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New formal apparatus is developed for the dynamics of the Xmm system. The ingredients are the isobar
expansion with Bose symmetry, and subenergy unitarity and analyticity. The family of isobar amplitudes

considered is substantial in number and realistic for a medium-energy treatment. Dispersion relations are
written and the Pasquier inversion procedure is employed, leading to a set of coupled single-variable integral

equations. The resulting linear system is suitable for investigating three-body dynamics and for carrying out
phenomenological analyses.

I. INTRODUCTION

In a series of recent papers' ' we developed a
practical treatment of relativistic three-hadron
systems. The theory is based simply on the two
principles of unitarity and analyticity, as applied
to the two-body subenergy channels. In our ap-
proach the amplitude to the three-body final state
is expanded as a superposition of isobar states in
each of the three two-body channels. Each isobar
contribution is expressed as the product of the re-
quisite angular functions, the relevant two-body
elastic amplitude in the isobar state, and a so-
called "isobar factor. " The constraints imposed
by two-body unitarity in all three subenergy chan-
nels are conveniently formulated by means of such
an expansion. The full system of constraints on the
isobar factors was derived in I for the case of one
spin-2 and two spin-0 hadrons. In the conventional
isobar model the isobar factors are taken to be
subenergy-independent and depend only on the
three-body invariant mass. However, such an
ansatz cannot satisfy the unitarity constraints; for
this, a dependence of each isobar factor on its sub-
energy variable is necessary. ' To incorporate
analyticity, the unitarity relations are implemented
by means of dispersion relations. The confluence
of the isobar expansion with the methods of sub-
energy unitarity and analyticity leads to coupled
linear equations governing the isobar factors which
are remarkably tractable because they prove to be
integral equations in a single variable. Their sol-
ution in any suitably circumscribed context brings
to fruition a proper description of the final-state
interactions in a three-hadron system.

Although this approach to the relativistic three-
body problem, originating' historical?y in the work
of Khuri and 'Treiman on final-state interactions
in K-3m, focuses entirely on the tsvo-body sub-

systems and variables, the resulting amplitudes
have nevertheless been shown to satisfy three-body
unitarity" (which is not an input), at least to good
approximation. "" 'This feature is to be contrasted
with the hitherto more actively pursued approach-
es, such as the relativistic Faddeev" or Blanken-
becler-Sugar" '3 methods, in which both two- and
three-body unitarity are used as input in construct-
ing the dynamical equations. Earlier S-matrix ap-
proaches' also sought to incorporate three-body
unitarity from the start, and have proved to be im-
practicable. The input for our three-body theory is
certainly "minimal, ""yet the integral equations for
the isobar factors have a structure at least as rich
as that' provided in the approaches of Refs. 9-13.
Indeed, as regards certain essentially relativistic
short-range aspects, the minimal theory appears
to be superior to these latter methods, at least to
judge from numerical results which have been ob-
tai.ned for the 3n system

In II a system of coupled linear single-variable
integral equations was derived for the NmK system.
All the technical problems associated with unequal-
mass kinematics and with spin were solved; how-
ever, for the sake of simplicity, one restrictive
assumption was made, namely, that of treating only
s-wave effects. In the present paper we deal with
the remaining complexities of nonzero orbital ang-
ular momentum. We derive a set of dynamical
equations governing final-state interactions in the
Nzm system, in all J~ states and isobar configura-
tions which seem likely to be important at medium
energy Q's 1.5 GeV. These equations constitute the
basis for a number of possible studies of dynamical
Nwm problems, a project which we have deferred.
Their application to a semiphenomenological in-
vestigation of an improved Nnm isobar model has
been carried out and will be described in a separ-
ate paper.
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(b)
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ingredient propagates through the formalism. Of
course, the net effect of Bose symmetry is one of
simplification; there are fewer amplitudes and cor-
respondingly fewer coupled equations governing
them.

In Fig. 1(a) we have the Bose-symmetric ampli-
tude M32 defined by the 8-matrix element:

(Q,p,.k~ out IP„q, in)

= i(2ii)'f (Q+ p+ k P- q—)M„/N(QpkPq) .

(c)

FIG. 1. {a) Bose-symmetric amplitude M&~, (b) and
{c)unsymmetrized amplitudes M {Qpk, Pq) and M{Qkp,
pq). Momentum indices in {a) refer to pion isospin and
nucleon helicity. .

