I» is dimensionless, while each I» and
each I» have dimensions of mass and mass ',
respectively. We could easily arrange for each
I 8 to be dimensionless by extracting a factor of
the nucleon mass from each mesonic isobar factor
f In.stead we shall calculate with the mass unit
equal to 1 GeV, approximately the same as the
nucleon mass. This permits us to ignore units
and compare the magnitudes of any two I 8's for
any o. , P. We hasten to note that even though I „z
has been well defined, its contribution to f via
Eq. (22) depends on the size of the unknown fitting
parameters c and c&. Despite this, the relati ve
scale of the various I z's is not without signifi-
cance. We shall comment on this further in Sec.
VI A below.

A. The subenergy. variation ofI
&

Perhaps the single most important point to be
made about our results is that none of the integrals
I 8 shows any really rapid subenergy variatiop,
certainly nothing as dramatic as that shown in Fig.
2 of Ref. 16. It seems clear that the reason for
this is essentially that the requirement of analy-
ticity signUicantly smoothes out the quite rapid
fluctuations present in the discontinuities of the

f (which are determined by unitarity alone). Thus
we are led to conclude that it is most unlikely that
unitarity corrections to the isobar model for Nz-Nwm will seriously modify s-channel resonance
behavior extracted via the nonunitary fits. We
shall discuss this question further in Sec. VI.

Considering the results in more detail, however,
we can distinguish several main types of subenergy
variation that we have observed in the I

/. Linear dependence on s;

The integral s Ipz I
p & Ip& are of this type,

and are shown in Figs. 3(a)-3(c) for W =1.5 GeV.
Although some slight curvature can be seen in the
imaginary part of I3pl~2 and in the real part of Ilp/%2

the amount is very small and these are, besides,
the smaller components in each case. We doubt
whether the linear variation displayed by these
amplitudes would be detectable (see Sec. VI below).
Furthermore, the values of the parameters des-
cribing such a linear variation of the I a (even if
it could be seen in the data) have no significance
in the present approach, because they would be
effectively absorbed into the unknown fitting param-
eters c„and c& in Eq. (22). We note in passing
that other ignored sources of smooth, possibly
linear, behavior (e.g. , distant singularities, or

f
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FIG. 3. Heseattering integrals for 8'=1.5 GeV:
(a) Ii)~+, {b) Ill~, and (c) 13/~

production Born terms") can, by the 'same token,
by regarded as comprehended within the param-
etrization (22), in the present cases. Thus the
significance of our results in these channels is
that they justify a linear parametrization of the
corresponding f 's in these cases It is .interesting
that the dynamical calculations of Aaron et al."
produced a linear subenergy variation in their iso-
bar amplitudes for producing a p and a 6 in the ~

wave. (Our calculation cannot be directly com-
pared with theirs because the isobar amplitudes
are differently defined). Such a linear parametriz-
ation was, indeed, s-uggested by Aaron and Amado'
as appropriate for P-wave isobars. That the form
should belinearis, however, nontrivial, because
a priori nonlinear variations, associated for ex-
ample with the normal threshold branch points'
and with logarithmic singularities, " could be ex-
pected. Indeed we shall see directly that in most
of the other cases nonlinear-variations are found.

2. Curvature near threshold in s;

. An entire category of rescattering corrections
.consists of those cases which exhibit a curvature
at the subenergy threshold, and in addition a
striking crossover of the real 'and imaginary parts.

1/2I $3 are of this type, and are shown in Figs.
4(a)-4(f). A further remarkable common feature
of all these integrals is that they correspond to
cases in which al 1 orbital angular momenta (L„,
I, I,a, and I&) are zero. A set of results for which
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O. I-

(0)

(b)

l 4 l.6 l.8

increases sharply from zero at threshold, while
the real part f alls smoothly from its maximum
value at threshold; and the real and imaginary
parts cross at q, =a '. The intensity lg~' peaks at
threshold, the more sharply the larger a is.
These features would appear to des cr ibe the str uc-
tures shown in Fig. 4. If we consider a param-
etrization of the form

-O, l- I a(s„s)= c,(s) +c,(s)g(q, ), (24)

-05-

0.2-

(c)
(d)

-0.2

-0 4-

Re

0.2-

(e) O. l

(&)

0.2 0.3

-0.4-
Re

there are so many strong similarities leads one
to seek a simple type of parametrization that may
approximately comprehend all of the common fea-
tures. In fact, we believe we have found such a
parametrization, and one that is physically sen-
sible. Consider the function g(q;} given by

FIG. 4. Bescattering integrals for W=1.5 GeV: (a)
gi/~+ (b) g1/2 (c)gi/2 (d) g 1./2+ (e) g i/2+ and (f) $1h+

we see that only the single real parameter a is
of any significance; the quantities c, and c., (com-
plex, possibly depending on s) can be absorbed
into the c and cz of (22). The form (23) is, in
fact, a specific realization of a general form
suggested by Aaron and Amado' for s-wave iso-
bars.

