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For virtual photon-photon collisions in electron storage rings we derive the equivalent-photon approximation
from a helicity treatment and present it in two forms, involving, respectively (i) polarized transverse photons
(“transverse-photon approximation”) and (ii) unpolarized ones (“Williams-Weizsicker approximation”). We
first postulate the conditions of validity of the approximation on the basis of analytic considerations, and
then check them numerically in the case of the process ee —eeuw*™u~. For this check we consider the
completely differentiated cross section as far as approximation (i) is concerned, and in the case of
approximation (ii), the cross section differentiated with respect to all variables except the azimuthal angles.
Our results are given in the form of tables showing the lower and higher limit of the error involved in the
approximation for a large variety of kinematic configurations (i.e., energy losses and scattering angles of
both electrons). These tables are discussed in detail, and conclusions are drawn as to the applicability of the
equivalent-photon approximation to future experiments to be performed with high-energy electron storage

rings.

I. INTRODUCTION

Since the time it was suggested to use electron
storage rings for producing virtual photon-photon
collisions,! this idea has always been closely as-
sociated with the application of the equivalent-
photon or Williams-Weizsicker approximation
method.? The advantages of that approximation
procedure are obvious and well known to everyone:
It allows one to obtain rough numerical predic-
tions by means of very simple formulas, thus
sparing effort and time, and even achieving better
physical transparency. Moreover, it may con-
siderably simplify the analysis of experiments,
since it provides the possibility of extracting di-
rectly an approximate cross section for yy - X
from measurements of ee~ eeX.

The question then unavoidably arises: How good
is the approximation? Many authors tried to an-
swer that question,® but obviously a general answer
cannot be given, as the conditions of measurement
will vary widely from one experiment to another.
The problem has become all the more acute since
we know that in general, with present and future
electron storage rings of very high energy (such as
PETRA, PEP, or LEP), electron tagging at 0°
will hardly be possible, sothatthe photons involved
in yy collisions will not be very close to the mass
shell.

Our purpose in this paper is as follows:

(i) To provide a better understanding of the
equivalent-photon approximation by deriving it
from a helicity treatment, and to postulate its a
priovi conditions of validity.

(ii) To perform a numerical check of its validity,
on the basis of the completely differentiated cross
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section of ee - eeX (to begin with), in order to
reach conclusions which are independent of ex-
perimental acceptance and efficiency conditions.

For the numerical check, we use the reaction ee
—eeu' u-. That QED process is both important
by itself (for a calibration experiment) and typical
for hadron production (i.e., ee - eeqq).

In Sec. II we briefly show how the helicity for-
mula is set up for a process ee~eeX. In Sec.
III we define the a priori conditions to be postulated
for the “transverse-photon approximation” (or
polarized-equivalent-photon approximation), i.e.,
for neglecting all longitudinal terms in the helicity
formula. That approximation is numerically
checked in Sec. IV. Thereafter, eliminating some
more terms (the transverse-polarization terms)
by integrating over the azimuthal angles, we stay
with the one-term approximation which is the
Williams -WeizsAcker (or unpolarized-equivalent-
photon) approximation; its numerical check is
shown in Sec. V. A brief conclusion is drawn in
Sec. VI. Full details of calculation are contained
in an Appendix..

II. THE HELICITY FORMULA ee - ceX

The matrix element for the Feynman diagram of
Fig. 1 is written

m’vlucul’yvglugupcaogwyp (2-1)

where [, , c*”, and 7, stand, respectively, for the
electromagnetic current at the left-hand, central,
and right-hand vertex. We now want to define for
either photon a system of polarization vectors, i.e.,
€, and €, respectively (with m, » taking the values
+1 or O, and with the usual properties of normali-

1057 © 1979 The American Physical Society



1058 C. CARIMALO, P. KESSLER, AND J. PARISI 20

FIG. 1. Feynman diagram for the process e¢e— eeX
occurring via the Yy collision mechanism.

zation and orthogonality), associated with the yy
center-of-mass frame. For complete specifica-
tion of such a system, calling the z axis the yy
collision axis, we must still define the y axis. At
the central vertex, we choose that axis orthogonal
to the three-momentum of some selected outgoing
particle X,; at the left-hand vertex, orthogonal to
the three-momentum of particle e {or e,); at the
right-hand vertex, orthogonal to the three-momen-
tum of e’ (or e}).

Calling €,, and €/, the polarization vectors intro-
duced specifically at the central vertex, their
components are given as follows (in order: x, v,
z, and 0 component in the yy c.m. frame):

= —elh =3 = (1,24,0,0),

V2
€5=(0,0,4,,7) (2.2)
€"=(0,0,q5,7")
with
1

= 2 _Nn2 r2
qO—ZMX (Mx R*+Q"?),

1 . 2
qé:m;(sz—le-FQ ), (2.3)

P __q/= (q02+Q2)1/2= (q62+Q12)1/2 ,
where we define My as the invariant mass of X,
and Q%= —¢® (=3% -q,?), Q'%*= —¢'2. The polarization
vectors used at the left-hand and right-hand ver-

7

1 d%

d3 ’ 1 d3
apry,; =(2ﬂ)45*<p0+p5 -p=p' = Z ﬁxi>§(—2ﬂ—)—3 E 2@y Ep, II 227 f&‘

tex are then respectively €, exp(ime,) and
e’ explin(@ - ¢,)], defining (always in the yy c.m.
frame) ¢, as the azimuthal angle between e (or e,)
and X,, and ¢ as the azimuthal angle between e
(or e,) and e’ (or ef).
We now define the “helicity amplitudes”
1 = (—)"‘lu€‘;*e'i’"”1 s Cmn= EMC €IV

m m-uvsn

= =)y € *gmin®=-01) (2.4)
n v n ‘
Introducing the closure relations
B P
gr= 3 (e L1,
" (2.5)

gau= Z (__)n€IU€I*V+ CI'VCI”’
n=n qlz ’

n

substituting those relations into (2.1), using gauge
invariance at each vertex, and taking account of
the definitions (2.4), one is led to

