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where D;~, D,5& are dipoles of vector and axial-vector
currents defined as in (2.39).

Sandwiching again between an Al state at rest and
the vacuum, one obtains

[Q5 D,P]=.D,. v (84)

The contributions are graphically depicted in Fig. 3. If
the pion contribution is negelcted in the spirit of the
arguments of Sec. IV, relation (4.10) is obtained.

I.et us use
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2mp f~ mg mp m++mp

P H YSI CAL REVIEW' D VOLUME 2, NUMBER 15 SEPYEMBFR 1970

Set of Crossing-Symmetric Dynamical Etluations and Infinitely
Rising Regge Trajectories*

Lovis A. P. BULLA'zsf

Department of Physics, University of California, I.os Angeles, California QOOZ4

(Received 26 March 1970}

An equation based on unitarity and analyticity is written down. It is a relativistic generalization of a
Schrodinger equation with a local energy-dependent potential of the Yukawa type, in contrast to the usual
Mandelstam equations, which correspond to a nonlocal energy-independent potential. A prescription is
given for our potential, which makes the amplitude exactly crossing symmetric. It is argued that a first guess
at the potential might simply be to take the low-energy crossed-channel resonances of the Veneziano model.
The cutoff on the number of resonances is then an undetermined parameter, which, however, merely serves
to fix the energy scale in the limit of a vanishingly small pion mass, A determinantal approximation to our
scheme (which differs from the determinantal. approximation to the usual N/D equations) is then found to
lead to Regge trajectories which rise indefinitely. The I=1 output resonances agree approximately with the
input ones, average duality is found to be satisfied, and the P-wave scattering length comes out close to the
Weinberg value. These results do not change much, at least at low engeries, even if a strong dose of inelas-
ticity is introduced.

I. INTRODUCTION

N amplitude has been proposed by Veneziano

~

~

~

~

~ ~ ~

which has linearly rising Regge trajectories,
crossing, and duality. ' Unfortunately, it depends on a
number of arbitrary parameters. Indeed, this number
becomes infinite if satellites are admitted. Since the
Veneziano model does not satisfy unitarity, however, it
might be hoped that this condition could be used. to
determine some, if not all, of these parameters. Now, in
practice it is generally difficult to do this without
sacrificing crossing. But it is always possible to vary the
parameters of a unitary model until at least approxi-
mate partial crossing is achieved. One can then see how

closely the resulting amplitude resembles the Veneziano
model.

Numerous relativistic models based on unitarity and
analyticity have been proposed over the years. Most of
them are based on the Mandelstam representation with
a finite number of subtractions' and diGer only in their
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treatment of short-range effects. The most ambitious
has been the strip approximation of Chew and Frautschi, '
which satisfies crossing exactly, at least in principle.
The difhculty with practically all of these models is that
they do not lead to trajectories which rise very high. It
is generally hoped that the addition of higher channels

might change this (although doubts have recently been
thrown even on this'). 8ut this is diKcult to implement
in practice. In some sense, it is done in the multi-Regge
integral equation approach, ' which amounts to the
inclusion of an infinite number of channels. However, it
has been shown' that Regge trajectories are bounded by
an s'" behavior at infinity in this model, in contrast to
their linear behavior in the Veneziano model. It might
therefore be desirable to look at alternative models.

Two such schemes have recently been proposed. ~ Each

3 G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961).
'P. D. S. Collins and R. C. Johnson, Phys. Rev. 182, 1755

(1969).
5 G. F. Chew, M. L. Goldberger, and F. E. Low, Phys. Rev.

Letters 22, 208 (1969);I. G. Halliday and L. M. Saunders, Nuovo
Cimento 60A, 115 (1969).

'C. I. Tan and J.-M. Wang, Phys. Rev. Letters 22, 1152
(1969).' L. A. P. Balazs, Phys. Rev. 1'76, 1769 (1968).
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I.et us begin by considering the nonrelativistic
Schrodinger equation with an energy-dependent local
potential

(2.1)

Ct' ~(t', s)r 'e "~". (2.2)

Another example of such a generalization, at least in a per-
turbation theory context, was discussed by A. A. Logunov and
A. N. Tavkhelidze, Xuovo Cimento 29, 380 (1.963).This equation,
however, has certain spurious singularities, as was shown by R.
Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966). This
makes it unsuitable for our purposes.

