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Low-energy photo- and electroproduction for physical pions.
I. Ward-identity and chiral-symmetry-breaking structure

J. T. MacMullen and M. D. Scadron
Physics Department, Uniuersity of Arizona, Tucson, Arizona 85721

(Received 1 February 1979)

The Ward identities of current algebra are combined with gauge-invariance constraints, on-shell partial
conservation of the axial-vector current, and the Bjorken limit to obtain the low-energy expressions of the
pion photo- and electroproduction invariant amplitudes for physical pions.

I. INTRODUCTION

Owing to the recent success of the experimen-
tal, ' phenomenological, ' and theoretical' low-
energy mN scattering program, it is of interest
to extend the low-energy pion photon- and electro-
production program in a similar -manner. To
this end we apply the Ward identities of current
algebra to the Compton-type process y„+N-A„
+N, where y„ is a vector photon while A„ is an
axial-vector isovector. Then employing PCAC
(partial conservation of the axial-vector current)
while simultaneously exploiting the gauge con-
dition on the off-shell electroproduction ampli-
tude, we are able to derive expressions for all
the low-energy but on-mass-shell amplitudes.
In a later work' (referred to as II), we shall
examine the phenomenological implications of
this analysis, including an estimate of the chiral-
symmetry-breaking nonstrange-quark mass m.

In order that the main results of this analysis
do not get buried in the morass 'of al.gebra that
follows, we list the final form for the 18 Fubini-
Nambu-Wataghin' electroproduction amplitudes:
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wwithg the m PP coupling constant, m the nucleon
and mv the vector-meson mass, f, = 93 MeV, and
invariants s, u, v, k ~ q, t, and k' defined in
Sec. II. The unfamiliar form factors G(t), H(t),
and F(k'), Fv(k'), 7, (k') are defined in Sec. IV.
The chiral-symmetry breaking "Z terms" are
given approximately in (1}and are explained in
detail in Sec. V. Lastly, the background terms
B ' (v, t, k') are resonance-dominated axial-
vector amplitudes. All of the terms in (1) will be
derived in this work except the B;. The latter
are somewhat model-dependent (as similar terms
are in ((N scattering) and will be considered in II.

With the advent of new low-energy photo- and
electroproduction data, it is hoped that (1) will
prove useful in the near future. An analytic
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subthreshold expansion analogous to the one
recently developed for mN scattering' would be
extremely illuminating in this regard. At the
present time the state of the art combines ex-
perimental multipole amplitudes with the Fubini-
Furl. an on-shell. expansion in the Breit frame,
To be sure, the latter approach based on charge
commutators and extrapolations of the dynamical
I ow equation is extremely reveal. ing, but one
would stil. l like to explore the analytic Vlard-
identity photoproduction analog of the mN analysis.
Furthermore, it is expected that (1) will generate
new low-energy pr edictions.

We divide the present analysis into four parts.
The kinematics of photo- and electroproduction
and the nucleon pole terms, M", are worked out
in See. II. In Sec. III the soft-pion limit is re-
derived and the non-gauge-invariant nature of
this off-shell. result is stressed. Then in Sec. IV
the current-algebra Ward identities are used to
obtain the on-shell amplitudes (1), consistent with
the off-shell gauge condition and the soft limit
of Sec. III. To accomplish this, we compare the
amplitudes q"M„„with q M, „and M, vk' with
M„vk", taking i.nto account the inherent pole
structure of the axial-vector amplitude M~„.
Finally in Sec. V the gauge-invariant chiral-
SU, ~ SU, -breaking Z terms are found by invoking
the Bjorken limit for the electroproduction (and
not the photoproduction) amplitude. The infinite-
momentum frame and SU, symmetry are then used
to relate these Z terms to the nonstrange current
quark mass m as given by (78) and (81).

II. NOTATION AND KINEMATICS

The general M function in (3b) has the isotopic
decomposition

(5a)

where

Then each of the isotopic M functions has the
Fubini-Nambu-Wataghin (FNW) covariant de-
comp os lt ion:

M' "=+'A. '" '"(v, t, k')K'j
j=l
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(7e}

2e„~rP k y" =Kv+Kv, (8a)

where P =-,'(p'+p), & =p'-p =k -q, t =&',
v=k p=q p=(s u)/4-, and m is the nucleon
mass, p. the pion mass. The first four covariants
in (7) are the Chew-Goldberger-Low-Nambu"
(CGLN) set for k' = 0 photoproduction in our
metric. ' Under crossing, v becomes —v with

For future reference- we list the following
identities:

The general electroproduction of isotopic pions
is symbolically represented by y„(k)+N(P)- w'(q)
+N(p') with an S-matrix element'

(S —1)~, =i(2x)'5(p'+q -p —k)em'(q)T„'e"(k),

T', = iJ d'xe"-*( + p, ')

x (N(P') i7'(ei(x), I'."(0)]iN(P})

=N( p')M'„N( p) .

e„~rq k~Pr =-,tK„' ——, 1 — K'„+1K'„
~ q

k PK5
k q

r
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Br
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where o = w~[y", y ]. Note that the apparent
kinematic singularity in (Bb) is removed by
employing a seventh covariant

(8b)

(8c)

(8d)

Strictly speaking, Tv does not represent the cor-
rect electroproduction amplitude off the pion
mass shell (see, e.g. , Ref. 9), but it will suffice
for our analysis since we are interested only in
the on-shell result (1). Given (3), we note that
M„must satisfy the following off-shell gauge con-
dition, "derived in Appendix I:

M*.k" =-(q'- t ') e*"0'(o)

As expected, Mv is gauge invariant for q' = p, '.