:m~lmc”"' yne'i[”“"x'"“"“’l)] (26)

(with implicit summation over m,n). Defining now
*
Loz=2 lals,

iy 1 = mn . mhk - *
cmm _Z cc ’Rnﬁ_zynyﬁ’

(2.7)

where 2 means summation over the spin states of
external particles at the vertex concerned, one
gets

E I 57!1!2~ L,,,',;,Cm?"'"ﬁRn;. il (m=m)e 1+ (n=7) 0 =0 1 )]
(2.8)

(with implicit summation over m, m,n,#), and
finally for the cross section:

do et

- ° _Cmmenip
dPLI 32E02Q4Ql4 mec er

% @ilm=m)o # (n=7) (0 -0 1)1 , (2.9)

where E is the initial energy of either electron
in the overall c.m. frame (supposed to be the lab-
oratory frame), and the Lorentz-invariant phase
space is defined as usual

(2.10)

i Xi

using the generic name X, for the particles composing the system X, and the symbol E for energy com-

ponents of the various momentum four-vectors.

Using the trivial symmetry properties of L - and R,

- _=C*_
Cmm. nn - Cmm,nﬁ’

, and the Hermiticity of the central tensor, i.e.
one gets the helicity formula in its most general form

s
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32E 2Q4QI4 do,
et dpP,,

+ 2L++ [(Rec++,*-+ Rec--,+-) 0082((ﬂ - <01) - (Imc+¢,+;+ ImC

= L++(C++,++ + C++, -t c . C--, --)R++
1

) sin2(® —¢,)]R,.

EEREES

+2L, [(ReC,_,,+ReC,_ _)cos2¢, —(ImC,_,, +ImC,__)sin2¢,]R,,

+2L, [ReC,_,_cos2¢+ReC, _ , c0s2(2¢, —-¢) -ImC, _,_sin2¢ -ImC, _ _, sin2(2¢, - ¢)]R,

+ longitudinal terms ,

(2.11)

where we call “longitudinal terms” all terms with at least one “0” helicity subscript.
If—following Carlson and Tung®—one sticks to the case of only two particles composing the final system
X, or of an inclusive measurement of “X | plus anything” within that system, one can use the additional

relation provided by parity conservation and rotational invariance (=)™*m*n+%iC

(2.11) is then reduced to the form

32E,°Q'Q"* do
e® dP,

+2L, C,

gk

R, _cos2¢+2L, C

g

vy 1= C oy emome FOrmula

= 2L-r+‘(c++,++ + CH, - )R++ + 4L++(Rec++,+-)R+- cosz(cp - 901)‘*' 4L+-(Rec+-,++)R+*COSZ(p1

R,_cos2(2¢, - @)+ longitudinal terms.

The explicit form of the longitudinal terms can be found in Ref. 4.

I1l. THE TRANSVERSE-PHOTON APPROXIMATION

As is well known, the basic procedure of the
equivalent-photon approximation consists in ne-
glecting the longitudinal contributions [explicitly,
there are still 15 longitudinal terms left in for-
mula (2.12)]. Indeed, for the sake of gauge in-
variance, they tend to vanish when @, @’ go to
zero. But since these parameters cannot become
strictly equal to zero in the process considered,
the question arises: How small should they be?
One obviously must fix some scale; that can be
done in the following way.

Always assuming that we stay in the yy c.m.
frame, and calling z the yy collision axis, the
longitudinal polarization vector of the left-hand
photon can be expressed as

Q Pxq
€£0)=qu3<px“+ 52 qu), (3.1)

where py is the total four-momentum of the system
X. (We here write the helicity index in paren-
theses, in order to avoid confusion with ordinary
covariant or contravariant subscripts). The gauge-
invariance condition for the electromagnetic cur-
rent at the central vertex, with respect to the
left-hand photon, is explicitly written as

qu.C5§QOcov _qsc:w:O' (3-2)

Defining, for the sake of our demonstration,
helicity amplitudes such that helicity is fixed only
for the left-hand (not for the right-hand) photon,
i.e., cfM=¢f™ck, we get from (3.1) and (3.2)

C, = 7 p c, = Cow™= Co . (33)
M qs Xup 5 0 R 3v

r
The magnitude of the ratio between longitudinal
and transverse helicity amplitudes is then given
by

c©
P

c u(t)

Q

=% |Caw
lg,l Ciyp
where ¢, ,= —(1/¥2)(c,, xic,,).

Now we introduce our fundamental assumption,
namely that in general the electromagnetic current
for the process yy -~ X should not be too anisotro-
pic in ordinary three-space, i.e., |cg|= |c,,|,
|ca|- If that assumption is true, the condition
for neglecting the longitudinal helicity amplitudes
becomes @ < |q0|. Similarly, defining helicity
amplitudes with respect to the right-hand photon,
we shall find the condition @’ <<|qg|.

In conclusion, using (2.3) and assuming our
fundamental assumption to be true, all longitudi-
nal terms in formula (2.11) or (2.12) may be ne-
glected, in first approximation, when the inequali-
ties

Ca | (3.4)

2QMy <<|Mx2 ‘Q2+Q'2, ’

ZQ’MX<<PMX2_Q/2+Q2! (3.5)

are both satisfied. .