' R. Dolen, D. Horn, and C. Schmid, Phys. Rev. Letters 19, 402
(1967).

is a simple relativistic generalization of a Schrodinger then be to take the input truncated absorptive part
equation with an energy-dependent superposition of from the Veneziano model as a first guess. If we then
local Yukawa potentials. By contrast, the Madelstam- solve the unitarity equation, we will not in general
Chew-Frautschi prescription corresponds to a nonlocal obtain the same Regge trajectory as in the Veneziano
energy-independent potential in the nonrelativistic model. But if we vary the Veneziano parameters, we
limit. In an S-matrix approach, there is really nothing to may hope to find a set for which this is approximately
choose between the two, since they turn out to give the the case, at least at low energies, in the direct channel.
same analyticity structure. The differences arise only The resulting amplitude would then be unitary and at
for more distant singularities (short-range effects) which the same time approximate the Veneziano amplitude.
cannot be calculated in present-day physics anyway. In The program we have just described is applied to I= 1
the case of something like single-particle exchange, mx scattering in Sec. V. Experimental values are taken
however, our potential turns out to give better con- for the input Veneziano parameters and the unitarity
vergence than the Mandelstam-Chew-Frautschi po- equation is solved by the determinantal approximation
tential. One might thus invoke something like a of Sec. IV. The cutoff which truncates the absorptive
"principle of maximal convergence" in choosingbetween part is fixed by the requirement that the output p
them. resonance have the same mass as the input; since the

In Sec. 5 of Ref. 7, a prescription was given for the pi.on mass is negligibly small in this problem, this
potential which would make the Bethe-Salpeter ampli- parameter essentially serves to fix the energy scale of
tude crossing symmetric. A similar thing can be done the problem. It is then found that the output resonances
with the unitarity equation. Of course, we can always agree roughly with the input ones lying on the leading
add to such a potential any other crossing-symmetric trajectory, so that we do indeed have approximate
function. We shall see that such a function has to be partial crossing. These results are not changed much by
nonsingular in the Mandelstam strip regions if unitarity the introduction of a strong inelasticity factor, at least
is to be satisfied, however. at lower energies.

In the present paper, we concentrate on the unitarity The output resonances of Sec. V correspond to a
equation, which was mentioned only briefly in Ref. 7. rising Regge trajectory in the entire range of interest. In
In Sec. II, it is set up by analogy with an on-shell Appendix A it is shown that it actually rises to infinity.
dispersion formulation of nonrelativistic scattering with Another property which this trajectory possesses is that
a local energy-dependent potential. It is argued that of approximate duality in the original Dolen-Horn-
this gives an amplitude with an infinite number of Schmidsense. Infact, itispossibleto turntheproblem
subtractions in the case where the potential corresponds around and require the cutoff which truncates the
to the exchange of a particle with spin &0. A general absorptive part to be such that duality is satisfied

expression is then given in Sec. III for a potential which exactly at each energy. This is considered in Appendix C.
will guarantee crossing symmetry.

a first approximation to the crossing symmetric II. RELATIVISTIC UNITARITY EQUATION

equations, we might simply approximate the potential
by a truncated crossed-channel absorptive part (a cor-
rection to this is discussed in Appendix 8). In practice,
this would be dominated by the lower resonances. The
resulting unitarity equation then has Regge asymptotic

V'lt y[q' —W(r, s)jy=O,
behavior. In Sec. IV a method is given for solving this
equation. In lowest order, this just leads to the de three momentum, r is the radial distance, and s is the
terminantal approximation. Because our potential is not energy. Ke shall take the potential tobe a superposition
the same as the Mandelstam-Chew-Frautschi potential, of Qukawa otentia]s
however, this determinantal approximation differs in
general from the one derived from the usual X/D 00

equations. W(r, s) =n. '
The approximate version of Sec. IV gives a crossed- tp

channel amplitude dominated by resonances at low
energies and by Regge behavior at. high energies. It where. Suppose wenowfreezes at some fixed va}ues=B,
therefore resembles the Veneziano model in at least
t ese general features. A reasonable procedure might roblem is then e uivalent to solving a Schrodinger

equation with an energy-independent potential. Of
course, the resulting amplitude is physical only when
$=8.
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It is just the t discontinuity of A,', so

dt'
A,"(s,t, u) = — p'(s, t', u) .

tp

(2.13)

and R(s,t) is a crossing-symmetric function which con-
tains the contribution of all remaining effects. It is easy
to see that Eqs. (3.3)—(3.5) lead to a crossing-symmetric
amplitude A (s,t). We also see that Eq. (2.3) is regained
provided we take for the potential