K'„- E„' = (k P„-k Pk„)y, = E„. (9)
k, k P

2vA. , + k'A. ,- finite as k ~ q- 0. (10)

At k' =0, e"k„=0, the constraint (9) disappears
and the four photoproduction amplitudes are then

In terms of the six covariants (7), the invariant
electroproduction amplitudes are constrained from
(9}as"
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free of kinematic singularities and constraints
(zeros).

Lastly it will be useful to identify the pole
contributions to the various amplitudes. For
Pseudoscalax coupling of pions to nucleons, the

effective Hamiltonian is

H =gNy5v' Nw',

and the electromagnetic vertices Nl „NA" and
m*~„mA" are

I'"„=»[F|~(k')+ r'E, (k')]y„+ —,'[E, (k')+7'E", (k')] (12a)

I'„' = i e'"(q„—t»„)E, (k') =ie""(2q„—k„)E, (k') . (12b)

The sum of the s- and u-channel nucleon poles and t-channel. pion pole, M„=M"„+M'„, is for off-mass-
shell pions,

k',M~"~ = ', E, ' (k')(k qK'„+K'„)+ ' ' '(2vK'„-k ~ qK„')
(s —m'}(u —m') ' " " 2m

(13a)

M = ' 2vE (k') K' K' + '' '(k qK'-2vK')(s-m')(u-m') ' " k ~ q
" 2m

„g(q')E'(k')K, ,g(q')[E;(k') —E.(k')]
2

k ~ q(t -q') ' t -q' (13b)

where E, (0) =E", (0) =F,(0) =1 and E, (0) =-0.12,
F, (0) =3.7. As noted by FNW, M'„" is gauge
invariant, but M„ is not. For k'=0, how-
ever, the entire pole photoproduction amplitude
is gauge invariant because E, (0) —E,(0) =0 in

(13b). The notation s =s —m', u„=u —m',
v=k P=q P with s„u =(k q)' —4v' is used
when converting (13) to the language of (1).

III. CURRENT ALGEBRA, PCAC, AND THE SOFT-PION
THEOREM

(18a)

(18b)

(18c)

off the pion mass shell, all follow from (17) and

the SU, && SU, current-algebra commutation rela-
tions at equal times,

5 (x,)[A'„(0),V', (x)] =i e'~»A» (0)5'(x),

5(xo)[B A'(0), V~(x)] =i@'~ 8 A»(0)5~(x),

5(x,)[A.', (x), V'„(0}]=i ~'"A»„(0)5'(x) .
In particular, contracting M, with k", shifting

the momentum dependence in (15}, integrating
by parts and using (18b} and & ~ V" =0 gives

We review the standard soft-pion theorem for
electroproduction, but now in the context of the
off-shell gauge condition (4). Along with the pion
amplitude (3), consider the two-current axial-
vector amplitude

M„k"= d xik"e ' "T 8 A. ' O. , V„x

dxe"'""5xo ~ A. 0, Vox

=-ie'"s A.'(0). (19}

T'„„=i d x e""¹T A. ' x, V„O

and also the divergence amplitude

T'„=i d'xe" "N' T ~ A. ' x, V'„0

(14)
Then applying (16) and (17}to (19}immediately
leads to the gauge condition (4}.

In order to determine M„and therefore M„by
(17), we turn to the axial-vector current Ward
identity obtained by contracting the M function

M„„ in T„„=N'M„+with q" and applying the
current-algebra relation (18c). This yields

Then the PCAC rel.ation
q M~„=-ie""A„(0}+iM'„. (20)

8 A'=f.u'0', (16}

can be expressed in terms of the single-current
M functions M„of (3) and M„ in T„=N'M„N as

Then to find M„ in the soft-pion limit q- 0, one
isolates from M„„the nucleon pole terms M
between on-shell nucleon spinors,

2

Ms fan@ Mz
q2 ~2 (17)

-M'„"„(q-0}= ~»g„(O)[~'r,r,(p" +4 m) 'I'. -
+ I'„(p'- g —m) 'v'y„y, ].

The relevant current-algebra relations, on and (21)
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This is the only part of q~M„„which survives as
q 0,

f, 'q'M*„„(q- 0}= (T'y, l „+I'„y,7')2'
-iM'„(q- 0),

where the M„" are the pseudoscalar nucleon-
pole contributions (all but the E, term) in (13)
for q- 0, and we have used the Goldberger-
Treiman identity mg„(0) =f,g(0) in this limit in

(22). Substituting (22) into (20) and again applying
(17), now as q- 0, we obtain the standard soft-
pion theorem for electroproduction,

M'„(q- 0) =M„'"(q- 0)+ F, (k'}I'y,y,2m

I '[g„(k')y„y, +k„(k')k„y,],

(23)

gested" that such a structure as (23) is incon-
sistent with dispersion theory because it con-
tains the g„(k') axial-vector form factor instead
of the pion form factor E,(k') from the pion pole
term .In order to justify (23), it then appears
necessary to alter the dispersion formulation by
including a fixed J-plane pole which would con-
tribute to the high as well as the low-energy dis-
persion amplitudes, for photoproduction as well
as for electroproduction. "

It is our view that both (23) and the usual dis-
persion approach are consistent and correct and
that no fixed J-plane poles are needed in high-
energy photoproduction on the basis of current
algebra. Rather, the problem is that (23) is
misleading because the pion is off its mass shell.
However, it is worth noting that (23) is still
consistent with the gauge condition (4) as q- 0.
First recall that

(28)

between nucl. eon spinors ¹ and N, and this con-
verts (4) to (t- k' as q- 0)

where the axial-vector nucleon form factors g„
and h,~ are defined by

&~'(a'.'(x) (ti)

=Ã(p')-,'7'i[g„(t)yvy, +k„(t)&„y,]N(p)e' "",

2
M'„k" - —, ,g(k')I 'y, .

This result is consistent with (23) contracted
with kg~

(29)

(24)

with & =P' —P and t = &2.