Actually, there are several different configura-
tions of relative values of @, @/, M, satisfying both
inequalities (3.5). Here we are only interested in
one of them, namely Q,Q’<<M, /2. Defining
€=2Q/M, and €'=2Q'/My, we thus assume the
transverse-photon approximation to be valid for
€,e/<1,

Our assumption of “approximate isotropy” of
the electromagnetic current for yy =X in ordinary
three-space is purely empirical and remains to be -
checked.
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IV. NUMERICAL CHECK OF THE TRANSVERSE-
PHOTON APPROXIMATION

As said above, our checking will bear on the
reaction ee—~ eep' u~ (particle X, of Fig. 1 being
identified, for instance, with u*). We here con-
sider the completely differential cross section,
i.e.,

do K do
dEdQAE'dQ'dQ, ~ dP.;’

o=

where all variables used (E,E’ are energies of
e, e’, respectively; Q,Q’,Q, are solid angles of
e, ¢’, and |*, respectively) are defined in the
laboratory frame. K is a kinematic factor, givenin
the Appendix [formulas (A15), (A16)].

Always in the laboratory frame, we define the
following angles:

9, ¢: orbital and azimuthal angle of e,
T —6',¢’: orbital and azimuthal angle of ¢’ ,
¥, ¢,: orbital and azimuthal angle of u*.

We also introduce x =(E, - E)/E,, x'=(E,- E")/E,.
In addition, we find it convenient to replace our
parameter € by

Q

€= E (xx

R =e+0(€?),

which is more closely related to the experimental
parameters. Similarly we introduce &' =@’/
(E,vxx’). ‘The condition &€,&’ < 1 are equivalent to

r\1/2 7 \1/2
8 < XX 9’<< _;xx___
1-x ’ 1 -x’

(8, 6 in radians).

. —-— = 1 1 1
Our check is performed for &€,&' = 35, &, 15, 3»

and for x,x’=0.1, 0.4,0.7. Asfor ¢ and the va-
rious azimuthal angles, we let them go through a
wide variety of values (¢ being, however, limited
to the range 30°< < 150°). For each configura-
tion of values of x,x’,&,€’, we notice the lower
and higher limit thus found for the error A defined
as

A= (Ea.nprox - Eexact)/aexact .

We find it interesting, in addition, to try two
different types of approximation:

(i) approximation I, where we simply neglect all
longitudinal terms in formula (2.12).

(ii) approximation II where, in addition to né-
glecting all longitudinal terms, we let €,€’ go to
zero in the remaining terms.

Approximation II involves considerably simplified
expressions of the tensor elements (L - ,R -

mm?”" nn?

C .7, and the kinematic correlations used (see

Appendix, part 3); it may also appear logically
more coherent. However, although in principle

all terms neglected in approximation II are still
of order € or €/, a close inspection shows that the
order of magnitude of some of them is given by

€ or €’ times some factor which may become
large in given kinematic situations. Therefore,
we anticipate that errors will in general be larger
in approximation II than in approximation I.

- As for the exact calculation, instead of using
(2.12), we preferred, for simplicity, to apply

the standard method of Feynman-diagram calcula-
tion in QED. That method requires no particular
comment.

The beam energy was chosen as E,=15 GeV.
Actually, above E,~10 GeV (since in all configura-
tions considered one has 4m 2< Q% Q% 4m,*?
<< My?), the lepton masses practically vanish from
the calculation, whether approximate or exact (see
Appendix); then, since there is no longer a mass
scale, our results become independent of E, i.e.,
they depend only on the dimensionless quantities
used: x,x’, €,€ (or 6,6') and the other angles.

These results are shown in Table I. They sug-
gest the following comments:

(a) In both approximations I and II, as expected,
the error limits tend to increase systematically,
in magnitude, with € and €. As functions of either

- of those parameters, keeping the other one con-

stant, they tend to increase rapidly when the other
one is small, and much more slowly when the other
one is relatively large.

(b) Comparing approximation I with II, it is no-
ticed that—again, as expected —I is better than II
in the average (but not systematically).

(c) Comparing the various parts of Table I with
each other, one notices that approximation I be-
comes gradually better when x, ¥’ are increased.
That fact is explained by the “extinction effect”
occurring in the transverse terms, due to polari-
zation [see formula (A26) in the Appendix; as
shown there, that effect is quite strong at small
values of x, x’, and is gradually reduced when they
are increased]. The extinction effect here appears
specifically associated with the dynamics of the
process yy -~ i u~; however, similar effects may
occur in other reactions. As for approximation
II, one also notices some improvement when x,

x’ are both increased. On the other hand, how-
ever, one can see that the approximation becomes
considerably worse when one goes to unsymme-
tric configurations (x’>x), and there especially
when €’ becomes large. The latter fact is basically
due to large errors in the expression of the yy

c.m. emission angle x [formula (A22) or (A23)] and
to the angular distribution in yy - u*u~, which hap-
pens to be particularly sensitive to such errors at
small values of siny.

(d) Generally speaking, whether in approximation
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TABLE I. Range of A = (Gapprox— Texact) /Texact in the process ee —eep’u”, according to ap-
proximation I or II, for various kinematic configurations with fixed values of the electron
variables x,x’; €, €’ (or 6,0’), letting the muon orbital angle ¥ and all azimuthal angles go
through a wide varity of values (30°<¥ <150°). Beam energy E(=15 GeV.

