
PH Y SICAL REVIEW 0 VOLUME 20, NUMBER 1 1 JULY 1979

Transverse-momentum distributions in lepton-hadron scattering from quantum chromodynamics
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We use quantum-chromodynamic perturbation theory to calculate der/dxHdyd HT in electromagnetic lepton-
hadron scattering, where IIT is the sum over all produced hadrons of the absolute value of the component of
three-momentum perpendicular to the virtual-photon direction.

I. INTRODUCTION

There are two well-known methods for extracting
information about the fundamental constituents of
hadrons from scattering data. These are summa-
rized in the concepts of jets"' and partons. Re-
cently, both concepts have been put on a firmer
theoretical basis in the context of an explicit mod-
el of the strong interactions, quantum chromodyna-
mics (QCD), so that they can be combined to give
a description of jet structure in lepton-hadron
scattering.

A. Inclusive lepton-hadron scattering and the parton model

parton) presumably satisfies this criterion. ' Thus
certain bulk properties of the final state can be
studied without a knowledge of the parton decay
functions.

Another important property of variables which
depend only on the total momentum of jets of par-
ticles is that they have the same value for all
states which are physically equivalent in massless
QCD (such as a quark with a given momentum and
a quark plus a collinear gluon with the same total
momentum). Sterman and Weinberg' have specu-
lated that the sum over indistinguishable states
will cancel out logarithmic singularities associated
with the final states.

It has been shown how the parton-model analysis
of inclusive lepton-hadron scattering can be ex-
tended to include the effects of QCD interactions,
neglecting effects of the order 1/Q."One treats
the process as incoherent scattering of the virtual
photon (or W boson) with the individual partons
(light quarks and gluons) which compose the had-
ron. The fundamental virtual-photon-parton scat-
tering process is computed in QCD perturbation
theory. I ogarithmic singularities associated with
taking the (massless) incoming partons to be on-
shell can be absorbed into. the parton distribution
functions. Singularities associated with the out-
going partons vanish when the sum over final
states is taken. This analysis gives the same re-
sults as the standard operator-produce-expansion
analysis. '

B. Final-state jets

The attempt to characterize final states in QCD
perturbation theory is plagued with a fundamental
nonperturbative problem; one must know how the
outgoing pa.rtons decay into jets of observed had-
rons. This difficulty can be sidestepped by con-
sidering only variables which are independent of
the details of parton decays. A quantity which de-
pends only on the total momentum of each jet
(which is simply the momentum of the decaying

C. Transverse momentum in lepton-hadron scattering

We now combine these ideas to compute trans-
verse-momentum distributions in lepton-hadron
scattering. In the spirit of the parton model, we
treat the process as a virtual-photon (W-boson)
;parton collision, folding this cross section in
with the parton distribution functions. Then, using
the jet idea, we describe the transverse momen-
tum of the final state in a way which is independent
of the details of the parton decays. The variable
we use is Il~,

fir=- g lp&l
'ladrons

where p~ is the component of the hadron's momen-
tum perpendicular to the three-momentum of the
virtual photon in the laboratory frame, and the
sum runs over all produced hadrons. If we as-
sume the parton decay is collinear, this is just
the analogous quantity defined for the produced
partons'

ll, =-g lprl.
partons

Thus, the distribution of II~ should have a well-
behaved perturbation expansion, with all loga-
rithmic singularities absorbed into parton distribu-
tion functions. Only the distribution functions are
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required as phenomenological input. We now pro-
ceed to do the lowest-order calculation.

II. PARTON CROSS SECTIONS

The lowest-order parton scattering processes
which give rise to nonzero Iir (Ref. 8) are

e(q)+r. -eR)+ G,

G+r, -a+a,
(8)

(4)

where q (q) is a quark (antiquark), G is gluon, and

y„ is the virtual photon. ' The Feynman diagrams
for these processes are shown in Figs. 1 and 2, re-
spectively.

I et IC, (Ã,) be the initial (final) lepton momen-
tum, so that q =-K, —K2 is the virtual photon's mo-
mentum. Further, let p, be the initial parton's
momentum and p, be the outgoing quark (antiquark)
momentum for process (8), or either outgoing
momentum for process (4). We will describe the
process by the following variables'"".