II. ISOBAR EXPANSION

The expansion of the final three-body state has
been described in terms of isobars by several
other authors. " We shall adopt the technique and
notation of I; equations cited from that reference
will be prefixed by I. In fact, large fragments of
that paper may be applied directly to the process
Nm -Nnm, once we have incorporated the special
feature of Bose symmetrization. It is instructive
to discuss this carefully to see how this additional

I

It may be written alternatively as

I! [N(QPPq)(Q„p, out Ij,. IP,q„in&

+ N(QkPq) (Q, k J out I j; I P) q„ in) ]/&
N(pkPq)uo (p, k, out!f.!Pi,q(, in). (2)

The factors N( . ) contain the normalization of
states; j and f are the pion and nucleon source op-
erators. %'e also introduce an unsymmetrized am-
plitude [Fig. 1(b)]

M(Qpk, Pq)=N(QpPq)(Q, p, out!j, l P, qi )n(3a)
and its companion [Fig. 1(c)]

M(Qkp, Pq) =N(QkPq)(Q, kj out! j, IP~q„in) . (3b)

Expression (3a) may be expanded in the manner of
Eqs. (I.27)-(I.29). We choose the e axis along the
initial momentum P and write

M(Qpk, Pq) =gN~ g 8 "N,. d',~&((u )d~' (3, )D~), (x, )(mip, IM '&(s, )I»
J'T g~ j~&~P

+ ~~gN~ d'~„'(ar, )+2„(B,)D~~ (r, )e'"(m, ii IM ~2(s, ) I»r'2
~zz 2&

f3)m

The phase factor e'"' in isobar channel 2 was erroneously left out of Eq. (1.28). The isospin projection op-
erators 8, S, and 6 are listed in Appendix A, Eqs. (Al)-(A3). We can show by exchanging the variables
p,. —k~ that M(Qkp, Pq) is the same as (4) except for the additional factor (-1)'.&" in isobar channel 3. The
invariants s„are as shown in Fig. 2.

Clearly, the symmetrized amplitude is just

M„= [M(Qpk, Pq) +M(Qkp, Pq)]/W .
If we recall how the three rotations of the final state are related [see Eq. (I.26)],

1
I Og 0 +2 001). Oy 0 +3ya 5

we can express M» in terms of the Euler angles of the single rotation r, :

M =W Q N 'D~yo(& ) Q ~FkN;, d,~ ((d )4'&, (8 )d, o(X.)(miplM"i(s. )l»'"
TSO . . f jgytttI JL

S 'gN d' '((u, )d~&„(g)d (y )e'"'" 2'(m p, !M 2(s2)I» '2

+I, apl)), d!„,(a, )a. „-„![+(- )"("]()m(~" (*,)I&)"' !.tsl~
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FIG. 2. Subenergy variables for N~ ¹r.
We refer the reader to I, especially Fig. 8, for the
definition of all the angles. Our next objective is
to obtain the unitarity relations satisfied by the
isobar amplitudes appearing in these expansions.
We emphasize that it is subenergy unitarity which
concerns us, because we wish to assemble the iso-
bar structure of the production amplitude accord-
ing to all of its isobar variables: angular momen-
tum and invariant mass in all three isobar chan-
nels.

(b)

(c)

FIG. 3, Subenergy discontinuities: (a) disc„(b) disc&,
and (c) disc&.

III. DISCONTINUITIES

p, =M@,/16m gg, ,

and similarly for p, occurring in disc, . The mm

phase-space factor in disc, is

p, = k, /64m'ur, .

(7)

(8)

Q„Q„and k, are the momenta in the rest frame
of each of the three isobar channels [see I, Fig. 8
and Eqs. (1.70)-(1.72)].

Parity is built into the construction in two steps:
Amplitudes of definite Nm isobar parity j~ are de-
fined as in Eq. (I.50) and amplitudes of definite
overall parity J~ are as prescribed in Eqs. (I.B1)

In Fig. 2 we recall the invariants- for the pro-
cess; we have s = 8" and s„=zv„', where 9 is the
total energy and u „ the nth subenergy. The discon-
tinuity in each subenergy variable s„(disc„, for
short) is indicated in Fig. 3. When we evaluate
disc, and disc, we must distinguish the pion vari-
ables p,. and k,. ; accordingly, we use the expansion
of M(Qpk, Pq) to obtain di:sc, and M(Qkp, Pq) to ob-
tain disc, . For disc, the result is the same as Eq.
(I.39); for disc, the result is the same as Eq.
(I.41), with the additional 'actor (-I)'3" in isobar
channel 3. To obtain disc, we use expansion (6) of

M», the result is the same as Eq. (I.44), with the
occurrence on the left-hand side of the extra factor
—,'[1+(-I)'&"]. [lt should be noted that the phase
correction, mentioned below Eq. (4), propagates
into these results as well, in each case accompany-
ing the amplitude in isobar channel 2.] The Nw

phase-space factor appearing in disc, is

, and (I.B2). We obtain in the process isobar ampli-
tudes labeled by the following:

total energy, isospin, angular momentum, and

parity, and

isobar subenergy, isospin, angular momentum,
parity, and multiplicity.

The discontinuity relations simplify as a result of
adopting the product form

(Isobar amplitude M) = (two-body amplitude M)

&&(isobar factor K) .
o express this in detail we have

tgJg Kg(ss ) M(I/1 (s )3(ITS tl Jl Kl(ss ) (Qa)

Mz J~E3l K(ss ) Mt3l(s )3)Iz'J teal f(ss )

The multiplicities z and $ range over

a =j, . . . , —,
'

(j+ —,
' values),

g =I, . . . , —I (2l+1 values).