=1k e e €=t
x=0.1, x"=0.1
€ =1l Approx I —Th<A<+ 7% -13%<A<+ 16% =31%<A<+ 43% —75%<A<+227%
Approx II —20% <A<+ 5% =—23%<A<+ 14% —-36%<A<+ 40% —83%<A<+2249
€ =% Approx1 -13%<A<+ 16% —19%<A<+ 24% —36%<A<+ 549 ~T7%<A<+254%
Approx II —23% <A<+ 14% —23% <A<+ 17% —38% <A<+ 42% —83%<A<+228%
€ =% Approx1 —31%<A<+ 43% —36%<A<+ 54% —48% <A<+ 87% —81% <A <+342%
Approx II —36% <A<+ 40% —38% <A<+ 42% —-45% <A<+ 53% —85%<A<+241%
€ =% Approx1 -75%<A<+227% -T7%<A<+254% —81%<A<+342% —91%<A<+770%
Approx II —83% <A <+224% —83%<A<+228% —85%<A<+241% —87%<A<+288%
x=0.1, x'=0.4
€ =15 ApproxI —T%H<A<+ 6% -13%<A<+ 12% —30% <A<+ 29% -68% <A <+101%
Approx II —-8% <A<+ 8% —11%<A<+ 9% —-26%<A<+ 18% —63%<A<+ 66%
€ =4 ApproxI -13%<A<+ 11% ~19%<A<+ 18% —35%<A<+ 37% —69%<A<+116%
Approx II —-23% <A<+ 25% —24% <A<+ 24% -27%<A<+ 29% —-64% <A<+ 74%
€= Approx1 —29%<A<+ 32% -34%<A<+ 40% —46%<A<+ 62% —T2%<A<+164%
Approx II —58% <A<+ 83% —59%<A<+ 81% —60%<A<+ 84% —57%<A<+ 98%
€ =% Approx1 —62%<A<+137% —64%<A<+152% —68%<A<+199% —80%<A <+440%
Approx II —95%<A<+373% —96%<A<+369% —95%<A<+368% —87%<A<+391%

€ =1 Approx I

Approx II
€ =% Approx I

Approx II
€ =4 Approx I
Approx II
Approx I
Approx II

€ =1k Approx I

Approx II
€ =4 Approx I

Approx II
€ =4 ApproxI
Approx II
Approx I
Approx II

€ =1k Approx I

Approx II
€ =4 Approx I
Approx II
€ =4 Approx I
Approx II
€ =% ApproxI

Approx II

-3% <A<+ 4%
-11% <A<+ 10%
-Th<A<+ 7%
—-29% <A<+ 34%
-17% <A<+ 18%
—-T1%<A<+115%
—-41% <A<+ 53%
—92% <A <+559%

—5%<A<+ 6%
5% <A<+ 5%
—-10% <A<+ 11%
~11% <A<+ 11%
—23% <A<+ 299
—27% <A<+ 33%
—57%<A<+112%
—-72% <A <+127%

—-3% <A<+ 3%
~-11% <A<+ 6%
—5%<A<+ 6%
~-14% <A<+ 139
-13% <A<+ 13%
-35% <A<+ 41%
-37% <A<+ 39%
—85% <A <+169%

x=0.1, x'=0.7

—-6% <A<+ 79
-12% <A<+ 10%
-10% <A<+ 11%
-30% <A<+ 33%
—-19% <A<+ 22%
—72% <A <+114%
-43% <A<+ 56%
—-94% <A <+557%

x=04, x'=0.4

-10%<A<+ 11%
-11% <A<+ 11%
—14% <A<+ 17%
-12% <A<+ 14%
—27% <A<+ 36%
-29% <A<+ 349
—59% <A <+123%
-72%<A<+129%

x=0.4, x'=0.7

-5%<A<+ 6%
-12% <A<+ 8%
8% <A<+ 8%
-15% <A<+ 14%
-15% <A<+ 16%
-36% <A<+ 40%
-39% <A<+ 429
~-86% <A <+166%

-15% <A<+ 16%
-18% <A<+ 14%
-18% <A<+ 20%
~30% <A<+ 32%
-26% <A<+ 32%
-72% <A <+112%
—47% <A<+ 63%
-92% <A <+552%

—23% <A<+ 299
—27% <A<+ 33%
—27% <A<+ 36%
-29% <A<+ 34%
-36% <A<+ 57%
—-32% <A<+ 429
-64% <A <+158%
—T4%<A<+134%

~12% <A<+ 12%
-17% <A<+ 19%
~14% <A<+ 15%
-19% <A<+ 21%
—21% <A<+ 22%
—-37h <A<+ 45%
—42% <A<+ 52%
—86% <A <+168%

—-40% <A<+ 519
-35% <A<+ 449
—42% <A<+ 55%
-33% <A<+ 53%
—48% <A<+ 66%
—67%<A<+137%
-61% <A<+ 78%
—88% <A <+609%

—57%<A<+112%
—T72% <A <+127%
—59% <A <+123%
—72% <A <+129%
-64% <A<+158%
~-T74%<A<+134%
—T7%<A<+285%
—T76% <A <+195%

-34% <A<+ 33%
—-31% <A<+ 68%
~36% <A<+ 35%
-31% <A<+ 69%
—41% <A<+ 449
-35% <A<+ T7%
-54%h <A<+ 95%
-82% <A<+214%

1061
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TABLE 1. (continued)

oL =i
€=T100 €=3¢

m|
il
=S
m|
1
e

x=0.7, x'=0.7

€ =1k Approx I —2%<A<+ 3% —4%<A<+
Approx II —-8%<A<+ 5% —9%<A<+
€ =4 Approx1 —-4%<A<+ 5% —-6%<A<+
Approx II —9% <A<+ 9% —-10%<A<+
€ =4 ApproxI —10%<A<+ 11% -12%<A<+

Approx II —-20% <A<+ 24% —-21%<A<+
—26% <A<+ 29% —-28% <A<+
Approx II —51% <A<+ 90% -52%<A<+

]

€ =% Approx I

5% —10%<A<+ 11% —-26% <A<+ 29%
9% —20%<A<+ 24% —51%<A<+ 90%
7% —-12% <A<+ 13% -28%<A<+ 32%
10% —21%<A<+ 249 —52% <A<+ 90%
13% -17%<A<+ 19% -32%<A<+ 38%
24% —23% <A<+ 29% —54% <A<+ 95%
32% -—-32% <A<+ 38% -—-43%<A<+ 54%
90% —54%<A<+ 95% —53%<A<+135%

I or II, if one wishes to keep the errors smaller
than, let us say, a factor of 2, one must restrict
€,€ to values lower than some limit &, < 5.
That restriction means that one should stick to
rather small electron scattering angles; for in-
stance, when x =x’=0.1, one thus gets the limit
Onax= 6hax = 10 mrad.