The usual check on the soft-pion theorem (23)
is to note that as q- 0 and k- 0, only the pseudo-
scalar nucleon pole terms survive in (23),

v(k) g( ) ' ~t
2&l

(28)

which is the well known Kroll-Ruderman-Klein
limit. '3 Then examining (23) for on-shell photons
k' =0, e ~ k =0 (but not k- 0) with the second and
fourth terms cancelling, we may add back in the
vanishing pion pole (~2q„-k„) and obtain the
Fubini-Furlan-Rossetti (FFR)'~ soft-pion theorem
for the background photoproduction (k' =0)
amplitude

(28)

M„'(q-0) =—,(z I', +x I,')K'„, (27}

where z "=z a 0 are the isoscalar and isovector
anomalous moments of the nucleon. Further-
more, since the pion pole contains only I ', (27}
can be extended to electrop'roduction (k' WO) for
MI' ~ ol. Lastly, the soft-pion theorem (23) has
been used to probe the g„(k'), Nambu-Schrauner
term. " Recently, however, it has been sug-

M „'(q —0)k" = — I [2mg„(k') + k'k„(k')]y, , (30)

owing to the cancellation of the first two terms in
(23) and the impiicit pion pole in k„(k ) (to be
discussed in detail in the next section). In either
case, M„(q- 0) [as given by (3)] is not gauge in-
variant even for photoproduction. Such a situation
can only cast doubt on the applicability of the soft-
pion theorem to the real-world gauge-invariant
photoproduction and electroproduction ampli-
tudes. It turns out, however, that the correct
photoproduction (k' = 0}amplitude [not (3)] is gauge
invariant even if the pion is off-shell [as noted
after (3)]. Consequently, the photoproduction
FFR limit (27) should yield the correct low-
energy q' = p,

' =0 invariant amplitudes and this
is borne out by our final result, (la). The elec-
troproduction Nambu-Schrauner g„(k') term
should be examined more closely, however, and
the Breit-frame analysis of Furlan and co-
workers' ' which avoids the gauge condition a1.-
together may be appreciated in this context.

All of the previous comments go beyond the
analogous problem for low-energy mN scattering-
viz. , to find the physica1. pion mass, chiral-
symmetry breaking, and background resonance
corrections to the soft-pion theorems. Our goal
is to link the former two types of corrections
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directly to the off-shell gauge condition (4), thus
avoiding any gauge-invariance ambiguities in
the on-shall photoproduction or electroproduc-
tion amplitudes.

Mpv =Mgv+M' v

-M',"„=r'„"(P'+q' —m) -'r„
+ r„(p'-q' —m) 'r'„".

(33)

IV. ON-SHELL WARD IDENTITY AND THE GAUGE
CONDITION

We begin, as in the on-shell approach to mN

scattering, by applying the entire axial-vector-
nucleon vertex (24) for the external pion mo-
mentum while isolating the pion-pole contribution
to h„(t}as follows [b, in (24}becomes qher-e]:

r„2=» 2 [g~(q')rr,, h~ (q—')q, r, ] (31a)

=-', v'i f,2(q*) ~+, ",
)

2Q'@I q' —p,
'

4(q') (r.q'-A. ) r, (31b}

The equivalence between (3la} and (31b) requires
that

To obtain a handle on M'„„, we first consider the
vector Ward identity which follows from (18a) and
& ~ v'=0

T'„„k"= -i@"(N'~A„(0) ~N}

or equivalently in terms of M functions,

M~", k" +M„"„k"= —w2'I' [g„(t)y„y +h„(t)t2~y ]

(35b)

where (34) implies

~2I ' E', (k')-[g~(q')r. r, h& (q'—)q,r, ] .
(36)

Then defining

mg (q')+ 'q'h (q') =-f.g(q'),

h~(q') = -2f,g(q')(q' —~') '+4(q'),
(32a}

(32b)

G(t .
)

g~(t) -g~(q')
I; -q' (37a)

(32a) being the generalization of the Goldberger-
Treiman relation mg„(0) =f,g(0).

Next separate off the full axial-vector-nucleon
contribution M~„ from the complete two-current
amplitude M „„corresponding to (14):

(k') = E, (k') —1

(35b) and (36) require that

(37b}

(37c)

M„"„k"=--,'iI' [E, (k'}G(t, q'}(k'- 2k ' q)y g(t)& (k-')k'r,

—F»(k')H(t, q')(k' —2k q)q„+h„(t)F»(k')k'q„+h„(t)k„]y2. (38}

prom (38) we see that the advantage of employing the full axial-vector-nucleon vertex (31) in the Born
terms (34) is that the nonsingular functions (37a) and (37c) occur in a natural way. Removing k" from both
sides of (38) we write

M '„'„=~2I [E» (k')G (t, q')y„(2q, —k„}+g„(t)F»(k')y, k„

—F» (k')H(t, q')q„(2q„- k„)—h„(t)F» (k')q„k„-h„(t}g „]y,+R' „, (39)

where R~„ is a yet-to-be determined gauge-invariant term, R'„„0"=0. It must also include all the reso-
nance dynamics, as we shall note shortly.