(9b)

The discontinuity relations satisfied by the isobar
factors are the same as those given in II, Eqs.
(II.A1)-(II.A3), with the inclusion of the two addi-
tional factors: (—I)'~" in the contribution of iso-
bar channel 3 to disc„and —,

' [1+(—1)'3+'] on the
left-hand side in disc, . These lengthy relations can
be made much more compact. " We shall arrange
the dependence on the isobar isospin indices into
column matrix form and suppress all other labels
except for the multiplicities ~ and $ to write

isc - "&

2 p, dcos332nNJ N& e ee, , e, e, dx DM&2 1 ' + N do~ 3, e d„CM 9g,
2

(10)
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disc2 =same as (10) with 1 —2 and a —b,
21Ti

c-', (1+(-1)""]=p f d ocss2 sic+2(s d'„(2 )(s,"d„)cM
1

+I, is,,d,', (s —s, )(s,'ds, )CM. 22."'(-1)""I. (12)

K, (s, ) = X(s, ) and %,(s, ) = 3g(s, ) .
With that observation the isobar factor discqntinuities take their final form

$2& S3&

disc, pi("'(s, )=, ds, g X„DM(s, )22" (s,)(-1)P' "'+ ds+X,CM(s) m, (is)I, (14)
2&

L
1 1&

disc, g)I', (s, ) =
-64+ ds, 2X»CM(s, )%'2(s,),

1&

(15)

C, C, and D are isospin crossing matrices identified in Appendix A, Eqs. (A10) and (A11). The reader may
refer to Ref. 20 for the definition of the two-component column. matrices e, d, and d; n and P are two-by-
two matrices defined there. In (10) we have defined the angle y,~= y, + y~. The numerical subscripts in
these equations serve to abbreviate complete sets of suppressed isobar quantum numbers.

At this point it is clear that Bose symmetry has run its course. , and 3&2 satisfy identical equations
and are therefore given by the same function:

in which X» and X13 are the angular crossing co-
efficients':

A;, =2m'~ Nq ((e, ae, ), (e,Pe, )) (d„), (16)

x„=2m', iv, d,', (6,)(e;d„). (17)

To obtain (14) and (15) we have employed Eqs. (7)
and (8), along with Eqs. (II.21)—(11.28), and we have
used K, =2WQ, and K, =2WQ [see also Eqs. (I.65),
(I.67), and (II.B2)]. The end points of integration
in (14) and (15) are indicated in Fig. 4.

It is clear that a coupled system of integral equa-
tions, linear in the 's, would be the result of in-
serting these discontinuities into dispersion rela-
tions. To make progress it is necessary to confine
the scope of the problem somewhat by choosing to
couple a family of isobars of manageable size.

IV. MEDIUM-ENERGY ISOBAR SYSTEM

We shall restrict our attention to single pion pro-
duction at medium energy, say W ~ 1.5 GeV. We
may then invoke orbital angular momentum sup-

pression to select only the following isobar sys-
tems:

all s-wave isobars (¹S» and S», ))'w S, and S,)
in 5 states,

active p-wave isobars (dVv P» and P», vv P, ) in
S states,

and the Nm P33 isobar in P states.

The values of J required are —,", —,', —,", and —,
' .

(We disregard Z~= —,
"because, in the initial state,

the Nw f wave has a negligible phase shift. ) In Ta-
bles I and II we have listed the amplitudes we wish
to consider; Fig. 5 provides a guide to the quantum
numbers and orbital angular momenta cited in the
tables. In the rightmost column of each table we
have given the combination of amplitudes 3g~ ' and

A/3 we require for the desired orbital angular mo-
mentum dominating at low energy. Jacob and

Wick,"Appendix 8, has been used for this pur-
pose.

S26

S((

(S~, S3, )

-s, fixed

——s fixed3

(b)

S)

Fj:G. 4. Paths of integration across the Dalitz plot in
Eqs. (14) and (15).

F&G. 5. Orbital angular momenta and isobar quantum
numbers: (a) (Nz) isobar+7t, (b) (~or) isobar I-¹
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TABLE I. Contributing states for (Nvr) isobar+ ~ [see Fig. 5(a)].

(N~) isobar Dominant L
Corresponding amplitude in terms

of 3g(j~K)

1 +
2

1
2
3+
2

3
2

5 +
2

S(( and S3g

P33

Ps3

P33

3+
2

3 +
2

3+
2

& only

3 1
212
3 1
2 $2

3 1
292

Age =Std (2 2)
3+1

SKg ='..Itt', (2 2)

%=%(2'2)

K=-[3%(2 2) +SR(2 2)]@20
%= f%(-,' —,'}+ K(-,' —,)]/2

Disregarded

Now that the scope of the problem has been suit-
ably restricted we see that in Eqs. (14) and (15)
there are (apart from isospin multiplicity) three
coupled amplitudes for J =-,", two for — and for