We conclude that, for predicting or analyzing ex-
perimental results, the transverse-photon approxi-
mation (involving the possibility of separating the
various polarization terms in the analysis provided
one has relatively high statistics) can only be ap-
plied validly, in practice, when an electron-tagg-
ing device at 0° is used.

V. NUMERICAL CHECK OF THE WILLIAMS-
WEIZSACKER APPROXIMATION

If we wish to go one step further in our approxi-
mation, i.e., to keep only the first, “unpolarized,”
term in formula (2.11) or (2.12), there is an ob-
vious condition to be satisfied: Namely, we should
be able to integrate fully, between O and 27, over
both relative azimuthal angles ¢ and ¢,. Since in
first approximation those angles are equal to the
corresponding relative azimuthal angles in the
laboratery frame [formulas (A20),(A24)], the
following experimental condition must be fulfilled:
At least both electron-tagging devices—and not
necessarily the “central detector” —should have
cylindrical symmetry, i.e., uniform efficiency
and no limitation of acceptance.

With that assumption, we shall consider the
differential cross section

a:f Gdodo’

_ do
" dEd(cosb)dE’' d(cos ¢’ )asy,

to which the one-term (Williams-Weizsicker) ap-
proximation can be applied. That approximation

allows one to extract directly the unpolarized dif-
ferential yy cross section from an experimental
measurement. It should however be remarked that
such a cross section is for off-shell photons,
which means that it may be different from the cross
section of two colliding free photons. Indeed, if
(in addition to Mx) another mass scale is occurring
in the yy process —for instance, according to the
vector-dominance model—one may have to intro-
duce a “form factor”

oyy(szQ,2)= 0'77(05 O)F(Qz’le) .

Possibly, in the analysis of an experiment, the
value of ¢,, on shell might then be determined by
extrapolation.

In the Table II, where the Williams-Weizsicker
approximation will be numerically checked, we
use the same values of x,x’,€,& as in Sec. IV.
For each configuration of those parameters, we
let ¥ vary between 30° and 150°, and we notice the
lower and higher limit found for the error, i.e.,

for
A= (6approx - 6calec:\‘.)/(-7e:(at:t .

Again, we consider two different approximations:
approximation I where we simply neglect all terms
other than the first one in formula (2.12), and
approximation II where, in addition, we let € and

€’ go to zero in the remaining term. Actually, it
must be noticed that approximation I cannot be

used for analyzing an experiment, because the
integration over azimuthal angles of the electrons
destroys the exact kinematic correlations occurr-
ing in the Lorentz transformation between the labo-
ratory frame and the yy c.m. frame. Therefore
approximation I is not very useful by itself. Never-
theless, it may be interesting to compare both
approximations with each other, in order to real-
ize to what extent the errors involved in the
Williams -Weizsicker approximation are due, re-
spectively, to the neglect of longitudinal terms
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TABLE II. Range of A =(Gapprox— Texact) /Texact in the process ee —eep’n”, according to ap-
proximation I or II, for various kinematic configurations with fixed values of x,x’; €, €’ (or
0,0’), letting ¥ go through a wide variety of values ranging between 30° and 150°. Beam en-
ergy Eg=15 GeV.

= = = e
] x=0.1, x =0.1
€ =1l Approx I —1%<A<+ 1% —-1%<A<+ 1% -1%<A<+1% =-7%<A< 0
Approx II —-1%<A<+ 1% =1%<A<+ 1% -4%<A<+ 1% —-33%<A<+ 5%
E'=-§I6 Approx I -1%<A<+ 1% -1%<A<+ 1% -1%<A<+ 1% -Th<A< 0
Approx II —1%<A<+1% =-1%<A< 0 -3%<A<+ 1% -33%<A<+ 4%
€ =% Approx1 —1%<A<+ 1% —1%<A<+ 1% —2%<A< 0 -T%<A< 0
Approx II  —4%<A<+ 1% -3%<A<+ 1% -3%<A< 0 —33% <A<+ 29
& =% ApproxI —7%H<A< 0 -T%h<A< 0 -7T%h<A< 0 =T <A<+ 19

Approx II —33% <A<+ 5% —33%<A<+ 4% -33%<A<+ 2% —-26%<A<-6%
x=0.1, x'=0.4

€’ :Ta—o ApproxI 1% <A<+ 1% -1%<A<+ 1% -1%<A<+ 1% -7%<A< 0
Approx II  —1% <A<+ 1% =1%<A<+ 1% —1%<A<+1% —4%<A<+ 1%
€ =4 ApproxI —1%<A<+ 1% =1%<A<+1% =1%<A<+1% =T%h<A< 0
Approx I —=2%<A<+ 1% —2%<A<+ 1% -1%<A<+ 1% -4%<A<+ 6%
€ =3 ApproxI —1%<A<+ 1% -1%<A<+ 1% —1%<A<+ 1% —T%h<A<+ 2%
Approx II —12% <A<+ 1% -12%<A<+ 1% -12%<A< 0 5% <A<+ 3%
€ =% Approx I —6%<A<+ 1% —6%<A<+ 1% —6%h<A<+ 1% —23%<A<+ 19