Next consider the axial-vector Ward identity for M'„„, (20), for q7t 0. For the complete axiai-vector-
nucleon poles (34), the reiation analogous to (22), but for qg 0, is

(40)q"M'„"„=—i2g( 'q)[r»r„+r.r»'] —,[2mg„(q')+q'h„(q')]M„'",2» 2 2gq2

where again M„'" is the pseudoscalar nucleon pole contribution in (13). Contracting (39) with q" and using
(33), (40), and (32), we find that (20) implies

q "R', = 'i I '(E, (k')G (t—, q')(K'„+ 2K '„) —g„(t)F (k')K '„

+ [F, (k2)(2mG (t, q') + q'H(t, q') )+h„(t)](2q„- k„)y,

+ [2mg„(t) + q'h„(t)]F» (k2)k„yJ
2 2

(41)



1074 J. T. MacMULLLW AND M. D. SCAD8, 05 20

By construction R„„does not contain any remnant of the s- or u-channe1. nucleon poles —but it can have a
t-channel pole piece. Removing the pion pole in (q' —p, ') ' as on the left-band side of the Ward identity
(20), we write the on-shell PCAC relation as

'4 ~Q'p, —i c
—

aR„—, , (M„+C„)+M,„,
where the bar in (42) refers to non-Born (nucleon or t-channel pion) parts of the electroproduction ampli-
tude

(43)

Note that to obtain M from M' one must remove the pion pole in h„(t) from (39). We stress that the
quantity C„ in (42) includes the terms necessary to satisfy the gauge condition (4) and also includes chiral-
symmetry-breaking terms. That is, R~„k"=M„„k"=0 requires from (4) and (13) that

2I' gq' I"', O' -E, k' + 2 2'„t +thA t ys

We will see shortly that C, has a complicated pole structure in (t -q') ' and (t —((i') '. Finally, con-
tracting (42) with q" and equating the result to (41) and using (1"I) and (43), we obtain the electroproduction
background amplitude

if, M„* = —,'iI *(E",(k2)G(t, q2)[H'„+ 2If'„]-g„(t)F,(k')E6,

+ [E» (k')(2mG (t, q') +q'H(t, q') )+h„(t)](2q„-k„}y,+ [2mg„(t) +q'h„(t)]+» (k')k„y, 'I
2

g„(q')[E,. (k')I ', + E", (k')I,']@+ifbi , ,M'„' -—-—-,'- —;C„' —q'M '„„, (45}

where M„" is the pion t-channel pole part of M„' in (13).
To proceed further, we invoke the (obvious) dynamical requirement that the nonpole eiectroproduction

amplitude TI„contains no extraneous poles at q' = p, ', t = p.', or t =q'. To this end we display the poles in
h„(t) and H(t, q') given by (32b) and

H(t )
f. g(t) g(q'), H(, ,

)+

and also solve (44} for C„' as
2 2

C„'=I*," —,"g(q2)[E', (k2) -'E, (k')]y,.—,P„, (47)

where F„ is defined by its divergence,

1"„k"= ,'I ' [2mg„(t) + th—„(t)]y,.
Then (45}becomes

» M„'= —', (J'. (E, (k )G(t, q')[tC +2'tf' j ((„('t,)P ((.')lC', „—
+ [E»(k')(2mG (t, q') + q'H(t, q'))+ h„(t)](2q„-k„)y,

+ [2mg„(t) +q'h„(t) J 7» (k')k„y,

2f,g(t)E", (k')q' 2f,g(t)
22q„-k„y, —— ', 2q„-k„y,

(48)

2f.g(t) &»(k')q'k 2f.g(q')E. (k')
2

2
—— ——g„(q')[E, (k')I 0+ E,"(k') I,']K„'+i—,I'„' —q"M'„„, (49)

where we have explicitly displayed the pole dependence of all the terms in (49) except Y'„. The choice for
C„, (47), is the only solution of (44) which simultaneously eliminates poles in (q' —y.') ' for both E, and
E, in (49), while having at most a t-channel pole dependence as required by the discussion after (41).
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We are now in a position to determine part of the unknown 1 „ term in the background electroproduction
amplitude (49). Since (49) must be free of ptl poles in (t —p, ') " and (t —q') ', as well as in (q' —tz'} '—at
least on the pion mass shell —we write

+ (7')Noz + (7')c z (50)

(51)

(7v)»zk"=(1'- 1'")k"

where Y„ is the pole piece of 1'„and 7„ is its nonpole piece, part of which is not gauge invariant, (7„)Noz,
and part gauge invariant, (F'„)oz. To guarantee that F cancels the poles in (49), we must have

~;. I; f.l" g(t) F', (k'-) q' g(t) g(q') E, (k')
2 k

g(t)&, (k')q'k
q' (t —tz')(t —q')