The advantage of these equations is that it is possible to
obtain A& exactly at any finite value of t with only a
finite number of iterations. The lowest iteration A &

=v is
exact for to(t&4to, while the mth iteration is exact for
to(t((u+1)'to If w. e expand these equations, we also
see that Eq. (2.6) gives us an A(s, t) which satisfies a
Mandelstam representation. "

So far we have been taking v(t, s) to be real and
nonsingular for finite s. However, the above results are
unaltered if we take a V(t,s) which satisfies a Man delstam
representation. But the double-spectral function must
then be zero in the elastic strip s(s~, i.e., in the range of
s where elastic unitarity holds. Otherwise s(t,s) is
complex and Eq. (2.3) does not give a unitary ampli-
tude. For s) sz there is no reason why it should, so v

would in general be complex. In this region the A,"in
(2.3) and (2.4) is no longer the total absorptive part,
since this also picks up a contribution from V. Similarly
p" in Eqs. (2.10) and (2.11) is only a part of the total
double-spectral function.

1 dt'
A(t, s, t) = V(s, t)+ — Aie'(t', s, t)

gp

(3.1)

and A(t, s) =A(t, s, t), (3.2)

with A &' calculated from unitarity as in Eq. (2.4). From
crossing, so= to=4@'.

Equations (2.3) and (3.1) suggest that a fully crossing-
symmetric equation might have the form

ds
A (s,t,u, t) =R(u, t)+— A(s', t,u)—

gp S —S

where

1 dt'
+ — A ("(t',s, t), (3.3)

x „t' —t

III. CROSSING-SYMMETRIC FORM OF
UNITARITY EQUATION

Up to now we have only been considering the case of
scattering in a single channel. Let us now turn to a
fictional situation in which we only have an s and a t
channel (we will come to the more general case later).
We will follow a generalization of a prescription which
was given in Sec. 5 of Ref. 7. We first note that if we
write equations corresponding to (2.3) and (2.6) in. the
t channel, we have

1 "dt'
V(t,s) =R(s,t)+ — A (t', s, t)

]p
t' —t

(3 6)

Similarly we can regain Eq. (3.1). This shows that one
never actually needs the function A(s, t,s, t) with both
sou and tAt. One only needs either the function (3.4)
or the function (3.5) in an actual calculation.

We have seen in Sec. II that V(t,s) must satisfy a
Mandelstam representation if we want the final ampli-
tude to do likewise. We also saw that, if we want elastic
unitarity to hold for s&sl, the double-spectral function
for V must be zero in that strip. Now from Eqs. (2.9)
and (2.11), p" (s, t,u) is zero, not only outside the
Mandelstam double-spectral regions but also for t&4tp,
so that A,"(s,t,u) not only has only Mandelstam
singularities but is also real for t&4to. By the same
argument, in the t channel, A p'(t, s, t) has only Mandel-
stam singularities and is real for s&4$p and hence for
s&sq, since we must have inelastic effects starting at
s=4so, if not sooner. This, of course, means that the
integral term in Eq. (3.6) satisfies a Mandelstam repre-
sentation with a zero double-spectral function in the
strip s(s~. But we saw that this is also true of V. From
Eq. (3.6) it must therefore be true of R, Since R(s, t) is,
in addition, crossing symmetric, its double-spectral
function must be zero in both elastic strips s(s~
and t&tg.

Since Eq. (2.3) can be regained from Eqs. (3.3)—(3.5),
so can the double-spectral function equations (2.9)—
(2.12).A convenient expression for v can be obtained by
combining Eqs. (3.6), (3.1), (3.2), and (2.5), which
gives

s(t, s) =Rt(s, t)+/A, (t,s) V i(s,t)j. —(3.7)

We can readily generalize the above equations to the
more realistic case where we have all three double-
spectral functions. To be more specific, let us consider
7rx scattering. Then Eqs. (2.6), (2.9), (2.10), (2.12),
(3.7), (3.8), and (2.5) become

The t subscript means that we are to take the t dis-
continuity of the quantity in question. Now V(s, t)
is the t-channel potential, which, as we have seen, has a
Mandelstam representation with a zero double-spectral
function in the strip t(tr. The same was true of R(s, t).
Thus R, (s,t) and V, (s,t) are zero in that strip and we

have
n(t, s) =A (t,s), t(tr. (3 8)

A (s,t, u, t) =A (s, t,u),

A (s,t,s, t) =A (t,s, t),

(3.4)
Ar(s, t,u) =Ai(s, t,u, s), .