Approx II —54% <A<+ 1% =54%<A<+ 1% -51%<A<+ 1% —-28%<A<-3%
x=0.1, x'=0.7

€ =1 Approx I -1%<A<+ 1% -1%<A<+ 1% -1%<A<+1% =~5%<A< 0
Approx I =1%<A<+ 1% =1%<A<+ 1% -1%<A<+ 1% 0 <A<+ 7%
€ =4 Approx I =-1%<A<+ 1% -1%<A<+ 1% =-1%<A<+1% -5%<A<+1%
Approx I —=-3%<A<+ 1% =-3%<A<+1% —-2%<A<+1% 0 <A<+ 6%
€ =4 Approx I -1%<A<+ 1% =1%<A<+ 1% =-1%<A<+1% —5%<A<+ 3%
Approx II —-21% <A<+ 1% =21%<A<+ 1% =20%<A<+ 1% -12%<A<+ 4%
€ =% Approx I —8% <A<+ 1% —8%<A<+ 1% —-8%<A<+ 2% -18%<A<+ 6%

Approx II —49%<A<+45% —48%<A<+46% —4T%Hh<A<+47% —-32%<A<+66%
x=0.4, x'=0.4 ’

€ =1l Approx1 —-1%<A<+ 1% =-1%<A<+ 1% -1%<A<+1% -6%<A<+ 1%
Approx II  =1%<A<+ 1% =1%<A<+ 1% =2%<A<+ 2% =-19%<A<+ 7%
€= Approx I —1%<A<+ 1% -1%<A<+ 1% -1%<A<+1% -6%<A<+ 1%
Approx II  =1%<A<+ 1% —1%<A<+ 1% —2%<A<+ 1% -19%<A<+ 7%
€ =7 Approx I -1%<A<+ 1% -1%<A<+1% -2%<A< 0 =Th<A<+ 1%
Approx II —2%<A<+ 2% —2%<A<+ 1% —-2%<A<+1% -18%<A<+ 6%
€=% ApproxI —6%<A<+ 1% —6%<A<+ 1% —T%h<A<+ 1% =11%<A< 0

Approx II =19% <A<+ 7% =19%<A<+ 7% -18%<A<+ 6% -11%<A<+ 1%
x=0.4, x'=0.7

€@ =15 Approx1 —1%<A<+ 1% -1%<A<+ 1% -1%<A< 0 —5% <A< 0
Approx II  =1% <A<+ 1% =1%<A<+ 1% ~-1%<A<+ 2% -1%<A<+ 8%
=% ApproxI -1%<A<+ 1% -1%<A<+ 1% -1%<A<+1% =5%<A< 0
Approx II ~1%<A<+ 1% =1%<A<+ 1% —-1%<A<+1% -1%<A<+ 8%
(€ =75 Approx1 —1%<A<+1% ~-1%<A<+1% -1%<A<+1% -5%<A< 0
Approx II —4%<A<+ 2% —4%h<A<+ 2% -3%<A<+ 2% 0 <A<+ 6%
€ =% Approx1 —7%<A<+ 1% —T%<A<+ 1% =7%<A<+ 1% —-9%<A<+ 5%

Approx II —35%<A<+ 7% —35%<A<+ T% =33%<A<+ 7% -18%<A<+ 8%
x=0.7, x'=0.7

€ =1 Approx I  —1%<A<+ 1% =1%<A<+1% -1%<A<+1% —-4%<A< 0
Approx II  —1%<A<+ 1% -1%<A<+ 1% -1%<A<+2% -3%<A<+10%
€ =4 ApproxI —1%<A<+1% —1%<A<+1% =-1%<A<+1% -4%<A< 0
Approx II -1%<A<+ 1% —1%<A<+1% -1%<A<+ 2% =3%<A<+10%
& =% Approx1 —1%<A<+ 1% =1%<A<+ 1% =1%<A< 0 —5%<A< 0
Approx II  —1%<A<+ 2% -1%<A<+ 2% 0 <A<+ 2% =2%<A<+10%
E’:%- Approx I —4%H<A< 0 —-4%<A< 0 -5%<A< 0 -8%<A< 0

Approx II —3%<A<+10% =3%<A<+10% -2%<A<+10% +8%<A<+13%
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and transverse-polarization terms, or to the ad-
ditional simplifications made inside the remaining
term. ‘

It is easily seen from our analytic formulas that
now all terms neglected are of second order in
€,€’, so that we may expect considerable im-
provements with respect to Table I. On the other
hand, it may be anticipated here again that ap-
proximation II will in general be worse than I,
because the additional simplifications contained
in IT imply, in some kinematic situations, that one
neglects terms of the order of €2, or €2, times
some large factor. )

The results shown in Table II suggest the fol-
lowing comments:

(a) There is indeed a striking improvement in
both approximations with respect to Table 1.

(b) Approximation I is excellent everywhere.

" Approximation II is generally somewhat worse,
and becomes much worse—here again—in cases
where x’>x and € is large. Again, this is due to
relatively large errors involved in the expression
of X, which reflect themselves quite strongly in
particular when siny is small.

(c) sticking to the more useful approximation II,
we conclude that, if we wish to keep the errors
within a factor of 2, we may now go up to €_,,=
€ ~7%; for instance, when x=x'=0.1, that means:

max 37
=0 ~9°
gmax" oma.x 2%

VI. CONCLUSION

We hope that, in this work, we have somewhat
clarified the understanding of the nature and
mechanism of the equivalent-photon or Williams-
Weizsacker approximation. It is a powerful but
delicate tool, and must be handled with great cau-
tion. Any misuse might lead to considerable er-
rors of prediction or analysis.