Next, to obtain (7„')»z we multiply (50) by k" and use (48) and (51),

,'I' —,([-2mG(t, q'}+q'H(t, q')+h„(t)](k ' —2q k)y, —2f g(q')5, (k')k'yg

2 2

+ ,'I '—, [2mg„(t) + th„(t)]y, ,q'

where 5', (k')k' =E,(k ) —1. Removing a factor of k" from (52) we have

2

(7'„)„,= --,'I ' —', ([2mG (t, q')+ q'I7(t, q'}+h„(t)](2q. —k„}y,+ 2f g(q') &,(k')k.yj

(52}

2 2

,'I ', —, [2mg„(t}+th„(t)](2q„—k„)y, .q' t-q'
Finally, combining (50}, (51}, and (53) with (49), we achieve the desired expression for the background
electroproduction amplitude

f, 'vI„'= 'I'12f,g(q'-)P(k')k„y, +F, (k')G(t, q')[2K'„(-K'„]

-g/(t)&v{k )K„' —29'v(k )[2mG(t, q )+q H(t, q )]K„].

g„(q')[F,'(k')I,'+ E,'(k2)I,']K'„+ —,(7"„)»+zq'M'„„
4m

where

,'I', , [.—2mg„(t)+th,„(t)](2q„-k„)y„

(55)5'(k') = —,[E, (k') —E,(k')] = 5'» (k') —F,(k')n' V

contains no poles in k'.
This result can be expressed in a form which manifests the gauge condition by adding in the pole terms

(13) and combining the non-gauge-invariant first term of (54) with the last term of (13). Thus, for
general q', we have the complete electroproduction amplitude,

2)
—(Fz (k')I,'+E, (k')I,') + E, (k')I' (k qK'„+K'„)

(F, ( ')I'+)E, (k )I,'](2vlf„'—0 qlf„)+ E,"(k')I'(), qlc„—Rvtf„)I

L K

+f, 'I '(Ez" (k')G(t, q')K '„—Fv(k'}[2mG(t, q'}+q'H(t, q')]K „' + —,'[Fvz(k')G(t, q') -g„(t)Fv(k')]K '„j.

q' (,),. „. . . q' —p.
' 2 g„(t) th„(t}(2 k ) (56}
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All that remains to be calculated are the gauge-
invariant but model-dependent terms (7„)e, and
M,„. The former is due to chiral-symmetry
breaking, to be discussed in the next section; the
latter M~„represents the contribution of dynam-
ical resonances to the two-current amplitude (14)
and will be considered in II.

A number of points concerning our solution (56)
are worth noting:

(i) On the pion mass shell, q' = p, ', M„' becomes
gauge invariant, as required. Our final result (1)
is just this limit with (7„)e, converted to the Z(t),
as described in the next section, and M„„con-
verted to B [defined in (83)] with G(t, p, ') =G(t),
H(t, p, 2) —= I7(t).

(ii) Except for the dynamical nucleon and pion
poles along with the constraint condition (10),
which is obeyed by the pole parts of the invariant
amplitudes, the remaining terms in (56) are analy-
tic in v, t and k on the pion mass shell q = p. .
For q' 0 p,', the last term in (56) has an extraneous,
unphysical pole signifying again that M„as de-
fined by (3) represents the correct electroproduc-
tion amplitude only on the pion mass shell. The
last term also generates the gauge condition (4}
using (16) and (24).

(iii) As a check on (56), it is straightforward
to verify that it becomes the standard soft-pion
result (23) as q- 0. The FFR theorem for
A, ''0 has only O(p') corrections for both k' =0
and k'+ 0 with q' = p, '. The Nambu-Schrauner
g„(k'} term appears to be present in A., in the
limit q' = p. ', v = 0, t =k', the on-shell. values of
the invariants which correspond to q- 0. A new
g„' term" appears in A., for t-q'- p, '.

(iv) Our method of first extracting the nucleon
axial-vector Born terms in M„„and then requiring
the absence of nondynamical pole structures
(t —p, ') ', (q' —g') ' and (t -q') '—the latter non-
existent as l.east for q' = jt,

'—acts as a powerful
constraint (along with the gauge condition) for
determining the auxil. iary a.mplitudes R„„, C„,
F„, and (7„)No,. Weisberger" proceeds (in the
q- 0 limit only} in a different fashion by first
extracting the pion-pole term from M~, .

(v) Our method shows no initial preference for
pseudoscalar over axial-vector nucleon pole
couplings in M„, yet the former terms appear in
the final form (56). Also the pion-pole form
factor E,(k') is contained in the 9(k') term. Thus
we conclude that (56} is consistent with the usual
dispersion-theoretic approach to photo- and
electroproduction. On the basis of this analysis
we see no necessity for the introduction of fixed
J-plane poles in the dispersion-theoretic ampli-
tudes.

(vi) The solution (56) in effect resolves the
I

"factor of 2" problem. ' ' ' That, is, the pion-
pole structure of (t- g') '(2q„—k„) is not quite
matched by the h~ term in the current-commu-
tator part of the Ward identity (20), the latter
being proportional to (t —p, ') '(q„-k„). The factor
of 2 difference in q„does not, of course, affect
the soft-pion q- 0 limit (23).