(3 5)
(—1)'

dt'A '(s, t', s) +
t' —t t' —I

00

Ar(s, t,u, u) =-
p

"In the nonrelativistic limit, this was first shown to be true by
J. M. Cornwall and M. Ruderman, Phys. Rev. 128, 1474 (1962).

(3.9)

, (3.10)
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Just as amore accurate effective-range approximation
can always be constructed by adding extra poles, so here
too we can presumably improve Eq. (4.1) by adding 8
functions to it. This would correspond to adding poles
to V. Alternatively we could add a 8 function and its
derivatives, say, at t=t, . This amounts to adding a
multipole expansion to V. Of course, this involves more
parameters. In problems with spin, however, the po-
tential may have to fall oA more rapidly with t just to
guarantee the existence of a solution. Ke could then give
V, as given, say, by Eq. (2.5), a behavior t " ' s™y
by adding e multipoles and adjusting their residues so as
to guarantee this behavior. This fixes the residues
uniquely.

If we take a particular value of 8, we can directly
apply a proof due to Mandelstam" to show that Eqs.
(3.11) and (3.12) give Regge behavior for large t. This is
actually needed to give meaning to the integral (3.10),
which may diverge in the elementary sense, but can be
dined by Regge continuation. It, of course, assumes
that V falls off sufficiently rapidly for large t. A cutoff
potential, such as the one given by Eq. (4.1), does in
fact satisfy this requirement in the vrz problem.

To solve our equations we shall use a generalization of
an iteration of the Noyes-Kowalski form of the
Schrodinger equation. '4 Let us first go back to Eq. (2.1).
This can be reexpressed as a Lippmann-Schwinger
equation. In a given partial wave, it has the form

integral equation

Vi(s', s,B) 1
E'i($,$)8) = — — +

Vi(s, s,B)

„p($")
dS

s —s

V~($,$,8) Vi($, $ 8)
X Vi(s', s",8) —— —Fi(s",s,B), (4.7)

Vi($, $,8)

which can, for example, be solved by iteration, dropping
the integral as a first approximation. Note that Eq.
(4.6) can also be written as

QO

Di($,8) =h($,8) ——
80

where

p(s")
ds" Vi(s",s",8), (4.8)

s —s

00

h(s, s) =1——
s0

p($")
ds

s —s/1

&&PVi(s,s",8)Fi(s",s,B) —Vi(s",s",8)j, (4.9)

which is nonsingular for s+sp and thus has only a left-
hand cut.

An iterative expansion of Eq. (4.7) is equivalent to
associating a parameter A. with V and expanding in
powers of X. From Eq. (4.9) this, in turn, is equivalent
to expanding h:

C'i(s', s,s) = Vi(s', s,B)
h= 1+Xhi+X'h2+ (4.10)

p(s")
ds" Vi(s', s",8)ci(s",s,B), (4.2)

Equation (4.2) is a singular equation. To reduce it to
nonsingular form, we write'

4'i($, $,8) =Fi(s,s,s)A i($,8), (4.4)

so that Fi(s,s,B) =1.From Eq. (4.2), we then have

A i(s,B) = Vi($,$,8)/Di(s, B), (4.5)

with
QO

Di(s, B)= 1——
0

„p($")
ds" Vi(s,s",8)Fi(s",s,B). (4.6)

s —s

The function F ~ is the solution of the nonsingular

"S.Mandelstam, Ann. Phys. (N. V.) 21, 302 (1963).' H. P. Noyes, Phys. Rev. Letters 15, 538 (1965); K. L.
Kowalskl $7lsd. 15, "f98 (1965).

where, as before, we are freezing s at s =8 within the
potential only, and where C'i(s, s,B) =A i(s,B), the partial-
wave projection of A(s, t,B). If the potential is given by
(2.2), then Vi is given by

1 " v(t'8)
Vi(s', s,B) = — dt' —Qi((q"+g'+I')/2q'q). (4.3)

7T' ~0 2g g

From Eqs. (4.7) and (4.9) we also see that h is nonsingu-
lar to any order for s) so. From Eqs. (4.5) and (4.8),
this means that unitarity is not destroyed by a trun-
cation of the series (4.10).

Now it is not necessary to obtain the expansion (4.10)
from Eqs. (4.7) and (4.9). We could equally well expand
A i as given by Eqs. (4.5), (4.8), and (4.10), and com-
pare it with the corresponding expansion of Eqs. (2.3)
and (2.4) or of Eqs. (2.9)—(2.11). This enables us to
evaluate h up to any order by purely on-shell techniques.