It appears that, from the point of view of the
quality of the approximation, there is a decisive
advantage in favor of electron-tagging systems at
0°, i.e., at angles less than a few milliradians.
Tagging devices at larger angles will probably not
allow one to perform a detailed analysis (of angular
distributions, in particular) inthe extremely simple
way provided by the Williams-Weizsacker approxi-
mation. )

Certainly, the limits of error will be reduced
(through cancellation between positive and negative
values of A) by integrating over the full range of
the central detector. How far they will be reduced
depends on the specific acceptance and efficiency
parameters in a given experiment.

It is clear that our study is by no means exhaus-
tive. We here considered only the case of double-
tagging experiments. As far as single-tagging or

no-tagging measurements may be contemplated (in
spite of background problems and other difficul-
ties), it would be interesting, as well, to check the
approximation for such measurements. It might be
useful, on the other hand, to examine processes
other than muon pair production, with a dynamic
structure as different as possible (e.g., resonance
production).

As a last remark, we would like to stress the
increasing importance of radiative corrections
(mainly at the electron vertices) with growing
machine energies; those corrections were ig-
nored here. As far as virtual-photon and soft-
photon corrections are concerned, they will only
change the vertex functions (the tensor elements
L = and R,; in this paper). On the other hand,
when the emission of hard photons must be in-
cluded, some of the kinematic correlations used
here will be disrupted, and a different study will
be required.

To combine the equivalent approximation with
radiative corrections is a difficult but urgent task
for the future. A step in that direction has been
done recently.®
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APPENDIX: DETAILS OF CALCULATION
1. Dynamics

We here use the four-dimensional helicity scheme
set up by one of us (P.K.).® In that schéeme, the
full process ee— eeX (with one of the outgoing
particles, X,, especially selected) is represented
by the diagram of Fig. 2 where the four “vertex
planes” (L), (R), (C), (C’) correspond respectively
to the “elementary processes” e,~ ey, e;—~e'y’,
yy'=X, X=X, ++++, The rotation angles a, a’,
and x are connecting respectively, as shown in the
figure, (L)with (C), (R) with(C), and (C) with
(C"). One notices that o, o’ are space-time rota-
tion angles (they are the arguments of hyperbolic
instead of ordinary cosines and sines), whereas X
is to be identified with the emission angle of X,
in the yy c.m. frame. It may also be remarked that
the azimuthal angles ¢ and ¢, have an extremely
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The expressions (in terms of lab variables) of

Q% @', and of the hyperbolic functions of a, a’

will be given below [formulas (A7), (A8)].
Considering the case X=p*u~ (X, =u*), we also

nitions

z=M 2+Q2+QI2 A=ZZ_4Q2Q/2,

= ?1'(2 - .B_A cos X) )

give the expressions of the tensor elements C
occurring in formula (2.12). Introducing the defi-

B=(1-4m 2/M>) 2, u=5M,?B%sin%,

mm nn

we get
FIG. 2. Four-space representation of the process ee C,, ..+C,, ..= —42- [w(zz —w) - (w - 2uz)?
— eeX occurring via the Y collision mechanism. w
_ zuZZ(QZ + Qr2)+ (27/{) _ ZZ)QZQ /2] ,
simple interpretation in our scheme. They are the
rotation angles connecting respectively hyperplane C 4 9 2
i1 zZ
(L, C) with hyperplane (C,R), and hyperplane (L, C) , w uzl2(w - uz) - @],

with hyperplane (C,C’).

The tensor elements L - and R, ; needed here C __ A 9 2
P - 4 —Uz) - A3

(see Sec. II) are easily calculated: ’ 7 uz[200 - uz) - Q%] (A3)

L., =Q*cosh®a+1)+4m ?sinh’a,

¢ (Al) 8 2 212
L,_=—(Q® +4m >?) sinh’a, Corpom = o - u2)* ~ wQ*Q "],
+ - e )
R..=Q"(cosh®a’+1)+4m ? sinh’a’, (A2)
-2 2.2
R,_=-(Q”+4m ?)sinh®a’. Coerm- e LE
_J
2. Kinematics
(a) Expression of the dynamic variables used as functions of the lab variables
The laboratory variables being defined as in Sec. IV, one gets
- E)?
Q*=Q,2+4E,Esin®0/2, Q2=m} i“%—E—)- , (A4)
0
E —-E’ 2
Q™?=QF+4E,E'sin®0"'/2, QF=m} E-E) Wy ) , (A5)
0
My?=4(E, — E)(E,~E") = 2EE’[1 - cosf cos8’ + sinf sind’ cos(¢’ ~ ¢)], (A6)
2 _ 2 4EE-—E' E(E. - E") - 2_2 2] _ 212
sinh2a= 4é?+ 47202) 0( 0 )[‘i\. 0( 0 ) MX Q +Q ] MX Q , COShZC(:Sinhza-i' 1’ (A7)
e
2 _ 72 - E E _E)- 2_ ” 2__ 212
sinhza’= 4éQ,2+4m02) 4E0(E0 )[4E0( X ) MX Q +Q ] MX Q COShZQ’=Sinh2d’+ 1 s (A8)
16E;2EE’ sinf sinb’ sin(¢’ — ¢)
sing = AVHQ%+ 4m F)P3(Q "+ 4m F)/® sinha sinha”
_[zcoshacosha’ 8E(E+E")+My*-Q*— ] v
cos<p—[ 007 - @+ im 2)1/2(Q’2+4m 2)1,2 2 sinha sinha’ (A9)

Finally, we must give the expressions, in laboratory variables, of the cos and sin functions of x and ¢,.
They will involve the parameter E, (the energy of u* in the laboratory frame) which is not an independent

variable. From energy-momentum conservation, one gets

Ex M2+ pylMy* — 4m 2(Ey2 — py®) /2
1~ 2(E 2 5)(2)

E =

(A10)
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using the definitions
E,=2E,—-E—-E’
~x 0 ’ (A11)
Dx=—E[cosb cosy+ sind siny cos(¢p, — ¢)]+ E’[cosd’ cosy — sind siny cos(¢p’ — ¢,)].