%hat is the physical effect of such corrections?
If g(q, ) were a two-body partial-wave amplitude,
expression (23) would be the simplest possible ef-
fective range expression for it, a being the scat-
tering length. Certainly (23) does have the normal
threshold branch point expected from unitarity. In
the present case, the full amplitude in channel o.

is assembled by inserting (24) into (22), and then
multiplying the isobar factor f by the two-body
amplitude ~ ~ Suppose now that M is itself
parametrized by a scattering length, a, so that
lM„l' is peaked at threshold. A typical effect of
the correction g will then be to sharpen the thresh-
old peaking in [M„l', the effect increasing as the
a in (23) increases. In particular, we note that,
because HeI 8 and ImI 8 are of the same sign in
all our cases, the a in (23) is positive, whatever
the sign of a might be; if a is a positive, the
subenergy spectrum in channel n will appear to
correspond to a, larger a than is really the case.
Such an effect is well established for the nn chan-
nel in the low-energy breakup reaction gd - npgP"

(our scattering lengths have the opposite sign from
the conventional nuclear, physics choice).

%e have carried out a very rough fit of the type
(23} to the curves shown in Figs. 4(a), 4(c)-4(f),
to extract a value of a in the different cases. The
results (for W =1.5 GeV) are given in Table II,
where the a's are in fermis. These values are
offered only as representative indicators of a
recurrent effect —a full application of (22) would
utilize the numerical evaluation of the integrals

q;)=
1 1 i

I - i aq, & + cPq & + a'q (23) TABLE II. Values of scattering-length parameter a
[Eqs. (23) and (24)].

where q; (corresponding to s, ) is the momentum
of one of the particles in the rest frame of isobar
i (i.e. , one of the momenta Q„Q„or 0„ in the
notation of I). For a) 0, the imaginary part of g

yf /2+
SSg

a (fm) 0.34

g
1/2+
SS3

0.6

y1/2+
Sep

0.8

11/2+
Se~

0.3 0.96 0.5

yi /2+ yi/2+
e Sg eS3
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I &. On the other hand, the order of magnitude of
the a's is by no means unreasonable. Further-
more, such a parametrization as (23) does pro-
vide some physical orientation to the bare nu-
merical results. For example, one may compare
the magnitudes of the a's for the different channels;
these provide a measure of the growth of the cor-
responding integrals near threshold. If we com-
pare, for example, the Se, and Se, cases, we see
that a(Sc,) is substantially larger. This can be
traced to the fact that the pg phase shift which de-
termines the two-body function f, in I~,2 is larger
than that which determines (, in I~,' . In general,
the larger f is near threshold, the larger is the
corresponding a in g(q;), for transitions to a com-
mon final isobar.

The other pure s-wave case, I~/s, is shown in
Fig. 4 too, even though it exhibits more structure
than is contained in (23). This case is qualitatively
not too dissimilar, however, and a rough fit of
the type (23) and (24) has been applied to yield the
value of g given in Table II.

3. Curvature near the phase-space maximum in s;

Another type of subenergy variation we have ob-
served is one in which either the real, or imagin-
ary, or both parts of I & show curvature near the
maximum kinematically allowed value of s„
moreover, the real and imaginary parts have ap-
proximately paraHel dependence on s, . %e begin
with two clear examples of this behavior, I~&
and I~~~~', shown in Figs. 5(a) and 5(b) for W =1.5
GeV. If we denote by Q„ the momentum of isobar

(26)

In the isobar factors as we have defined them we
might therefore expect a factor

(QN) [1 (Q~)2I ]I/2 (27)

to be represented, where the phase 9 may in
principle depend on Q, as indicated. The de-
nominator of (27) produces a curvature at Q„=O,
the effect we are seeking to interpret.

%ith this by way of motivation, we have attemp-
ted a very rough fit to the two I's in Fig. 5 using
an expression of the form

e in the overall center-of-mass system, we have

Q„=f[W-(~s, +m, )'][W-(vs, -m, )']P'i2W,

(25)

where s,. is the invariant mass squared of the is'o-
bar, and m, is the mass of the remaining third
particle. Thus a peaking at the upper phase-space
limit s; =(W —m, )' corresponds to a peaking at Q„
=0. This, combined with the observation that in
both the cases under consideration L = Lz =1,
strongly suggests an interpretation of the behavior
shown in Figs. 5(a) and 5(b) in terms of an angular-
momentum barrier effect. In our discussion of
threshold behavior in I, we did of course extract
factors Q„ in each channel, but that was all;
that is to say, we adopted a zero-range barrier
factor. There are general arguments" which sup-
port a range-dependent barrier factor in the
intensity of the form