The above method can be readily generalized to the
relativistic case. Here we no longer have an equivalent
of Eqs. (4.6), (4.7), and (4.9), but we can continue
using Eqs. (4.5), (4.8), and (4.10). The only change is
that 3 is now the invariant amplitude, s the square of
the total c.m. energy, and p the relativistic phase-space
factor. The coeKcients of Eq. (4.10) are required to be
such that we reproduce, up to any given order, the
amplitude obtained from Eqs. (3.9)—(3.12). Since these
equations give a unitary amplitude in the elastic region,
the function h($, 8) must be nonsingular for so(s(sr, as
can be seen from Eq. (4.8). Since this is true for a
continuum of possible values of A, , the coefFicients in
Eq. (4.10) must likewise be nonsingular for so(s(sr.
We therefore again obtain a unitary amplitude, even
when the expansion (4.10) is truncated.

Since Eq. (4.8) gives a unitary amplitude, we might
expect it to give rise to resonances or bound states.
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Remembering that the physically interesting amplitude
is A i(s,s), such a state will arise at s =sii if

TABLE L Values of l, sg, FI, 0/~, and 7 for the first five J=1
output resonances, assuming elastic unitarity for all s. The cutoff
t, was fixed so that s@ has the correct experimental value for /=1.

ReDi(s g,so) =0.
The corresponding residue is

4qii "pi = —Vi(s,s,s) Di(s,s—)
—s=sg

(4.11)

(4.12)

30
84

144
208
281

2.6X10 '
3.9X10 '
3,4X10 '
1.7X10 '
6.7X10 10

1.5X10 '
2.6X10 4

2.4X10 s

1.3X10 s

4.6X10 "

1.3X10-2
2.7X10 4

2.9X10-6
2.0X10 s

9.7X 10-»

where g~ is the value of q at s=s~ and I ~ is the usual
reduced width.

From now on we shall make the lowest-order ap-
proximation for h, namely,

h(s, s) 1. (4.13)

V. SIMPLE CALCULATIONS IN
I=1 ~~ SCATTERING

We shall now apply the approximation (4.13) to the
1=1 state, taking Eq. (4.1) for v. This means that our
input is the crossed-channel absorptive part. Now
ultimately this must be determined by self-consistency,
i.e., it must be consistent with the absorptive part
calculated dynamically in the direct channel. Ke shall
see u posteriori that such consistency is at least ap-
proximately attained if we take A & from the Ueneziano
model, with experimental values for the trajectory and
coefficient. It is possible to go even further and de-
termine these parameters completely self-consistently
so that a bootstrap solution does in fact exist."

The Veneziano model gives an J= 1 ~m. amplitude"

I'(1—n(s)) I'(1 —n(t))
B(s,t,u) = (—p)— —(t —& N), (5.1)

I'(1—a(s) —n(t))

where n is the Regge trajectory function. Now this
amplitude actually has many of the same general
properties as the one obtained by solving our unitarity
equations, at least if we make the approximation (4.1).
In particular they both have Regge behavior at large
energies and satisfy the dispersion relation (3.10). It is
therefore reasonable to hope that the two amplitudes
can be made to be approximately equal to each other, at

"L.A. P. Balazs, Phys. Letters 29B, 228 (1969).This calcula-
tion used Eq. (4.13) and was done in the vicinity of the p mass,
which was not determined. Since the pion was taken to have a
vanishingly small mass, however, the p mass merely serves to set
the energy scale and is thus not really a parameter in the
calculation.

'6 C. Lovelace, Phys. Letters 28B, 264 (1968}.

Equations (4.5) and (4.8) then reduce to something
resembling the determinantal approximation. In gen-
eral, however, it differs from the usual determinantal
approximation to the E/D equations where, in addition
to making the approximation (4.13), we would replace
the last s in Eq. (4.8) by an s".It is this difference which
makes it possible for trajectories to rise to infinity in our
scheme.

least for certain ranges of energy. One prerequisite is
that the low-t crossed-channel absorptive parts be the
same in both models. Assuming that secondary tra-
jectories are not too important, the finite-energy sum
rules implied by Eq. (3.10) might then hopefully give
approximately the same Regge behavior for the high-t
absorptive part as Eq. (5.1), which satisfies the same
sum rules. Using Eq. (5.1), we therefore take

N —n(s) -n(s)+ii —1-
Air='=8(= —irP Q—

n=o a'(R„) ri

where the E„are the positions of the resonances, given
by n(R„) =ii+1. We next use Eq. (4.1) to evaluate v.