, and only one for —,'-'. To calculate all of the
required angular crossing coefficients according
to (16) and (17) and transform to the orbital states
in Tables I and II is a straightforward, albeit, te-
dious task. The burden is ameliorated somewhat
if we adopt what was referred to in Ref. 30 as the
Euclidean approximation, a step which eliminates
the occurrence of half-angles. This simplification
is, in fact, the setting to zero of the Stapp angle '
(there are two of them here, called e., and e, in
Refs. 3 and 20). The approximation is commonly
made in phenomenological applications of the iso-
bar model. "

'The discontinuity relations which couple the am-
plitudes listed in Tables I and II have the same
structure as Eqs. (14) and (15):

V. THRESHOLD BEHAVIOR

Each of the amplitudes appearing in the formal-
ism must vanish at threshold with the appropriate
powers of the momenta, the powers being given by
the orbital angular momenta as sketched in Fig. 5.
For the elastic two-body amplitudes in the isobar
channels we have

M(s, ) -q," (20)

M, (s, ) -a,". (21)

fined the angles X„=y, + y, and ~y2 My+

The amplitudes of our medium-energy isobar
system have definite orbital angular momenta, a
feature which dictates their kinematic behavior
near threshold. The corresponding kinematic fac-
tors must be extracted before we can write disper-
sion relations.

—.disc, 3]f(s,)=, ds, Q r„DM(s, )3[((s2)
2mi 16m I5, 1

+ ds3 Y»CM3 s3)3 s,

For the isobar amplitudes we require

M(ss, ) -q.'q, "Pf

M, (ss, )-q k, 'P

(22)

(23)

. disc, m, (s,)=,—— ds, 1'„CM(s,)JT((s,).I . I

The angular crossing coefficients Y», Y,3 and Y31

are tabulated for each J in Table III. We have de-

in which q„q, and P are the momenta in the cen-
ter-of-mass system of the (Ns) isobar, the final
nucleon, and the initial nucleon, respectively. We
have already adopted an amplitude-product form in

Eq. (9), where the isobar factors were introduced.
Let us go one step further and incorporate into each

TABLE II. Contributing states for (~~) isobar+% fsee Fig. 5(b)].

L= 0 amplitude in terms of 5]]3(lt )

1+
2

1
2

So and S&

P(

1,0

1,0, -1

%3=5]]3(00)

5]]3= [v 25]4(ll) +5]]3(10)]/v 6

= [5][3(11)+ @25]]3(10)+ W35]l'8 (1-1)]/2v 3
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M(s) -P'~ . (24)

isobar amplitude a factor, call it M(s), which de-
scribes elastic scattering in the initial ¹rstate,
with the property that at threshold

For gP' 3+

2', M' '
22() 2 Q2 2WP

For gP 3-

(29)

Because of these considerations we are led to ex-
tract kinematic factors and elastic amplitude fac-
tors from the isobar amplitudes in the following
way:

3R=
2M) 2 Q2

I
3

(2WP)2 f 4

(2 WP)2 f3 '

(30)

M(ss, ) = ', , - M(s, )f(ss, ) (25)
(2wP)'

[suppressed quantum numbers: TJ~tjf for M (ss, )
and f(ss, ), TJ~ for M(s), and tj, for M(s, )] and

M (ss )=, - M (s )f (ss ) (26)
(2WQ)' M (s}
2202&2 (2 WP)

[suppressed quantum numbers: TJ~t, l for M, (ss, )
and f,(ss, ), and t, l for M, (s,)]. The newly defined
functions f and f, are the amplitudes for which we
wish to obtain the integral equations in their final
form.

The isobar factors appearing in Eqs. (18) and

(19) are related to f and f, as follows:

For J

2Wq.
22(), Q, 2WP

K, =
2 P f, ~

M' (s, ) = (327['/M)(2zv, Q, )2'g' (s, )

and

(32)

We see in Eqs. (27)-(30) that the kinematic fac-
tors themselves have branch cuts in the subenergy
variables. Because of this we must acknowledge
that along the way to Eqs. (18) and (19) we have
been premature in adopting discontinuity notation,
a usage which presupposes that we are dealing with
functions which have been continued analytically in
the cut subenergy planes. Clearly, it is f and f,
which have the latter property; it is in terms of
these functions that dispersion relations may be
written. We shall employ Eqs. (18) and (19) and
make the replacement

disc 3)I - [kinematic factors] discf

as a procedure equivalent to identifying the f's
first and then evaluating their discontinuities.

In accord with (20) and (21) we extract kinematic
behavior from the elastic two-body amplitudes by
defining

For J~= —' M,'(s, ) = 1287f'(220, k, ) "&,'(s, ) . (33)

3]I= M" f
"

X/2VR2= „M f, .
~3 3

(28)

The new functions f and g3 must satisfy unitarity
and will be parametrized to fit the available data.

When Eqs. (27)—(33) are assembled into (18) and

(19) with the aid of Table III we obtain the final
form for the discontinuity relations.