I„8(s, ,s) = c,(s) +c,(s)h(Q „). (28)

l.2
(a3

Im

-I.O-

I.2

-I 0-

14 -
I 8

s, (Gev )

14 I6 l8
s (C V')

Xt is clear by inspection of Figs. 5(a) and 5(b) that
HeI~B and ImI~& are approximately parallel, and
therefore that 8 in (27) does not depend on Q, to
good approximation; this being so, its value can
be absorbed into the fitting parameter c8 of (22).
In this circumstance, only the real parameter A
in (27) is of any significance. The values of 8 are
listed for these, and several other cases, in
Table III. That these values turn out to be about
1 fm may seem almost inevitable; but we should
hesitate to expect this necessarily. After all,

-2.0- TABLE III. Values of barrier parameter R [Eqs. (27)
and (28)].

FIG. 5. Rescatteri&g integrals for W=1.5 GeV:
{a) I~)~ and (b) I~)~

.R (fm)

pi /2+

1.2-1.6

yi/2+
he&

1.2

y3/2+

1.2-1.6
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FIG. 6. Rescattering integrals for W=1.5 GeV. (a) .
I&~„and (b) Ig

the processes under consideration are both 6- 6,
recouplings, and as such involve nucleon exchange,
which in Feynman graph terms might suggest a
much shorter range. Of course, the precise
physical significance of our range parameter is
not completely clear, but in any case this inter-
pretation seems to show that the calculations are
once aga. in physically sensible, and it is a help in
thinking about the numerical results.

Other cases involving L =1 are I~~,', I~", , and

I~~ . The last has already been discussed xn VA 1,
the first two are shown in Figs. 6(a) and 6(b) for
W =1.5 GeV. As regards I~~, it is clear that, for
small R, the quantity )'s in (27} becomes approxi-
mately linear in s„ if 8 is independent of Q; in-
deed, we can fit the AS, case in Fig. 3(a) with an
expression of the form (27) and (28) by taking 8 =0
and R=0.4 fm. In terms of the present interpre-
tation, we are therefore predicting a small radius
parameter for this process. For I~,', we need a
considerably larger R, of order 1.2 fm, also with
8 =0. The case of I~I,' is less clear. We have
performed a separate calculation of this integral
using a very simple parametrization of ( in
which [referring to Eq. (19)] A, (ss) is a constant;
the corresponding t, =0 = l mw scattering lengthis
0.15 g '. For this e„ the pattern is the same as

+ +
for I~,' and I~I,': the phase L9 is zero, and R = 1
fm. The much larger pg phase shift we have used
in the parametrization of f, in Table I increases
the imaginary part of I~, and also apparently

0
precludes a simple parametrization of the f orm
(28).

In all cases with L =1, finite range effects
should a priori be expected in f The im.pact on

f„of the type of effect we have been discussing for
I 8 will, of course, depend on the relative magni-
tudes of the parameters c„,cs in (22). Indepen-
dently of whether our interpretation of these cases
is valid, the variation of the I 8's which we have
calculated still stands, and may be detectable (see
Sec. VI).

For three other cases it may also be observed
that the real and imaginary parts of I~& are qual-

, itatively parallel as functions of the subenergy.

l.2 I.4 I.6
(a) s, (GeV )

Irn
-2.0-

I.8

-40-

Re

l.2, I.4 I.6
(b) s( (GeV )

-2.0- Re

I.8

-4.0

-2.9-

Irn

l2 s, l4
(GeV~)

Im

l.6 1.8

-4.0-
Re

FIG. 7. Bescattering integrals for 8'=1.5 GeV: (a)
I~/&~, (b) I&~~&~ „and (a) I~@~

These are I~~, Iz~, and I~~, plotted in Fig. 7.
For each of these L =0, so the barrier param-
etrization (28) is not compelling. Moreover, as
one can see from the figure, their most obvious
characteristic is that they vary only very slightly
with subenergy. For these reasons no effort has
been. made to supply an interpretive parametriza-'
tion.

4. Other cases

A surprising feature of the preceding results is
the absence of marked structure which could be
associated with logarithmic singularities. " These
might be expected in cases where the $8 in I 8
corresponds, to a well-defined resonance, such as
the 4 and p; they produce a peaking at low values
of the subenergy variable, but one which (in con-
trast to those noted in V A 2 above) changes sub-
stantially with TV, as %' varies through an energy
region near the particle + resonance mass ap-
propriate to the state P. For W a 1.5 GeV, only
p=A fulfills this criterion, but of the possible
candidates I'~~, 1~~, I,'~, I'~~'~, and I'& on].y
the third shows the singularity clearly. I,'z', is
shown in Fig. 8(a). Presumably kinematic factors
present in the other I & suppress this effect. The
cases P = p are expected to produce the effect for
%V= 1.7 GeV, and indeed this expectation is con-
firmed inIsg (it turns out that I I' =&2 I'g' );
this integral is shown in Fig. 8(b}. This rescatter-
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FIG. 8. (a) Rescattering integral I~ & for 8"=1.3,
1.4, and 1.5 GeV. (b) Rescattering integral Is)2& for
TV=1.5, 1.6, 1.7, and 1.8 GeV.

ing correction is large, and exhibits substantial
subenergy variation. However, we are not able
to give a complete analysis at these values of 8',
since many other additional amplitudes enter,
which we have not included.