The 8 function will now mean taking a finite number
()V+1) of 5 functions and retaining only a fraction
r (& 1) of the highest one. In other words, we take

ir e—n(s) n(s)+N —1
n(t, s) = —irp g

~=o n'(R„) ii

&&L1+(r—1)8„ ir i]8(t—R„). (5.3)

It can be shown explicitly that most of the contribution
to 8 comes from the exchange of the particles lying on
the leading trajectory. In practice we make the usual
linear approximation for n{s), although, ultimately,
some inelasticity could be introduced by adding a cut to
n(s) for s)sr. This would make v complex in the
inelastic region.

To simplify our equations further, we approximated
e by a single 8 function,

i (t,s) =irr(s)8(t —tii), (5.4)

with r(s) and t& adjusted so that the resulting Eq. (2.5)
is the same as that given by Eq. (5.3) at t=0 and
t = —~.The same effective-range argument can be used
to justify this as was made in Sec. IV to justify the
cutoff $=t,. In addition, the extreme relativistic ap-
proximation was made for the phase-space factor,
p(s) 1, so that the pion mass drops out of the problem.
Finally, the Legendre function Qi is approximated by its
asymptotic form in Eq. (4.3). This is usually quite a,

good approximation, even for fairly low values of the
argument of Qi.

Table I gives the output s~ and F~ for the first five
integer-/resonances generated by Eqs. (4.11) and (4.12).
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TABLE II. Values of l, sg, I'~, and b/7t for the 6rst five I= 1
Veneziano (input} leading-trajectory resonances. The Veneziano
parameters were axed so that the p width and the p and f' masses
have the correct experimental values.

we obtain, for m =0,
0!+1

T(s) =-
WE +1

(5.9)

30
80

130
180
230

2.0X10-i
3.2X10 s

2.7X10 '
1.6X10 '
7.4X10 'o

1.2X10 s

24X10 4

2.4X10 6

1.6X 10—s

8.0X].0 &&

ti 4 I'{n+o3) dnr-
s Qs I'(n+1) ds

(5.5)

at the resonance positions. These are listed in Table I.
Table II gives the corresponding Veneziano values
obtained by looking at the asymptotic behavior of Eq.
(5.1), which gives

b o,
" P—

I'(n)
(5.6)

Once we have b and 0. for the leading output tra-
jectory, we can check average duality by seeing how
well the lowest-moment finite-energy sum rule" is
satisfied. Now Eq. (3.10), together with Regge behavior,
gives

di (Ai —AP'«')i "=0, (5.7)

The cutoff is adjusted so the output p has the correct
experimental position sg ——30; this corresponds to %=5
and r=0.813. The Veneziano parameters which come
into Eq. (5.3) were fixed so that Eq. (5.1) gives the
correct experimental p width and p and f' positions.
These are listed in Table II, along with the remaining
positions and widths of the erst 6ve resonances on the
leading input trajectory. This was the main part of our
crossed —channel input. Since these values agree ap-
proximately with the corresponding values in Table I,
our model therefore has at least partial crossing and
some resemblance to the Veneziano amplitude.

If we now plot sg versus L for the resonances of
Table I and interpolate with a polynomial, we obtain an
implicit expansion for the Regge trajectory n(s). From
this it is possible to evaluate n'(s) and so calculate the
Regge residue functions

where ti=X—~s+2ti2. Of course, any amplitude with
Regge asymptotic behavior will automatically satisfy
Eq. (5.9) for suKciently large ti. Duality goes further
and requires that it be satisfied even for comparatively
small t1, provided this is taken about midway between
two t-channel input resonances. ' Table I gives the values
of T(s) (with ti=255) at the positions of the output
resonances. We see that they are, in fact, roughly equal
to the corresponding values of b/s, as required by
Eq. (5.9).

From Table I we also see that the resonances lie on a
trajectory which rises up to fairly large values of a(s).is

In Appendix A we show that it actually rises to infinity.
One input feature which we do not seem to have,
however, is daughter trajectories. This is probably a
defect of our approximation. Any simple generalization
of a Schrodinger equation with an attractive potential
whose strength increases sufficiently rapidly with energy
can be expected to give higher resonances in a given
partial wave; an indication that this might happen
occurs in Finkelstein s calculation in Ref. 18. It will be
necessary to do a more accurate calculation to see
whether such daughter resonances do in fact develop in
our formalism.