For J~=-,"
(34a)

(34b)

d'scC' (s )= — ds [Dd' ' (s)f (s)+ f2R D('' (s )f (s )]+fds4MC ( )f (4s)sI,27rt K~

discC' (s ) , ds [fdR.,DC' =' (s)f (s)+2R„DC' ' (s )f (s )]+fdc,4fdMR, C( (s,)f (s )I,
'

77$

discj,'(s, )=
2 ds, [C&'~' (s,)f ( 2)s+ WR, Cr„' ' (s, )fd, (s,)] .

2ms 3

For J

(34c)

]
disc J(s, ) = ds, s)D( (s )f(s )+fds, d*fdMTC(', (s if (s )2rg

(35a)

discJ,'(s, ) =
2 2 ds, YC&'~' (s,)f(s,).

27TZ 3
(35b)
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TABLE ED. Angular crossing coefficients Yi2, Yi3, and Y3i in Eqs. (18) and (19).

gP
Discontinuity

of
Coupling

to

i+
2

cosBi

1

i
2 COS32

cosBicos32 — s iDBislDB2

~2cosBi

i i/2
cosBi

i w

2

1
2 cos~i2
i i/2

(2) cos (aa —cc,)

, i/2
(-) cos (a3 —(s)g )

40
—cos((cf2 )( (,) + i cosa&cosa2 —~ sina&sina2

40 8

2
—COB i2i
2

cos(33 —~i)

%3
i cos(a3-(ci)
2

For g"=-2"

. discg(s, )=, ds, ZDg ' (s, )f(s, ) .
27TZ 1

For J =-'
2

I

27rz
disc J(s, ) = ds SSDd' * (s, )f(s,)+ f d d Csd S(ST)f (s s)'

K1

(36)

(37a)

. disc+, (s, ) =
2 ds, TCg'~' (s,)f(s,).

27rg 3

In these equations we have defined the quantities

R, = (2Wq, )(2w, q, ) cosa, ,

Z, =(2Wq, )(2w, q, ) cosa, ,

8» = (2Wq, )(2w, q, )(2Wq, )(2w, q, )('cosa, cosa, ——, .sina, sina, ),
fl = (2w, q, )(2w, q, ) cos~»,

T = (2M, q, ) (2w, k, ) cos (a, —(u, ),
Z = (2Wq, )(2w, q, )(2Wq, )(2w, q, ) [+, cos(&u» —)(„)+~» cosa, cosa, -+ sina, sina, ] .

(37b)

(33)

When these are written out in terms of the invariants they become the lengthy expressions listed in Appen-
dix A, Eqs. (A12)-(A17).

Equations (34)-(37) are discontinuity formulas in a form appropriate for insertion into dispersion rela-
tions.

VI. INTEGRAL EQUATIONS

The subenergy dependence of the f's is given by
the analytic representation

f(s, )=c+ '
2
. . disc,.f(g,.), (39)

elk g

$]0 gg —s. 2FZ

where the c's have no unitarity cut in s,. The dis-

l

continuities (34)-(37) are linear in the f's and are
themselves integrals at fixed z,. in another invari-
ant z&. As such, expression (39) provides a sys-
tem of linear coupled integral equations for the f's,
but with a double-variable domain of integration.
Fortunately, the order of integration over z, and

zz can be reversed so that the kernel contains an
integral over z, which can be calculated explicitly
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For J

f (s ) = c + f d z » ( z )s»(
' ' (z )f (z )

A
g2

+ dz,H„(s,z, )Dr„" (z,)f,(z, )

A

+ dz, H„(s, z, )Cg', (z, ) f(z,), (40a)

A

f,(s, ) = c, + f '
d z,»„(s, z.)»( Z* (z, )f, (z, )

. since it involves only known kinematic factors.
This step leads to integral equations in the single
variable z~. The technique for inverting the order
of integration is due to Pasquier and Pasquier', it

' has been described in detail in the context of this
kind of problem in II.

When the Pasquier inversion procedure is carried
out we obtain the following system of integral equa-
tions: H„(s,z, ) =4M dz1

(z, —s,)K, '

dz,A,
H~, (s, z2) —~2

1)

d Z1&12
HpJ, (s, z2) =2 f

12 k 1 Sl J 1

H„(s,z, ) =4~m
13 Lzl Sl l 1

I dz3H„(s,z, ) =
(

')

identical [cf. Eq. (13)]. The kernel factors
H„3(s,.zf) are as follows:

dzl
Hsz(s1z. ) =

( )Z1 —S1

d Z,B2
Hs~(s, z, ) —W

( )12 Z1

(44)

(45)

(46)

(41)

(48)

(49)

(5o)

+ dz2H~~(s, z2)Dr3~2 (z2)f~(z2)

+ dz, H~3(s, z 3)Cf 03( z3)f 3( z3), (40b)

I d Z381
„(z3-s3)Z, '

dz, O
H12( 1 z2) f 1 12( 1 z2) s

Z1 —S1I

(51)

(52)

A

f(s, )=c,+f 'dz, », ( zs, )C '(»(z, )f (z, )
W

z
+ dz, H, (s,z, )C&'~' (z, )f (z,). (40c)