When My*>4m *E,*, only solution + is acceptable for E;; when My®*<4m ,*E,* and p,>0, both solutions +
must be taken into account. [We notice that there is no solution inthe case My2<4m 2E,? 5, <0, and also,
obviously, in the case My* <4dm 2(Ex% - px?).]

Defining also B8, =(1-m ,2/E,?)'2, one gets

My -Q2+Q"” - 4E1{E0(1 — B, cosy) - E[1 - B, cosb cosyp — B, sinf sinp cos(p, — ¢) ]}

cosy = BALTZ ’
(A12)
o 4E,EEX
sing, = A1/2(Q2+ 4m62)1/2u1/2 sinha ’
with
X=-(1-cosb)B, sinyE’ sinf’ sin(¢’ ~ ¢,) + siné(1 - B, cosy)E’ sinb’ sin(¢p’ - ¢)
+5inf B, sing[2E, - E’(1+ cos6’)]sin(¢, — ¢),
cosg, = L
17 2ATHQ% + 4m 7)) Fsinha ’ -
with

Y=2AY2E{2E, - E’[1+ cosé cos8’ — sind sind’ cos(¢’ $)]=2E,[1 - B, cosb cosyp — B, siné siny cos(¢, — o) ]}
—B cosx[4E|(E, - E")My® - Q>+ Q") - Myz].

(b) Phase space ;

The Lorentz-invariant phase space for the four outgoing particles is transformed (taking account of en- -
ergy-momentum conservation) into

dP.;=KdEdQJ4E’'dQ'dQ, , ‘ (A14)
using
EE’ 2E
K=-2E B L, (A15)

16(27)° 2B,E,~bE—b'E"’
where we define

b= B, - cosb cosy - sinf siny cos(¢p, — ¢),
(A16)
b’= B, +cosb’ cosy - sind’sinPcos(dp’ - ¢,).

It is to be noticed that, in our kinematic formulas, as well as in the dynamic expressions (A1)—(A3), trivial
simplifications occur when 4m ?<< Q% Q" on the one hand, and 4m ,><<M,? on the other hand.

3. Simplifications for €,e' ~> 0
Using in particulaf the simplified definitions
z2=AY2=M 2 w=1M*1 - B2cos’y),
formula (A13) now becomes
Con ot C.,om ELLLZE S L0 tY)]
c -C __ 8B%(1 - p?) sin’)x
w+-= 0ol s A= BZcosH)? ’ (A17)
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o Bu-pp
*5+=" T = BPcosy)?’
c 88*sin*y

T T (T B eos)
Formula (A6) simply becomes

My?=4(E, - E)(E,— E’). (A18)
Formulas (A7), (A8) are now transformed into

4Q% - Q) EE 4Q" - Q) E B’

sinh®q = @+ 4n DB, - EF’ sinh®q’= @7+ am HE,~EF (A19)
As for formula (A9), it is simply replaced by

p=¢'-0¢. (A20)
Instead of (A11), we now have

Ey=2E,~E-E’, py=(E’'-E)cosp. (A21)
Formula (A12) is replaced by

Bcosx=1- % (1 - B, cosp), (A22)
or by the equivalent and slightly simpler relation

B siny = % B, siny. (A23)
Instead of (A13), one simply gets

Q=d-¢. (A24)
Finally, (A16) is replaced by

b=p,—cosb, b’'=p,+cosb’. ‘ (A25)

To conclude, it should be remarked that, here again, considerable additional simplifications occur
when 4m ? < @%,Q"%, 4m ,><M,®. Assuming both these conditions realized, one gets the transverse-photon
approximation in the form

_ et
0= S3migigh KI2LCuy et oy IR+ 2L, C. R, cOS2(26, ~ ¢ ~ 9)]
o 1
‘”4 E02[2Eo - E(l - COSIP) + E’(1+ coSzp)]ZeZe erxl
x’ ’ x'? Z—Sinzx , ,]
X [<l—x+ *2—)(1 -X"+ ~2—>~—S~l_l‘—1§)?— ——(l—x)(l -X )(3032(2(1)1 - qﬁ_ ¢ ) R (A26)
with
’
sin?y = 4(E, - E)E, - E’) sintp. wa

[2E, - E(1 - cosp) — E'(1+cosy) ]

In formula (A26), one clearly observes the “extinction effect” mentioned in Sec. IV; it occurs at small
values of x, x’, when x=~90° and c0s2(2¢, — ¢ — ")~ 1,
The Williams-Weizsacker formula is then obtained. in the form

4t (1-x+x22/2)(1 = x"+x2/2) 2 — sin®y

~_ A
o= E2[2E, — E(1 - cosy) — E'(1+ cosp) 676 2xx’  sin®y (428)
It can be checked that one gets this formula as well by setting
- do do,, dw
E 2 ry = 2 = Hoa? ’ b d 1 A29
0 800 = G vaearan, N N, 00 I e (A29)
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(where w, is the solid angle of u* in the yy c.m. frame), using the standard expressions of the Williams-
Weizsicker spectra
200 1~ 2 20 1—x' 2 o
Nlx, g)=2%2 1-x+x2/2 , N'(x’,0")=22% _.__x_,i’,i_/_z_’ (A30)
T 6x T 6'x
and in addition
do. a? 2 -sin®y
Sy = 275X
dw, My® sin%y ’ (A31)
) .
dw, _ My (A32)

a9, [2E,- E(1-cosy)— E'(1+cosp)F

As a last remark, we notice that when X goes to zero sin’x must obviously be replaced by sin®*+ O(m ,%)

in the denominator of formula (A26) or (A28).
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