The remaining integral not so far categorized is
I~~s; it is shown in Fig. 9 for W =1.5 GeV. Though
it exhibits some subenergy variation it is numer-
ically small, and we have not ventured any inter-
pretation for it.

B. Thes variation of theI &'s

It is clearly not feasible to repeat all of the fore-
going figures for various values of S". It is also
fortunately, and interestingly, largely unnecessary.
If we refer to Eq. (22), we see that if a certain

I
& changes by a multiple, or by an additive con-

stant, as s varies, such a change will be absorbed
in the fitting parameters c,cz. It is remarkable
that in the vast majority of cases this is precisely
what happens. An example of a possible 8'-depen-
dent feature is shown in Fig. 10: the integral I&&
for 8'=1.3, 1.4, and 1.5 GeV. In terms of the
form (27), there is a slight suggestion that R may
vary with W, being somewhat larger at S'=1.4
GeV than at 1.3 GeV or 1.5 GeV. Similar remarks
apply to l~z, . For those cases having a variation
of the form (23) and (24), we find that a is re-
markably independent of s, once the additative
and multiplicative s-dependent terms are allowed,
as in (22); Fig. 11 shows P~~ss for W =1.3, 1.4,
and 1.5 GeV, as an example. There are sugges-
tions in some cases (e.g. , I,'~z', ) of an s dependence
in g, but it is not dramatic.

The one example of a noteworthy simultaneous
dependence on s, and s is seen in I',~, and has
already been discussed in VA 4.

VI. IMPLICATIONS FOR PHENOMENOLOGY

A. Contributing waves and parameters

Up to this point we have presented the discussion
in relatively general terms. It is now time to be
more realistic. In the first place, even in the
elaborate isobar-model analyses of the &mr sys-

Re

0.2-

s, (GeV ) 0.1-

-0.02-

-0.04.
-0.06-

1.2 1.4 1.6 1.8
s, (GeV )

FIG. 9. Rescattering integral I~ps for W=1.5 GeV.
S3

FIG. 11. Behavior of I~/&2 for W=1.3, 1.4, and 1.5
GeV.
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tern done most recently, ' only the hp, Np, and
pTE'0 channels were included. The Np is obars in
the S», S», and Pyy waves were omitted, as was
the vv isobar e,. (There were, however, sugges-
tions" that the P», D», I'„, and D» isobars
should be included in any subsequent analysis. )
Secondly, in all isobar analyses of the Nmm system
carried out to date, only the c„term in (22) was
present; a significant enlargement in the number
of channels, coupled with doubling of the number
of parameters to include c8, is unlikely to be a
practical proposition.

At this stage it is worth recalling the genesis
of (22} [c.f. (4) and (5)]. Although cz is not to be
identified with the bare (nonunitary) isobar factor
for producing channel P, it should nevertheless
be proportional to it (with a possbily s-dependent
coefficient). The excellent overall fits to the
data achieved with the nonunitary model, ' and their
general consistency with each other and with the
elastic phase-shift analyses, strongly suggests
that the results thus obtained may be taken to be
a reliable indication of which are, in fact, the
dominant isobar waves. If we adopt this view,
then we expect p=A, e„and p to be the impor-
tant set of channels in (22}, so that the corres-
ponding cs would be large. For consistency, we
would hope that reseattering corrections from
these channels into isobar channels o. other than
this set would be relatively small in magnitude.
A perusal of Figs. 3-9 reveals that this is, indeed,
generally t'rue (c.f. the remarks about the magni-
tudes at the end of the introduction to See. V
above). There are, however, indications that
scattering into the s-wave &p channels, and into
the P» channel, may be significant. We would
also hope that rescattering effects would not build
up a minority channel P into an important one.
Here, too, we see from Figs. 3-9 that I 8 is
generally smaller for pub. , e„and p than for
P = &, &„and p, except that in the case of P= X(P»)
large corrections are found; the latter are, however,
almost constant in subenergy. Taken together, these
observations suggest that the Pyy channel should be
included in subsequent analyses, and that the
s-wave Nm isobars would be worth considering
as minority waves. In terms of the existing fits,
the most important of our corrections are I~~,

rescattering integrals are indeed among those
which are relatively large in magnitude.