For J

H„(s, z, ) =4~M
13 (Z1 S1)K

= v 2H,', (s, z, ),
dz, Y

2u2M „(z. s, )Z,

(53)

f(s, )=c+f dz, »„(s,z, )»K'C' (s, )f(z, )

+ dz, H„(s, z, )Cg,'(z, )f,(z,), (41a)

For J~=-,3

f(s, ) = c+ dz, H(s, z, )Dg'~' (z, )f (z, ) .
W

(42)

A

f, (s, ) = c, + dz, H»(s3z, )Cr„~' (z, )f(z, ) . (41b)

=H,', (s, z)/v 2, (54)

(55)(HS1 2z) f 1~ 3
12 ~ 1 1i 1

In Eqs. (44)—(55) the notation f, , has the following
meaning. If we refer to (11.41)-(11.43) and (II.B1),
we note that each kernel actually consists of up to
three separate pieces, each with its own region of
nonvanishing support. Thus, symbolically, we
have

For J =-,'

f(s, ) = c+ dz, H,', (s, )Dz2g
~ 3(z2, )f (z, )

+ dz3H13 S1 Z3 C/3 Z3 3 Z3 (43a,)

+ 8-Z2
12 D12 ~12

+ 6I -Z3
13 13

+8 M —p, '-z, -8 -z,
31 D31 U31 L31

(56)

(57)

f (s ) =c + dz, H' (s z, )Cr ~ (z, )f(z ). (43b)

'The upper limits of the above integrals are z, =z,
=(W —p)2 and z, =(W —M)'. Equations (40a)-(43b)
are the analogs of Eqs. (II.41)-(II.43); in the pre-
sent case, the two isobar channels I and 2 are

(58)

where the integrals fr are over z, at fixed z&,
along traversals T,f (T =D, U, and L) of ki. nematic
regions in the (z,. z,.) plane, as shown in Fig. 6. In
the integrands of (44) and (45) the quantities defined
in Eqs. (38) and (B1)—(B6) appear; wherever they
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VII. DISCUSSION

We have pursued the consequences of applying
subenergy unitarity and analyticity to the isobar
expansion of the Nzm system, and have obtained a
practical theory of medium-energy N~m dynamics
as a result. It may seem disappointing that the
search for an isobar model to which these princi-
ples are adjoined should lead to something as com-
plex as a full set of three-hadron dynamical equa-
tions. ' We view this situation differently, how-

L12 Z1

13

FIG. 6. Paths of integration D;, U, &, and L,,-, de-
fining the integrations in Eqs. (44)-(55) as prescribed
in Eqs. (56)-(58).

do it is understood that the variables are z,. and z~.
The question of convergence arises for those of

the above integrals which are over the unbounded
traversals U», I», and L»., the treatment of this
question will vary according to the problem at hand.
For example, in II subtraction constants were in-
troduced [see (II.50)-(II.53)]; these would appear
among the fitted parameters in any practical appli-
cations of a unitarized isobar model. Further dis-
cussion of this point will be made more specific in
a subsequent publication in which we apply the
present theory to the analytic unitarization of the
isobar model for Nn -Non.

Another qualifying comment must be provided in
describing possible utilization of these equations.
Wherever the root v'z,. occurs in the numerator of
an integral in f,z, we approximate and make the
replacement v'g, - 4s, . This approximation has
been discussed in II, in the text between Eqs
(II.58) and (II.59). Without it we cannot calculate
the relevant integral without recourse to elliptic
integrals. With that proviso, and subject to the
above remarks about convergence, all of the ex-
pressions (44)-(55) can be explicitly evaluated in

terms of the basic kernel integrals g,.z(s,.zz), dis-
cussed in II, Appendix B.

ever. In our approach the search becomes a meth-
od for systematically generating a relativistic
three-hadron theory. The procedure we have fol-
lowed is quite general. There would seem to be no
essential obstacle in its application to any three-
hadron system, for example, to the NNw problem
including the Dw channel.

The distinctive feature of our approach to the
relativistic three-body problem is that we work
consistently in the two-body subenergy channels
throughout. Aaron and Amado have also derived
three-body equations starting from the subenergy
unitarity constraints; their derivation diverges
from ours when the implementation of these con-
straints is undertaken. Aaron and Amado choose
to write dispersion relations in the total invariant
energy s, and manipulate the resulting integral
equations into the Blankenbecler-Sugar form of
their earlier work"; we choose to disperse in the
subenergy variables. The integral equations which
result from these two choices have. quite different
kernels. Those parts of our kernels which involve
integrals over the bounded traversals D, ~

in Eqs.
(55)-(58) are related to the 8 projection of one-
particle-exchange (OPE) processes, as discussed
in Appendix 3 of Ref. 1 for the 3z system, and in
Appendix C of II for the NnK system. Such kernels
are common to all approaches to the three-body
problem, and correspond physically to easily un-
derstood potentials. However, the explicit forms
of even these contributions are not identical in all
approaches. In a relativistic theory one would ex-
pect a priori that one-particle-exchange amplitudes
would be given by the relevant Feynman-graph ex-
pressions. However, in off-shell theories which
retain only part of the propagators according to the
Blankenbecler-Sugar" prescription, it may hap-
pen" that only some portion of the Feynman ampli-
tude is included and a somewhat ad hoc correction
has to be invoked. This is not necessary in the
present approach.