In the above calculation the cutoff t, was taken to be
a constant. It was then found that duality was ap-
proximately satis6ed. We can turn this around and use
duality to determine the cutoff at each energy. As
discussed in Appendix C, such a procedure was essen-
tially the one followed in Ref. 15, where self-consistent
Veneziano parameters were actually obtained. This
shows that bootstrap solutions are possible with our
scheme, presumably because it satisfies the nonlinear
constraint of unitarity.

A possible objection to the above calculation is that it
is purely elastic, whereas inelastic effects are clearly
important at higher energies. Such effects are discussed
further in the following section, and a proper treatment
of them would complicate the above calculations con-
siderably. If we assume Regge asymptotic behavior,
however, we can take them approximately into account
by replacing Eq. (2.7) with a modified phase-space
factor

where F is the usual antisymmetric combination
i =-', (t—I). If we take for the Regge behavior

tn(t, )=sbi (5.8)

"Such sum rules were discovered independently by A. A.
Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Phys. Letters
248, 181 (1967); K. hagi and S. Matsuda, Phys. Rev. Letters 18,
625 (1967); R. Gatto, ibid. 18, 803 (1967); L. A. P. Balazs and
J. M. Cornwall, Phys. Rev. 160, 1313 (1967); and R. Dolen, D.
Horn, and C. Schmid, Ref. 9.

In the asymptotic region, the factor R=o&,&/o, i is then
independent of /."If it is calculated from Pomeranchuk

"This particular feature was also obtained by J. Finkelstein
/Phys. Rev. 145, 1185 (1966)j using only p exchange, and by S. H.
Patil )ibid. 179, 1405 (1969)$ using only p, f, and g exchange.
Both started from equations which do not have the correct
Mandelstam analyticity. This is also true of the calculations of G.
Tiktopulos, Phys. Letters 298, 185 (1969);U. Trivedi, Phys, Rev.
188, 2241 (1969).

'9 See, for example, R. W. Childers and A. W. Martin, Phys.
Rev. 182, 1762 (1969).
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trajectory exchange, it varies only slowly with energy.
We shall take it to be actually energy independent and
assume it persists down to the 2p threshold, where
inelastic effects might be 6rst expected to start becoming
important. Assuming elastic unitarity below this thresh-
old, we thus have 30

91
28X10 '
4.7X10-3

b/vr

1.4X10 '
29X10 4

1.3X1o '
2.6X10 4

TABLE III. Values of 1, s~, F~, bj~, and T (with tI ——105) for the
erst two I=1 output resonances, using Eqs. (5.10) and (5.11) for
the phase-space factor. The cutoff was again fixed so that sg has
the correct experimental value for 1=1.

R(s) =1+c8(s—its, ') . (5.11)

This model is almost certainly greatly oversimplified'0
but may at least be instructive. The constant c was
calculated from the ratio of the total g-meson width as
given by experiment (120 MeV) to the partial width as
given in Table II.

If we now repeat our previous calculations, we obtain
the results in Table III. Only the erst two resonances
were calculated since the crude form (5.11) fails above
the second resonance because of the 0 function, which
actually gives an infinite number of resonances just
below s=4m, '. A smoothed out expression would pre-
sumably remove this difhculty, but also would compli-
cate the calculation. Note that the parameters of the
output resonances are not too different from the
corresponding ones in Table I. This does not, of course,
mean that inelastic effects are unimportant. It just
means that, at least below the inelastic threshold, they
are roughly taken into account by simply taking a
different cutoff 3,. It is interesting to note that the
Table III cutoff g =3, r=0.536 would be just the sort
we might expect if we calculated v from A &, but with
repulsive corrections for t&4t, strong enough to cancel
out the effect of A &. We shall see in Appendix 3 that
repulsive corrections do in fact arise there. Hopefully
they would lessen the dependence of our results on the
cutoff.

Finally, it might be interesting to calculate the I'-
wave scattering length a~. We obtain uj =0.023 if we use
elastic unitarity and a& ——0.031 if we take Eqs. (5.10)
and (5.11). The corresponding Weinberg current-
algebra value" is ar= (24vrF ) s=0.0295.