Q =-dl, x=Q /2P, 'q, 0&x~ 1

L,""=41k Ik —Q'g"' (8)

up to terms proportional to q" or q". The general
form of M„„, a.veraged (summed) over initial (final)
spins, is, by considerations of gauge, Lorentz, and
parity invariance,

jjf v P v 2
rr g gu Plq q Pk+ Q pip ru

Pi'e Pi'e (Pk'e)

dxdrdxda 'd aau' r a" x

x I."9f
VII ~

where I,""
(M„,) is the square of the leptonic (par-

tonic) current and n is the electromagnetic fine-
structure constant. I."",averaged (summed) over
initial (final) spin, is given by

PZ'Q' Pj P2p.K '
p q

0&a&1, where, in the laboratory frame, e,'=0 and e2=p» so
that e, ~ e, = -1. Combining this with L"' gives

pr'=lp. rl' »d y

where y is the azimuthal angle of p» measured
from Ky p the subscript T denotes the component

' orthogonal to q in the lab frame.
Energy conservation in processes (8) and (4)

gives a constraint among the variables. The in-
variant phase-space integral over p „the momen-
tum of the second outgoing parton, gives

3

4+P. -P3-P.) -3(4) 4 p~
2P3

2

-~e p,'- 1-x 1-~

The parton invariant cross section (integrated
over the azimuthal angle about the incident lep-
ton's direction) is given by

2 2 2

, [1+(1-y)'J+a, (1-y)

2

+ C —, (y —2)(1-y)'i' o cy sD+Q'

1-yx 4, cos'p+ll.
y i

A computation of the graphs of Fig. 1 gives,
averaging (summing) over initial (final) parton
spin and color,

,2(1-x-z) + (x+z)'
(1 )(1 )

=22 2
+quark D quark 3 g

zx
~quark 3 8 (] ) (1 )

[(1—x)(1 —z) + xz J r

K) 2

FIG. 1. Feynman diagrams for electromagnetic quark
(antiquark)-lepton scattering. The wavy line is a virtual
photon, the curly line is a gluon.

FIG. 2. Feynman diagram for electromagnetic gluon-
lepton scattering.
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and for Fig. 2,

2

)
[z'+ (1 —z}'—2x(1 —x)],

+gluon Dgluon 8 X(1

C„„.„=2g '(1 —2x)(l —2z)
x(1 —x)&'"

(12)

Equation (7} gives the cross section to produce
a quark with momentum P,. We can convert Eq.
(7) into a jet cross section by reinterpreting the
variables z, Pr, and Q as jet variables [given by
Eq. (5) where Pg is the total jet momentum] and
by adding the contribution of the other jet (gluon
in Fig. 1 or antiquark in Fig. 3) as follows:

The subscripts in Eqs. (11) and (12) indicated
which type of parton is struck in the process.

d0' = ck7 + do(z ~'1 —z, Q ~ Q + t) .
This gives the following jet cross sections':

(13)

dxdydzd"'"'dP =3. '"~'- ~'('x)" -")('-z}'~-" & -~

g „,„=—,[1+.(].-y)'] +4x 4, (1+cos'P)+12, z(1 —z)(1 —4x)+1+x' 1-y
z 1-z 1 —x

6
(1 -y) ' ' x' '(2z —1)

(y ) 0 [(1 ) (1 )]1/2

Kg,„,„= 2 [1+(1-y) ) +6 4, (1+cosgp)+1 x(1 —x)
, z'+ (1 —z)' —2x(1 —x) (1-y)

2p z 1 —z

+6, (1-y)' ' — (1 —2x)(1-2z).cosp(y —2),g, x(1 —x) 'l"
z(1-z)

(14a)

(14b)

and a, =g'/4v. Again, the subscripts indicate
whether a quark or gluon is struck.