B. Corrections to existing fits

We shall frame our discussion in terms of the
categories of Sec. VA. There is an important
general point to be made first, however. We do
not anticipate that our corrections will seriously

modify the s-channel resonance behavior extracted
via the existing fits. In the first place, this is
because our corrections do not, after all, vary
very rapidly with subenergy. In addition we have
seen that in many cases the shape of the s, varia-
tion is very much the same for different values of
s, changing only rather smoothly, if at all. This
implies that, although theie may be some observ-
able corrections to the subenergy spectra, their
presence will not seriously distort true s-channel
resonance behavior. Thus we believe that our
calculations go a long way toward providing a retro-
spective justification for the nonunitary isobar
model, as applied to the extraction of s-channel
information.

Turning now to the specific corrections dis-
cussed in Sec. V, we begin with the linear sub-
energy variations of VA 1. These corrections,
we recall, describe rescattering into the 4 and p iso-
bar channels; therefore, they aretobe multipliedby
resonant two-body ~ and p amplitudes when the full
amplitudes are assembled. A linear subenergy vari-
ation across a resonance peak produces only a small
effect. A computer experiment described by Aaron"
verifies this numerically, and indicates that, for an
event sample of the order of 45 000, a world in which
the isobar factors vary linearly with subenergy
probably cannot be distinguished from one in which
they are independent of subenergy.

The more substantial threshold variation of the
type discussed in VA 2, corresponding to a scat-
tering length parameter a= 1 fm, should in prin-
ciple be observable. Unfortunately, all such
variations occur in amplitudes which either orig-
inate from, or lead to, an isobar not included in
the standard analyses. The absolute magnitudes
of these contributions must therefore be presumed
to be small, and we must await a more elaborate
analysis in which these minority waves are inclu-
ded.

There is more hope of detecting variation of the
type described in VA 3, since several of these
rescattering corrections should be associated
with large amplitudes. The effect on the sub-
energy spectrum of introducing a nonzero range
parameter A has been noticed by Longacre22'(see
also Herndon et a/. ,

' Appendix C). For large 8,
the function b(Q„) in (26) rises sharply from the
Q„=O threshold, and saturates quickly, at the
value 1; for small A, it rises approximately lin-
early throughout the physical region. Thus large
B will accentuate the region near Q =0 much
more than. small A. Consider now a value of W
near the threshold for producing a resonant isobar
n plus the third particle. The Q„ factor in b(Q„)
will greatly suppress low momentum Q„, a region
at the upper end of the subenergy phase space.
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FIG. 12. Aspectrum from Eq. (29) for 8'=1.4 GeV,
with B=0 and B=1.4 fm (the latter curve has been nor-
malized to the former at s&=1.4 GeV2).

Therefore, for, a finite-width resonance, the lower
side of the resonance will be favored over the
higher side, by this factor. This effect will, how-
ever, be modified by the 8-dependent part of
b(Q„), as indicated above. Longacre22 has shown
that the mm spectrum in Nm-Nmm at 8'=1.7 GeV
can be interpreted as providing a quite sensitive
measure of the effective radius 8 for producing
the Np state. He finds that 8= —,

' fm, observing
that the value P= 1 fm gives an unacceptably bad
fit. Unfortunately, we have no prediction for A in
this case, since the wave which dominates p pro-
duction at this energy has 8 =-,", and we have not
carried out calculations for this wave.

It is not really possible, without doing a complete
re-analysis, to be sure just what effect the vari-
ation represented in our I~~, I~~, and I~,' in-

0
tegrals would have on the mN spectrum in the. b,

mass region. Such a spectrum is, of course,
formed by squaring the coherent sum of all con-
tributing amplitudes, and integrating over the
other subenergy. All the same, we note that the
first two integrals at least. have roughly similar
A values, g = —,

' fm; we have therefore calculated
the simple intensity (including the ordinary thresh-
old factors)

Q,
' sin'6 l
Q

3 ] 1t2Q 2 (29)

where 6 is the 6 phase shift, Q, is the momentum
of the A in the overall c.m. s. , and Q, is the mo-
mentum of the g in the 6 rest frame. We choose
8 =0 and 8 =1.4 fm for comparison, and the re-
sult is shown in Fig. 12. We cannot say whether
existing data are capable of distinguishing between
the two cases, but we believe that more accurate
data certainly mould, and that the result would
be interesting. A small value of 8, such as I,ong-
acre's" for the Np state (R = —,

' fm) would justify
setting 8 =0, as was done in the SLAC-Berkeley
fits. ' Our calculations suggest that at least for
these 6 channels a bigger R is to be expected.