V. CHIRAL-SYMMETRY BREAKING

AND THE BJORKEN LIMIT

M„' = —— d~xe""5 ~ A.', V 0
qo

Using the PCAC relation (17), we may convert
(57) to a constraint upon the amplitude of interest,
(56},

qn

f, p' d'xe""5(x,)[a A'(x), V„"(0)],

(58)

where q, -s~ and q fixed means q'-q, '- -~.
To check the model independence of (58), we

set the index v =0 in order to use the model. -
independent current-algebra commutator (18b)
in (58) for M,

This yields

I t M( ) qo (ez gila ~k(0)
q, ~ fr p

,'I ' ', [2mg„(t) + t—k„(t)]y,,
wP

(59b)

where we have applied (24) between on-shell
nucleon spinors to convert (59a} to (59b). On the
other hand, the last (non-gauge-invariant Fi ~)

term in (56) dominates the v =0 amplitude M,
To keep the nucl. cons on mass shell, momentum
conservation, P + k =P '+ q, dictates that ko must

Now we concentrate on obtaining the ehiral-
symmetry-breaking part (7,)o, in (56). First we
observe that for F„defined by (47) and (48),

(i) The non-gauge-invariant parts of 1'„are
pure I: 1', , 7„' as given by (51) and (53).
These terms are independent of chiral-symmetry-
breaking models.

(ii) The gauge-invariant parts of Y„are in I,
and I,: Y„', Y„' . These terms depend upon a
model of chiral-symmetry breaking; e.g. , in the
(3, 3) model they will be proportional to the non-
strange SU, & SU, -breaking quark mass Bz.

Next we recall that since T„=N'M„N as defined
by (15) is proportional to & A. , the chiral limit
~ A. -O must correspond to M, -O. This leads
us natural. ly to a consideration of the Bjorken-
Johnson-Low limit, "qo- i~ with q fixed,
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become large with k fixed when qo becomes large
with (I fixed. That is, k„qo-i~ with t =(p'-p)'
fixed in the Bjorken limit and this necessitates
off-shell electroproduction (and not photoproduc-
tion) kinematics. Thus, setting v=0 in the last
term of (56) with 2qo —ko- qo, q'- -~ with t
fixed, we are again led to (59b}. The other terms
in (56}are damped to zero because k', q'- -~
and E, ; (k'), I",(k') 0.

Having verified the consistency of (58) with (56)
for v=0, we investigate the model-dependent
current commutator in (58) for v=1-3; This will
determine the quantities of interest, Y ", since
these terms are multiplied by q' in (56). Antici-
pating this result we wri. te the general equal-
time eommutat;or in (58) as

5(xo)[S A'(x), V„"(0)]

=g„oie'"8 A'(0)5'(x)

+5"L„' 5~(x)+v'L„5 (x) (60)

with I.„" model dependent. Then equating the
isospin-even terms in (58) to those in (56} as
qp-i, we see that between nucleon spinors,

y(+.o) I (+,o)
P I85 ~

q ~g~ qp

Now Y"„" must be gauge invariant and so we
write

(61)

y(+, o) g(+, o) q2 ~j

summed over the six gauge-invariant electropro-
duction covariants with the dependence upon v,
t, and k' suppressed. But inspecting the E„ in
(7), we see that they all. become large, at least
O(qo) as ko-qo-i~. Thus, since L„as defined
by (60) is. independent of q„we must have I.„
and the E„at qo=i related by

(62)

L(+.o) g g(+, o) (t)If J(q & ) (63)
qo

That is, while I „ is not manifestly gauge invariant,
neither are the K„' as qp 4~ yet they must be re-
lated as indicated in (63). The Z&(t) are c-number
"'Z terms" which contain all the chiral-symmetry-
breaking dynamics.

To obtain the final form of the low-energy theo-
rems (1) from (56) and the above Bjorken limit,
we observe that (61)-(63) imply that

q28(+ 0) (q2) g(+ 0) (t) (64)

1 Im8" '(q")8(")(q') = — — '- dq"
'g q —q

Then (64} corresponds to the sum rule

(65)

lmo(+, o)
q q g(+, o) t

m
j j (66)

At this point we can follow the discussion of Ref.
8, but reformulated in covariant language. One
expects that Im8&(q") is largest in the region of
the vector-meson mass k" =m~', where k' and q'
enter into the four-momentum relation„k'+P =q'
+P', as do k and q, k+P =q+P' —i.e., the mo-
mentum transfer remains fixed, ~ =k —q = k'
—q'=P'-P and t =4'. Thus, we may approximate
Im8& by the resonance (narrow) width form

Im8(+ 0) (q)2) ))(880)5(q52 m 2 ~2}

where we have assumed for simplicity' that m~
for ~, , corresponding to the isovector and iso-
scalar vector-meson states is given by

m, '=30', ' for I+
mp

m, ' = —', (4m' *' —m, ') = 44'(, ' for I, .
(67b)

The form (67a) is not obvious and so we devote
Appendix B to its justification.

Finally, evaluating (62) on mass shell,
8,"(p'} can be found by substituting (67) into
(65) and (66), eliminating the )).; between the two
equations to find

17"" — — — z""t~
q2 ~ p, 2 Pl p'. j

(68)

Given (68}, (1}follows from (56) evaluated on-
shell in a straightforward manner.