III. FOLDING IN THE PARTON DISTRIBUTIONS

Let P be the initial hadron's momentum. We
define the scaling variable via

(15)P~ =gP,

xz=2 .'q

so that $ is the fraction of the hadron's momentum
carried by the struck quark. All of the variables
in Eq. (5) are unchanged if P, is replaced by P
with the exception

gl ves

do' 4 n'e, x(l —x)9~2 1
dxgydzdllr 3 q' z(1-z)& y

where

,]z(1—z)(1 —4x)+1+x'
z(1-z)(1 —x)

(18)

where X„is the usual Bjorken scaling variable.
Let f, (() be the distribution function for type i

partons, i.e. , f,.($) d$ is the probability of finding
a parton of type i with momentum between P and

(t +dt)P in the initial hadron. Then, if de'" is the
jet cross section for type i partons,

do'"
dxzdy dzdP r'dP

and

+2x[6(l -y) +y'],
„z'+ (1 —z)' —2x(1 —x)

+4x(1 —x)[6(1-y)+y'],

z(l -z)
z(1 -z) +ll, 'I'4q'

(
dv)

where do' is the jet cross section for the initial
hadron. We use the 6 function to collapse the t' in-
tegration. Then integrating over P and using

II~ =2P~

and q,. is the distribution function for quarks plus
antiquarks of flavor j, g is the gluon distribution
function, and j runs over flavors.

The jet cross section refers to one jet charac-
terized by z and one characterized by 1-z; thus
the appropriate phase space can be chosen as —,

'
+ z & 1. For given II~ and x„, the constraint x& xH
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compatible with the SLAC electroproduction data. '
The form of the gluon distribution function (which
is difficult to determine phenomenologically) is
chosen to keep gluons away from ( =1 and to have
the proper parton-model behavior as $ -0 [i.e. ,
f(g) -1/$ as $ -OJ. The normalizations are deter-
mined by requiring an even division of energy-
momentum between quark and gluon sectors, "and
by requiring q„=2@~, q, = 0 as in the naive quark
model. Our final result is not very sensitive to
the shape of the distribution functions, so these
crude forms are adequate.

We found that for x~&0.05 the contribution of
struck gluons was always less than 20%, falling
rapidly with increasing x~. Indeed, using a gluon
distribution of the form (1 —$)'/t produced changes
of at most a few percent. The dominance of struck
quarks over struck gluons is easily understood.
For IIr near Ilr'", only partons near $ =1 contri-
bute. Thus quarks dominate due to the absence
of hard gluons. For small H~ the propagators in
Figs. 1 and 2 become infinite, but the singularity
is worse in Fig. 1 than in Fig. 2, so quarks domi-
nate again.

We define the cross section per event as

FIG. 3. Perturbative contribution to dZ/dxzdy dHz.
for x+=0.2, Ebean 200 GeV.

do 4T

dxygdy dz dII z dx~dy dO g dx~dy
(23)

implies

where do/dxQy is the inclusive hadronic cross
section. To lowest order in n„ this is given by the
standard parton-model result

(19) 4 2

[1+(1-y)'JQ Q q((~~),dx (24)

which can be satisfied only if

IIr ~ II,'"=
Q~

1/2

x~
(20)

dg ~mRX do

dray dIIr i/2 dx~dy dzdII ~

IV. NUMERICAL COMPUTATION

We have evaluated the integral in Eq. (21) nu-
merically for various x~ and y for a fixed beam
energy of 200 GeV. The following parton distribu-
tion functions for the proton were used:

Integrating over z gives the desired hadronic cross
section

n.(Q') 4 1
v 9 ln(Q'/A') ' (25)

which depends only on the quark distribution func-
tions. To the extent that gluons make a negligible
contribution to do/dh„dydIIr, there is a cancella-
tion of the overall normalization of quark distribu-
tion functions between the numerator and denom-
inator of Eq. (23).

Furthermore, the effect of using Q'-dependent
distribution functions (as required by the renor-
malization group), "is also small, less than 1(P/q

Thus the major nonscaling Q dependence of dZ is
in the factor n, (Q'),"for which we use the stan-
dard three-flavor result

q.(5) = 2q, ($) =-4 (1-. &)'

q, (4) =o,

z($) =—5 (1-5)'
2

The form of the quark distribution functions is

(22)

with A taken to the 500 MeV. The results of our
computation are shown in Figs. 3 and 4.