The Blankenbecler-Sugar prescription does,
however, ensure that the exchange terms recon-
structed according to it have imaginary parts only
in the desired physical region for the three-par-
ticle system. Our Eqs. (40a)-(43b) have special
properties of this sort which should be emphasized.
The full OPE amplitudes (the D, &

parts of the ker-
nels) become imaginary in those kinematic regions
whiqh allow the exchanged particle to be on the
mass shell. If we refer to Fig. 6, with g, re-
placed by z~ and z, by s„ these regions are (a) the
bounded region in the center, which is the physical
three-particle production or decay region, in
which the OPE process of Fig. 7(a) develops an
imaginary part corresponding to the real three-
particle intermediate state cut by the dotted line
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in the figure, and (b) the unbounded region in the
lower left corner of Fig. 6, for which both s,. and

z~ are less than zero, and in which the OPE pro-
cess also develops an imaginary part, this time
associated with an on-shell intermediate antipax-
ficfe, as shown in Fig. 7(b). This latter imaginary
part would cause the solutions of our equations to
have the undesirable feature of being complex for
subenergy. values below threshold. ' 6 One can, of
course, exclude by fiat the negative-energy part of
the relativistic propagator, as is done in the
Blankenbecler-Sugar approach, but this procedure
has drawbacks, as we have seen. A unique feature
of our integral equations is the presence of pddh-

tio~~) kernel functions other than the OPE kernels,
namely those parts indicated in (56)-(58) which in-
volve the remote-region traversals U, z and L,&.

'These kernels contain the ~',.z' functions of Refs.
1, 3, and 5, and these quantities also become im-
aginary in the lower left region of Fig. 6, in such
a way as to cancel precisely the unwanted imagin-
ary parts of the OPE terms. 7 In fact, p,.&' is the
J=0 projection of the process shown in Fig. t(c),
and it develops an imaginary part corresponding to
the on-shell intermediate state cut by the dotted
line. Such a crossed process would, of course,
never appear in any approach of the Faddeev type,
which is based on the simple connectedness struc-
ture of nonrelativistic potential scattering„Math-
ematically, the reality of our amplitudes below
threshold has been guaranteed by the original sub-
energy dispersion relation, Eq. (39), and this is a
powerful reason for adopting this method of imple-
menting the unitarity constraints. Physically, we
are inclined to interpret these additional pieces in

(b)

(c)

FIG. 7. One-particle-exchange processes associated
with the kernels of the integral equations.

our kernel as being associated with short-range
forces, "insofar as they include crossed processes
and enter only in the left-hand integration region of
Eqs. (40a)—(43b). Numerical studies of the 3w

equations'7 " indicate that their contributions can
be of decisive importance in generating three-
hadron resonances.

Mention should also be made of two further al-
ternatives to the Blankenbecler-Sugar and relativ-
istic Faddeev approaches, which have been pro-
posed by Brayshaw, namely, his boundary condition
approach, ' and the more recent relativistic scat-
tering theory. " The latter formalism appears to
share some of the features of ours; specifically,
Brayshaw includes the full QPE contribution. Qn
the other hand, his equations are not free of draw-
backs either; in particular, his amplitudes have
an unphysical singularity at s=0. This is an old
problem, and it has been argued that it may be a
serious defect."' Our own amplitudes have no
such singularity, but, as discussed above (see Ref.
9), they incorporate a 3-3 amplitude which has
some, we hope small, departures from symmetry.
It is our belief that there is, as yet, no practical
relativistic three-body scattering formalism which
is free of defects and which includes all the fea-
tures that one might consider desirable (e.g. , full
OPE contributions, real analyticity, symmetric 3
-3 amplitude, and absence of spurious singular-
ities in s, and s). Indeed, almost certainly no such
theory exists, since the restriction to a fixed num-
ber of particles is an intrinsically nonrelativistic
one. Be that as it may, the present treatment
would seem to provide an interesting approximate
solution of the problem, which is systematic, ap-
plicable to arbitrary spins (of the individual par-
ticles and of the isobars), and, being an on-shell
dispersion theory approach, free of any reliance
on the mass-shell approximation common to the
relativistic Faddeev approach and to Brayshaw's
formalism.