C. Rescattering in earlier phenomenology

Many years ago Anisovich and Dakhno" sugges-
ted that the w'g spectrum in g P- m'm n at W

-1.3 to 1.5 GeV, in which there is a pronounced
paucity of events at low mz mass, could be ex-
plained in terms of a destructive interference
between a direct 6-production term, and a rescat-
tering correction of the type I,z,. As we see from
Fig. 8, this correction produces a peaking at low
pp mass, but the direct 2-production term, when

projected into the e channel, can also lead to such a

peaking, so that a partial cancellation could occur.
However, the much more, detailed data reported
later by Jones, Allison, and Saxon'4 show the
same depletion at low pp mass, for energies W

such that the amplitude for 6 production is very
small, tending to vitiate ~-6 rescattering. In
fact, at these energies the dominant process
appears to be direct e, production, a term com-
pletely absent from the Anisovich-Dakhno model,
so that their explanation fails. Morgan and Pen-
nington" have since observed that the depletion of
events is to be expected because of the presence of
the Adler zero near the pg threshold. Whatever
the explanation, it is clear that the dearth of
events at low z~ mass will certainly inhibit any
attempt to extract low-energy zp information from
the Nm -Ãm~ data, however sophisticated the
phenomenological amplitudes may be.

Jones, Allison, and Saxon'4 invoked a rescatter-
ing correction of the type I~,' to explain a small
asymmetry observed between the m z and z'&
spectra in m P -m+w n, for %=1.3 to 1.5 GeV. The
feature of this asymmetry was that it was concen-
trated in a few mass bins at the maximum p g
(or minimum m'n) invariant mass. Obviously
such an asymmetry could be explained by direct
s-wave 6 production, but the contribution of this
wave was in fact strongly limited by the observed
angular distributions. Although P-wave 6 pro-
duction would in principle also produce such an

asymmetry, in pr actice its effect is str ongly sup-
pressed at these energies by the angular .momen-
tum barrier. Jones, Allison, and Saxon" claimed
that the rescattering term I~~' (which they evalua-
ted only very crudely) provided a possible expla-
nation of the asymmetry. Unfortunately, we have
to point out that these authors are in error: In
calculating the effect of I ~,

' on the 6 spectrum,
they omitted the phase-space factor Q in the
amplitude, apparently assuming that as the b, was
produced by rescattering from an L&=0 state no
factor of Q, ~~ was necessary. Although, as we

have seen [Fig. 6(a)], 1~~' is indeed peaked at
the high-subenergy end, this effect is definitely
not sharp enough (when the correct Q, factor is
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included) to support the Jones, Allison, and Sax-
on conjecture about the observed asymmetry. "
To accomplish this, a variation in $Q p

of some-
thing like a factor of 3 as the Pfp mass goes from
1.35 GeV to 1.40 GeV is necessary, and we know
of no process which produces such a rapid varia-
tion.

VII. CONCLUSION

The integral equations for the isobar factors, -

derived in I, represent the formal conclusion to
the program of formulating an isobar model for
the Kzz system which is consistent with subenergy
unitarity and analyticity. The kinematics was kept
fully relativistic apart from the neglect of the Stapp
angle, "an approximation commonly made" at
medium energies. In the present paper we have
argued that the major subenergy-dependent cor-
rections to the nonunitary isobar model can be
found without solving the full integral equations,
but rather by calculating merely a number of one-
dimensional yescattering integxals; we have cal-
culated these integrals. We have proposed a
parametrization [see Eq. (22)] of the isobar fac-
tors f (s„s), in which, to subenergy-independent
parameters c (s) (analogous to the nonunitary
amplitudes), one adds the contributions of the re
scattering integrals I &(s, , s), multiplied by addi-
tional parameters es(s). A full data analysis is
required to establish conclusively whether the
use of the corrected f„ in place of the nonunitary
amplitudes alters the s-channel resonance proper-
ties extracted in the existing fits; this we have not
undertaken. " Almost certainly, if we are to judge
from the work of Aaron et al. ,

"an increase by an
order of magnitude in the number of events would
be needed before any differences would influence
the fits. Indeed the major result of our calculations
is that the s, variations of the I 8 are relatively
smooth.

This result can be used to suggest a reason why
the existing fits seem to work so well, when they
do not even satisfy unitarity. In discussing this
issue, one naturally thinks first of all in terms of
the magnitudes of the rescattering corrections, as
opposed to the shape of their s, variation. The
question can be addressed in our framework, in
spite of the fact that c and cs in Eq. (22) are un-
known a priori . If we refer to Eq. (2), we note
that when the rescattering corrections are numeri-
cally small, f„differs only by small quantities
from the s&-independent nonunitary amplitudes,
and there is no problem with these terms. When
the corrections are large in magnitude, signifi-
cant structure may be built up in the full Fred-
holm denominator Dz =det(l —K), but this quantity