We believe that the dominant nonperturbative
effect is the nonzero transverse momentum of the
zeroth-order process iv, is We can make a roug
estimate of these effects by assuming that the pro-
duced hadrons have identical independent P~ dis-
tributions which are independent of the jet multi-
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plicity n. This gives for the nonperturbative cor-
rection to Eq. (23)

P„D„(II,) (26)

1
(2IIno ')'~'

:(Il,—n(PP)"
Xexp 2 2'Plo'P

T

where (PP (o~ ) is the mean (variance) of the
single-particle P~ distribution. Using the data of
Ref. 19, we get typical values of (Pr) = 0.45 GeV
and o~ =0.42 GeV. To estimate P„, we use thePg

~ ~ 20Koba-Nielsen-Olesen scaling hypothesis

(27}

P„=—e(n/(n) ),1
"

(n&

where (n) is the mean multiplicity. We use the fit
of Ref. 21 to the hadz on-hadron sc3ttering data '

(28)

4 (z) = (1.89z + 16.8z' —3.32z'+ 0.17z')

where P„ is the probability of the jet being corn-
posed of n hadrons and D„(lir) is a convolution of
n P~ distributions. For large II~, the sum is dom-
inated by large n, so that D„can be approximated
by

The observed value of (n) for charged hadrons in
the kinematic range of interest is 2.5; we take its
value for all hadrons to be 5." Finally, the cur-
rent experiment is insensitive to hadrons with z~
&0.08." Since the z~'s of all hadrons must sum to
unity, this bounds the observed multiplicity at 12.
We account for this (crudely} by considering only
n & 11. The results are plotted in Fig. 5 along with
the perturbative contribution for the particularly
favorable case of y =1, x~=0.1.

Based on our results, we believe that the most
interesting kinematic regiop is characterized by
large y (y a 0.5), small x„(x„s0.3), and large IIr
(II rR 8 GeV). This region satisfies the following
criteria:

(a) The perturbative contribution clearly domi-
nates over the poorly known nonperturbative con-
tribution.

(b) Perturbation theory makes sense in that we
are away from the II~-0 singularity.

(c) The fraction of all events in this region is
not too small.

Altarelli and Martinelli" have computed the II~
moments of dZ/dx, dydiir in a similar way. This
is dangerous in that except for very high mo-
ments, small II~ will dominate, leading to a large-
nonperturbative contribution. Thus it may be ad-

x exp(-3.04z) . (29)
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I"IG. 5. Comparison of perturbative and nonperturba-
tive contributions to dZ/dxsdy diir for y =1, xs=0.1,
Eb„=200 GeV.
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II, -=g /I', n/ —P JP, a, /,
hadrons hadrons

where n and n~ are mutually orthogonal unit vec-
tors in the transverse-momentum plane, and n is
chosen to maximize II+.

For the nonperturbative events, G~ «II~; how-
ever, for the order of, perturbative events, II~
=II~, so that to order n,

(30)

cK GK

dxgcfgcGI2 dxsdydIIr
(31)

vantageous to co'nsider the II~ distribution at large
values of II~.

The perturbative and nonperturbative effects
have their own distinct signatures. Let P~ be the
component of a produced hadron's momentum
orthogonal to q. Then, neglecting the initial had-
ron's fragments, nonperturbhtive events with large
II~ consist of many produced hadrons with P ~'s
distributed roughly symmetrica'ily in the trans-
verse-momentum plane (a characteristically one-
jet event). The order-n, perturbative events con-
sist of hadrons with mutually parallel or antipar-
allel pr's (a characteristically two-jet event). The
variable II~ does not distinguish between one- and
two-jet contributions; however, it is easy to invent
a variable that does,

Further, the variable Il~ satisfies the criterion
stated in the Introduction, so that the distribution
of II~ computed in perturbation theory is indepen-
dent of the parton decay functions and should be
free of logarithmic singularities. Thus interpret-
ing our results as a II~ distribution should sig-
nificantly attenuate the nonperturbative effects.

V. CONCLUSIONS

QCD corrections to the naive parton model give
rise to transverse momenta that scale with Q in
lepton-hadron scattering. Using the variable II~
to parametrize this transverse momentum makes
a knowledge of the parton decay functions unnec-
essary. Further, it gives a quantity which should
be free of logarithmic singularities in higher or-
ders of perturbation theory. In the present p.-p
experiment, there is a range of kinematic variables
(x„s 0.3, y a 0.5, IIra 8 GeV) for which nonpertur-
bative effects should not spoil this prediction.
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