The next step is to find an explicit form for the
Z terms in (1}via a model-dependent theory of
chiral-symmetry breaking. Needless to say, the
quark model is most compelling at present. Then
with quark currents defined in terms of quark
fields as

() A'(x) = -m q(x))[.'y, q(x),

V „'(x}= —,'q(x)()).'+3 '~')(.')y„q(x),
J',(x}= ,'q(x)) '&r„q—(x),

(69a)

(69b)

(69c)

the standard (3, 3) commutation relations give'

Thus, 8,"-0 as q'- -~ allows us to assume the
unsubtracted dispersion relations [recall from (51}
the 7„"o have no poles],

5(x,)[8 A'(x), v."(0)]=i)(„,8'"8 A'(0)5'(x)85mx "I((HER)5'*[550'8(0)+0',8(0))+-,'0'„(0) I5'(x). (70)
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at/ ~ a, g ttL„~e~ J~g = ——&„„kJ~g,
qo

(71)

We see again that the I' term in (VO) is model
independent, while the L„"o terms of (60} are
model dependent, proportional in (70) to the non-
strange quark mass m. To extract the Z ' (t)
from (70) via (63), we note that eo„,3 is the
Bjorken 1.imit of the gauge-irivariant covariant
q, 'e, „3)'2~. The L„ terms in ('70) are then
proportional to

part of the problem would be solved. Unfortunate-
ly, this is not the ease, so we must appeal to
SU, -symmetry arguments to determine G3(t) and
G (t) F. ollowing Ref. 8, one explores the U,
structure of G, by working in the baryon rest
frame, where SU6 g requires J', —-6, „A,„',

both being proportional to the spin matrix o„ in
the nonrelativistic static (t- 0) SU, limit. In
this case, d/f = —,

' in (73) with scale 2(P[G,'~P)
=g„(0)= —,'. Then (73) gives (for proton matrix
elements)

(72)

' and once we know the momentum covariants in

(71}, we will be able to express (71) in the form
(63) using the identities (8}.

Foll.owing the notation of Ref. 8, we now expand
the tensor current (69c) in terms of form factors
G; ' (t), analogous to the form factors E, ; (t) for
the vector current. Between nuc l eon spinors
N(p'} and N(p) with a =p'-P, 2P =p'+P, we
write (G,- -G, of Ref. 8).

3 (0) =v 3G', (t)+i(y /)3-& y3)G'(t)/2m

+i (/3 Po-P no)G3(t)/m

+i(y P3 Pyo)G4-(t)/m . Z(')(0) =m, Z( )(0) =-,' m.

G', (o) = 2g&(0) = —.',
G'(0) =—' v3g„(0) = ,' &3, -

G1o(0) =d&N~ —,')1o~N) g„(0)
=.-'(-')'"-'g (o) = -'(-')'"

Applying (76) to (74), one finds'

G,'(0) =-'og~(0) = —,'„
G, (0) =—,'og„(0) = 2 ~

Substituting (77) back into (75a) we see that

(76a)

(76b)

(78)

The SU, decomposition of these form factors is

&&'IG'I&) = 2&& IG3I P) (dd8'iB+f fa'(B) I (73)

where d+f =1. The U, -singlet component G' and
scale &P~G3~P) in (73) are yet to be determined.
Once found, the SU, decomposition of the form
factors G '" in (70) is

Since we have formulated the chiral-symmetry-
breaking problem for electroproduction in the

q, -i ~ limit, the U(3)-SU(6) result (78) can be
most easily understood and generalized by
working directly in the quark model. That is,
the chiral-symmetry breaking commutators can
be expressed as'

Q""=O' C +r G

where

(74a) [i& A, (x), Vv(0}]=--,'im[v, (x), qX3yq]

= -m(u o u +2 hard)6 (3x), (79a)

G 3 G3 Gv (2)1/2GO + ( )1/2G8 (74b)

Finally, we use the e„„3identities (8) to ex-
press (Vl) in terms of the six FNW covariants
(7), thus picking off the Z terms of (63) in the
Bjorken limit for the tensor current (70):

d"o)(t}=m[2G", (t) -G,"(t)t/m'],
g(+, o)

&t) 0

Z," (t) =-mG ' (t)/m,
Z("')(t) =m[G ' (t) -2G '(t)]/m,
g(+. o) (t ) ()

Z,"' (t) = -mG, ~ (t)/m,

(75a)

(75b)

(75c)

(75d)

(75e)

(75f)

where m is the nucleon mass and m the non-
strange-quark mass 2(m„+m„) occurring in the
quark-model. , chiral-symmetry-breaking Hamil. -
tonian H' =m„uu+m„dd+m, ss.

If the tensor-current form factors G,.(t) could
be measured, the chiral. -symmetry-breaking

[ia A3(x), V3(0)] =-im[v, (x), qAoyq/2 v3]
= -—', m(u o'u -2 vd) 5 (x) .

(79b)

(p(u 0'u~ p) =(3 3)u/, 0'u),

(pi2o'dip) =(-', —-'3)u~, cup.

(80a}

(80b)

The sum and difference between (80a) and (80b)
therefore convert (79) to

(p~[iS A3(x), Vv(0}]~p) =-mu~. cud,

(p~[i& A, (x), V3(0)]~p) =-2 )f)ug(ru~.

(81a)

(81b)

Finally, we can identify the right-hand side of

Next we use the fact that the totally antisymmetric
SU(6} (color)-," proton wave function composed of
spin-& quarks has valence fractions of quark spins
parallel and antiparallel to the proton spin sum-
ming up to —,+ —,

' = 2 for up and —,
' + —,'=1 for down

quarks. Then the net helicity distributions parallel
to the proton lead to the quark-proton overlaps
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(81) in terms of the E, covariant for ko=q, -i~
and t = Ikl = Iql =0, for then E,- kyy, - -iqP'.
Application of (60) and (63) to (81) then repro-
duces (78). Furthermore, this method also tells
us that

g(+.o) 2-(+.o) y(+, o) y(+. o) g(+.o) 02 3 4 5 6

As to the t dependence of Zi,"'l(t), models such
as" U(6, 6) have it suppressed as ZI"')1+O(t/m')
and therefore negligible.