is a function of s only .As an example of such
structure, we recall that calculations in the 3p
case' "have generated resonances (the &v, for
example) in this way. The theory in this case
would be providing an interpretation of measured
s-channel structure (e.g. , an assertion like: "this
resonance is caused by Np dynamics"), but such
structure would still be phenomenologically com-
prehended within the nonunitary parametrization.
The significant point is that there isnodenomina-
tor function in (2), dependent on s;, which can
build up to produce rapid fluctuations in s, due to
large rescattering effects. The s, dependence is
all in the Fredholm numerator, and its variation
is well approximated' by the rescattering integrals
I„8. This is true even when D~(s) exhibits reso-
nance behavior in s.' In fact our calculations show
that the s; variation of these integrals is not very
r'apid. In addition, the s; variations themselves
change only very smoothly with s; any major s
variation due to DF we can attribute to c&(s) in Eq.
(22). In short, the unitarity corrections do not
produce remarkable s; variation.

Having said this, we are nevertheless keen to
see whether such subenergy variations as we do

predict can, in fact, be detected. We have found
that in many cases there is a correlationbetween
the types of variation found and the orbital angular
momentum configurations in the rescattering pro-
cess. The variations which appear to offer the
most hope of being detected show a behavior in-
terpretable as the effect of a finite interaction
radius in an angular momentum barrier. The
values of the effective radii are such that, with
improved data near the mA threshold, our correc-
tions should be detectable.
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+ TV) g ~~8 s, sc8 s
teats a8 c~ 8 (Al)

APPENMX

We give here explicit expressions for all the
rescattering corrections which we have calculated.
If we refer to Eqs. (I.40a)-(I.43b), and recall the
approximations and simplif ications introduced in
Sec. III above, we can write the general form of
the isobar amplitudes as

f„' r(s;, s) =c~ r(s)
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where o, , p label the isobar channels, and W, „,&
is the appropriate isospin crossing matrix (C, C,
or D) of I, Appendix A. The quantities I~3(s„s)
are integrals which we shall specify shortly. Our
compact notation for the individual isobars is ex-
plained in the introduction to Sec. V above.

To expand (Al) in more detail, let us consider
the case J = —,".We introduce two-component
column vectors

1/2 T

c'~3 r(s)
~S" '( ) = js)" rz

Cs (S)

so that, if we refer to Eq. (I.40a), we have

ds

/f2 +
+ dz3 SP(Sj Z3, s)D313,olfe(Z3)C'g (S)

0

(A3)

f'I "(s„s)=g"' "(s)+f dzQ (s„z„s)D . . .I, ~ „, ,
0

g, (Z3)c',"'r(s)
+ dZ g3 S]PZ3P S C / $ 1/2+T/

0 gz3)c ~s~

in which z, = (W —g)3 and z, =(W-M)' (andbelow, z, =z, ). The corresponding equation for the remaining
amplitudes of the 3' system, f~' (s„s) and f', ' (s„s), are obtained from Eqs. (I.40b) and (I.40c), re-
spectively Th.ose for the other J states follow from Eqs. (I.41a)-(1.43b). The form of the & function is
given in Sec. IV and Table I. From these equations for the f's we can identify the integrals I 3(s, , s) of
(22) and (A1). They read as follows.

For J

For J =-,'

82

Iss' (s„s)= dz3Hss(s„z3I s)r„s3(z3) I

A

I'Is' (s„s)=f dz, Hsp(z s s)js(s,),
0

Iss '(s„s) =f 'dz, ( „H„z)sI,z(z, )s,

IHI

I's", (s„s)= dz+33(s„z„s)g, (z,),
A

+ 82

IjjS (Sj) S) = dz3HJIS(Sjj Z2) S)$$ (Z2) I

Isp (s„s)=f dz', H (s;, z„s)jz (z,),
ds

Igs"(s„s)=f dz, H p(s„z„s)js(g,),
0

A

+
!'3' (. )= j .s( 3, » )Cs( j),

(A4)

A

2

I3(3( (s„s)= dz, H (sj3z j)S)3$I3((z ) 3I
0

ds

Z3
I'~' (S„S)= dz, H (s(3„zs)fp(Z3),

0

8 1I ~3[ (S3) S) dz jH3j(S3) Z jd S)peg(z j)
0

(A5)

For J~=-,",
dd

Is's (s„s)= f dz, H( z„)I (sz, }. ss
0

For P =-', ,
ds

2

Igg (Sj) S) — dZ3Hj 3(SjI Z3I S)fdj(Z3) I
0

~ss

0

11/21

j( 2 3(P

(A6)

(A7)

ds

I (s„s) fpisdz, H,', (s„z„s)I g(=z). ,
0

~s

I"s (s„s)=f dzH, (zs;, ) s(zI,)s. ,
0

The H functions may be calculated from Eqs.
(L44)-(L55), and (I.B1)-(I.B6), with the definitions
of the integrations as given in Eqs. (L56)-(L58).
We find
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HSS 612(sl& Z2) &