The solution of the integral equations for each J~
state contains a Fredholm denominator. 'This quan-
tity is completely determined by the kernel func-
tions specified in Sec. VI. It depends, of course,
only on the three-body variable s and therefore
lends itself to the study of three-particle resonance
configurations. Such studies of s-channel effects
may be interesting to perform in circumstances
where local right-hand analytic structure is im-
portant, for example, in the vicinity of an inelastic
thr eshold. 2-5

To go beyond an. evaluation of the Fredholm de-
nominator, one requires 3knowledge of the inhomo-
geneous terms in the integral equations. These
will depend on the application considered. For Nm

-Nmm these terms would be the appropriate Born
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terms for the production process, as indicated in
Ref. 7, Sec. III. The problem of final-state inter-
actions suggests a simpler application, that is, to
the evaluation of unitarity corrections to the isobar
model. We have performed calculations pertaining
to the latter problem, and we shall describe the de-
tails and conclusions of that investigation in a sep-
arate paper.

a', , ~T.tj- = 6
l

gtlfaTtl, ft 1tl ('T (A4)

Fig. 3, we need to evaluate products of a and c
with 8, S, and C. We indicate the result of these
computations as

ACKNOWLEDGMENTS

I.J. R. A. wishes to acknowledge with thanks the
generous and liberal support provided by the R. T.
French Company, which has made his stay at
Rochester possible. He also thanks Professor
Gove and the other members of the Department of
Physics and Astronomy at Rochester for their in-
terest and hospitality. J.J. B. acknowledges par-
tial research support from the National Science
Foundation, and thanks Professor Dalitz for the
hospitality at Oxford where some of this work was
done.

APPENDIX A: ISOSPIN

tg QTt3 —QTt3 g T-
il l jk i jk '3t)t3 &

l

gtk OTtl (gTtg (T
l

at2 gTt (gTt
l

tt tk tk T t3 —Q T tl (T
jl ilk ij t2t3 ~

l

8Tt j gTt3 gT
ijl~ lrjtk i jk +t3t j &

lm

t3 Tt2 Tt T
Ct jimlmk ~ ijk htktk &

lrn

(A5)

(A6)

We use isospin projection operators in the expan-
sion of each of the amplitudes: Nm -Nm, nm-nil,
and Nn Nww. If we index the pion with a Cartesian
isovector label then Nm, -Nn j has projection opera-
tors at.

t (f = —,
' and 3), and il, lij-ilktlt has ck, i, (f.

=0, 1, and 2). Since these are very well known we
shall not write them here. We expand Nnk-N~inj
into isobar channels in the manner of I, Fig. 1, as

Q Q T tg~t1 + Q tyt Ttl MT tk ~ Q tk Tt~~ t3

Tt Tt2 Tt3

in which 1' is the total isospin and t„ is the isospin
in isobar channel yg corresponding to the isobar in-
vari. ants s„ identified in Fig. 2. We list all of these
projection operators as follows:

i
t3 Tt Tt3

ctjtm~lmk ijk 6t3t3 '
lm

The $'s have numerical values which we can tab-
ulate efficiently by introducing two matrices CT

and DT, such that

(A7)

= (CT) and (tT t = (-1)'3(CT), , (A9)

In our notation, C" denotes the transpose of C .
These are the isospin crossing matrices which ap-
pear in Eqs. (10) and (12) with their total isospin
superscript suppressed. Their numerical entries
are

Q',.jk =(3'e,.j +6ktjr gk,.krj+6jkrt)/3~3,

&~gjk"" "= (1'&t jk
- 2~t jrk - ~; kr&jj+kr;)/3~

Tt Ttijk ~jik s

~ijk 6tj k/31

e&tj jk&' = (le, j„-6,,r j+ 6j„rt )/3~,

(A1)

(A2)

(A3)

( 0 0
1

4 )'
(A 10)

with columns labeled t, = —,', —,
' and rows labeled t,

=0, 1, 2'

1 ( 1 2~ t, ~j, 1 (2 ~5i
' I2n

(A11)

with rows and columns labeled t= —,', ~.

In the construction of these we have used the "bar-
yon first" convention; the angular momentum ex-
pansion, Eq. (4), is consistent with this.

In order to perform the calculation sketched in

APPENDIX B: KINEMATICS

The final discontinuity relations, Eqs. (34)-(37),
contain a series of quantities arising from the var-
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ious kinematic and angular factors. They have been
identified in Eqs. (38). To put them to use it is
necessary that they be expressed in terms of the
invariants. We define

u, = g+ M' + 2g',

x„=s„+s —jL
2

R12 RIR2 1~24 1

Q =y, y —2M u

Y = —S3$$ 4~%38/

se,y, 8'-I
zo, —W —I W

(B2)

(B4)

$)P
ZO3+ W-~

y„= s„+M' —p.',
2

g~~ =s~+ S2-2p. g =
2ao QX+20R~R2+ (5 MW —5ge,w2)p. (a6)

In (B6) we have introduced the subsidiary quantity

y, =(sz —p + WM)

and list the results as

~i = 2sx ~z2

= 2s, (s + M' —s, ) —x,y, ,

~ = (2',)(2'~) cosy, ~
= x,x, —2su

Finally, we have recalled the Kibble cubic function
written in terms of two invariants:

y = (s, +s,)I(s- p.')(M' —u') —s,s, ]

A2 = 2s2z~2 —X2y2 + s, s,u, —(sM' —p.') u (B8)
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