(82)

VI. CONCLUSION

We have justified the on-shelL expansion (1) in
terms of the expressions (56) and (68). Equation
(56) is a consequence of the Ward identities of
current algebra (20) and (35), the PCAC rela-
tion (17), and the PCAC expansion of the back-
ground (42), plus a subtle interplay of gauge-
invariance constraints with the pole structures
(t —q') ', (t- p') ', and (q'- g') ' in the axial-
vector amplitude M, „. The form factors G(t),
H(t), 8'(k'), 8'v(k'), and 6', (k') defined in Sec. IV
are nonsingular functions of their argument, t
or k~. As a check on the form (1), we stress again
that (56) becomes the soft-pion result (23) as
q-0, recovering both the FFR'~ and Nambu-
Schrauner" terms. There is no ambiguity be-
tween the dispersive pole and current-algebra
terms.

Chiral-symmetry breaking is embodied in the
C„ term of (42) leading to the F„ term of (47).
The existence of a C„ term is in turn a conse-
quence of the gauge condition (4). In Sec. V, I'„
is related to the chiral-symmetry-breaking equal
time commutator

I
8 4', V",] in the Bjorken limit.

In this limit the isospin I part is consistent with
the on-shell scheme of Sec. IV. The isospinI, o
parts can be expanded in terms of the six gauge-
invariant FNW covariants and chiral-symmetry-
breaking Z terms, vector-meson dominated as
in (68). We invoke the quark model to evaluate

these Z terms in the qo-i~ limit, then leading
to (78) and (82).

What remains to be done is to find the back-
ground amplitudes B; in (1) or q"M„, in (56),
related by

if, 'q"Mt„'„' 'l = PB(" ')(v t k')K' (83)

The dominant resonances in (83) are P»t) (1230),
D„K"'(1520), P„i)t*(1470), and S„N*(1535). In
II' we shall evaluate (83) both in the soft-pion
limit as in Ref. 22 and also for on-shell pions
for threshold photopr'oduction. As the reader
shall. see, the data analysis is in very good agree-
ment with the soft theorems and also the on-shell
low-energy expansions (1). Furthermore, we will
be able to extract the nonstrange-quark mass nz

in a variety of different ways, all giving very
@~A)y the same estimate of rn-1p, .
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APPENDIX A

The gauge condition (4) was derived in the text
as a consequence of PCAC (16) and the vector
Ward identity (19). Since (4) plays an essential
role in our analysis, we wish to stress here that
its existence is independent of current algebra
or PCAC. To show this, we first perform the
indicated differentiation in (3a) and then use
translation invariance to shift the space-time
dependence from the pion operators to the elec-
tromagnetic current to obtain

M„'=i d xp '"" T j', OV„x +iqo5xo,'O, V„'0 -5xo,'O, V„"x (A1)

We contract (A1) with k" by applying the operator i&" to the exponential and integrating by parts. Then
using & V =0 along with translation invariance (to shift the space-time dependence back to the pion quan-
tities), we integrate by parts a second time in order to remove the derivatives from the 5 functions,
obtaining

kM„'= — d xe""5x j', x, V 0 +q' p'x, V", 0 + p'x, V' 0 (A2)

or equivalently

k'M.'=-(q* —IP) f d xe tl(x, )[q!(x))'",("0)]*. , (A3)
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Combining the result (A3) (space-time shifted)
with the model-independent charge-type equal-
time commutator

6(x,)[q,'(0), V ",(x)] =i&'"y', (O)V(x),

we immediately obtain the gauge condition (4).

APPENDIX B

We wish to estimate the dispersion integral in

(65), making use of the fact that Ima&(q") is
large when k' =mz'. Here k'' and q' obey the
same momentum-conservation relation, P +k'
=P'+q', as do the external photon and pion mo-
menta k and q, P+k =P'+q. Put another way,
we wish to fix the momentum-transfer invariant

with & =P'-P =k —q =k' —q' also fixed in the
Bjorken l.imit.

In order to determine q" = g' when k" = mz'
with q' = p', P" =P' = m', & and k' fixed, we work
in the c.m. frame with p = -k = -k' and p' = -q = -q'.
In the Bjorken limit, we take the pion and photon
off their mass shells by varying their energies
with their three-momenta constrained as above.
Then +p P p P'p

'="" k p Q'p kp Qp fixed becomes in
.the c.m. frame

pl p (q
2 ~2 + nt2)1/2 (k 2 k2 + ~2)1/2 (Bl)

Since P,'-P, =k, -q, we can solve (Bl) for q, and
subtracting it from k, we find

[k —(k '-k'+m')'"]
o 2 m2 k2 P o

In a simil. ar fashion, &p can be expressed in
terms of the k' and q' variables as

(B2)

g -m
[k,'- (k,"—m, '+m')~']. (B3)

Equating (B2) to (B3) we obtain

g =mv +(g -k) a
& —mv'/m'
1-k m

k —(k '+m'-k')'"
X o n (843

(k ' + m ' k')"' - (k ' + m' -k')"' '

For k' small, k'«mv', we see from (B4) that
f' —mv'-O(tt, ') for any value of ko. Thus we are
led to the I,orentz-invariant result g =mz + p. ,
used in (67a) with further O(tt') terms neglected
because they contribute to chiral-symmetry-
breaking corrections to O(mp'), which is small.
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