SP R2( 1& Z2) 12( 1& Z2) &

H33 —4MB&3(sl& Z3) &

v2 S1+S-P,
HPS 2& x Rl(S&& Z2)612(S1& Z2) + K2(Z2)K, (s,) s

2 S1+S —P.
PP 2& . 1 2( 1& 2) . Rl( 1& 2) 12(Sl& Z2) K2(Z2)K, gs, ~

(A8)

(A9)

(A10)

(Al 1)

(A12)

4v 2M S1+S —P,
P3 2& '1 1( 1& Z3) 13( 1& Z3) K3(z3)

(S1/ s

H, =(I/2M)b, „(s„z,),
H,P =(1/v 2M)R, (z„s3)S3,(s„z,),

12 0( 1& Z2) 12(S1& Z2) &

{Als)

(A14)

(A15)

(A16)

0

2K,(z,) M2U3(z, + s —p2) + (z, —ll') (s —M')
31 —

2~2M T/Zl& S3j631LS3&Zl j (- )2

(A18)

+ 2
H= „,+R2(s„z2)[R,(s„z2)b,&2(s„z2)+- ' " K2(Z2)]++A(s„z2)[X(s„z2)S„(s„z2)+2K,(z,)]

+[~3MW —5(s„z,)'" ] P(s„z,)h„(s„z,) —— " '- K,(z,)2s (A19)

H 2 H2, &2H&3 —H, 3& 31— (A20)

{1)
12 12

{1)
13 13 P

z„=~l„&+8((M-I.) -Z, )~t;l.
(A21)

In Eqs. (AB)-(A20), those terms in which an
asterisk appears over the equality sign are ones
in which an s; -independent piece has been dis-
carded. In HPP [Eq. (A12)] and in H [Eq. (A19)],
we have made the replacement vz, -w, = vs„ in

H» [Eq. (A18)], we have made the replacement
vz, -203 = vs, . These substitutions have been
taken in Eqs. (1.48), (I.55), and (I.54), respective-
ly, in accord with the discussion of this approxi-
mation given in Sec. III. %e refer the reader to
the formulas given in I, Appendix B, for the kine-
matical quantities R„R„Q, T, X, and &t&, and

The basic kernel integrals of Ref. 4, Appendix B,
appear in these formulas. If we recall that we
need only evaluate the II's for z& ~ 0, as prescribed
in (5), we have

also to the results of Ref. 4. Appendix B, where
expressions for the h~{",. and g, are given. Addi-
tional quantities are Q0 = (s +M' —z,)/2W and Q
=(q,' -M')' ' in (A17), and

I,(z,) =gz, -(M+I)'][zl-(M-I')]y"
in (A18). The quantities b, I,'. ~(s, , z~) in (A21) have
imaginary parts given by

imp~,'(s„z,) = 11/K;(s, ) (A22)

for s, and z, in the physical (s„z&) decay region.
Qutside this region all the II functions are real.

zI'rThe integrals I~~8~ represent what we believe to
be the most important sources of s,- variation in
the isobar factors f„; they correspond to the c. p-
rescattering process shown in Fig. 2. They are
not completely trivial to evaluate numerically,
for a number of reasons. Firstly, the functions

have logarithmic singularities on the boundary
of the physical (s, , z&) decay region; these singu-
larities therefore lie on the integration paths.



20 MEDIUM-ENERGY Nxx DYNAMICS. II. B, ESCA I'TEH ING. . .

Secondly, the imaginary parts of the H functions
[which occur via Eq. (A22)j contain inverse pow-
ers of the quantities K;(s,), which vanish at the
end points 2, =2. = (W —p, )' and z, = (W -M)'; a
reasonably powerful quadrature formula must be
used to get stable results in this region.

A special problem arises for cases in which the
integrand involves the two-body function fz(z),
corresponding to the P» isobar channel. This
quantity has a pole (the nucleon) at z =M', which

lies on the integration path. By considering the
derivation of the original integral equations, and

the dispositions of the contours therein as des-
cribed in Ref. 4, Sec. III, it can be shown that the
correct prescription for passing the pole at z =M'

is to give M' a small negative imaginary part'
(this is, in fact, the standard Feynman prescrip-
tion). Near z =M', therefore, we can write

(A28)

where 8„is the residue of /~at the pole, as
given in expression (18) in Sec. IV above. Thus,
for example, Iz'~z' (s„s) takes the form

0

+iRsH, 2(s, &M & s), (A24)

where P stands for principal value. %e have
evaluated the principal-value integrals numerical-
ly by determining to high accuracy the position of
the pole in our f~ as actually parametrized (we
accept a slight departure in the pole position from
the exact value of M'), and by omitting a portion
of the integral around this point small enough to
ensure stability.
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