VI. ALTERNATIVE CALCULATIONAL
TECHNIQUES AND POSSIBLE

IMPROVEMENTS

Suppose we again begin from the approximated po-
tential given by Eq. (4.1). We have already seen that
this gives Regge behavior for large t. We have also seen
that, if we solve Eqs. (3.11) and (3.12) by iteration,
starting from A &

=~&, the eth iteration will be exact for
te(t( (I+1)'te. We can thus build A, r exactly up to as
large a value of t as we wish. Eventually we reach a
point t = t& dominated by the leading Regge pole. At this
point the most straightforward procedure for de-
termining b and u would be simply to require that the
value and derivative of A ~ be the same as that given by

2' For a more detailed version, see L."'A. P. Balazs, Phys. Rev.
132, 867 (1963)."S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

Eq. (5.8). If we have more than one Regge trajectory,
the asymptotic A & would be a sum of terms, each of the
form (5.8). The extra quantities could then be de-
termined either by considering higher derivatives at
t =3& or by matching at several values of t.

One difficulty with the above scheme is that it re-
quires A & to be evaluated accurately up to very large
values of t. A closely related scheme, for which this may
not be necessary, is to insert an iterated A& into the
finite-energy sum rule (5.7). The Regge parameters can
then be calculated by considering, say, e =0 and e= 1,
and using Kq. (5.8).

The above methods do not satisfy unitarity exactly.
One which does is the Pade approach discussed already
in Ref. 7. Another is the Schrodinger equivalent po-
tential method. "Here one again takes an A ~ obtained
by iterating Kqs. (3.11) and (3.12) and calculates an
equivalent Schrodinger potential by using Secs. 2 or 5
of Ref. 22. The latter procedure may also be applied
with minor modifications to calculate a Logunov-
Tavkhelidze potential. Vnfortunately, once we have a
potential we also have to solve an integral or differential
equation to obtain the amplitude. The same is true if we
write a set of N/D equations for the amplitude A ~(s,a),
with the left-hand cut in s calculated from the iterated
A &, as before, 8 would be kept fixed in such a calculation,
so that our equations would not be the same as the E/D
equations of the usual dispersion theory.

Once we have calculated the absorptive part and
double-spectral function, we can obtain an improved
potential by crossing from Eqs. (3.13) and (3.15). The
whole procedure can then be repeated any number of
times and hopefully converges to a solution. Of course,
such a scheme may lead to potentials which give
divergences unless one puts in a cutoff of the type
discussed in the last paragraph of Sec. III. If they do not,
they almost certainly lead to Regge cuts."The methods
of the first two paragraphs of this section would then
have to be modified since we would have to add the cut
contribution to Eq. (5.8). The crudest procedure would

be simply to take a model, such as that of Arnold, ~4 for
these cuts.

To go beyond Eqs. (3.9)—(3.15) we must include the
effect of other channels. In some crude sense this is done

by using Eq. (5.10). It could also be done by taking

"L.A. P. Bali,zs, Phys. Rev. 137, 81510 (1965).
D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento 26,

896 (1962); D. Amati, M. Cini, and A. Stanghellini, ibid. 30, 193
(1963)."R.C. Arnold, Phys. Rev. 155, 1523ji1967l.
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some model for the crossing-symmetric amplitude
Er(s, t), say, by calculating it from a finite number of
box graphs. But. the only correct procedure is to use
multichannel unitarity, which adds on. to Eq. (3.12) the
contribution of other intermediate states. We then have
to solve for several processes simultaneously, an ex-
tremely dificult problem in practice unless we make
approximations such as using the determinantal ap-
proximation and taking Eq. (4.1) for the potential.
Another problem is that double counting may occur.
For example, if we consider the coupled mw-pp system,
the same box diagram for ~m —+ 7' (with two pions and
two p's for the internal lines) will be generated from the
inelastic part of unitarity in the direct channel and also
be a part of the potential, since it is generated by the
elastic part of unitarity in the crossed channel. Its
contribution to the potential must therefore be explicitly
removed. This can be done in a crossing-symmetric way
and generally weakens the potential. The introduction
of higher channels, which have the effect of introducing
extra attraction, may thus be at least partially offset by
the weakening of the potential required by the avoid-
ance of double counting.

This rises monotonically with v' up to a maximum and
then falls off. The maximum occurs at

v„= (4/25) gati'(l+-,')'. (AS)

However, we must have v'«v„„ for Eq. (A4) to be
valid.

Since F(v') )0 for all v') 0, Eq. (A2) gives

I(v /4M))P
V srt, /23II dv

p(s')F (v')
v' —(v /4M)

vsse/ M p(s') F(v')dv', (A6)
ts,gr v —(v„„/4M)

I(v /4M))-,'F(v /2M)p((2v /M)+4). (A7)

where M is a fixed number ))1, so that the asymptotic
form (A4) is valid in the integrals of (A6). Since F (v ) is
a monotonically rising function for v'(v, , the first
integral must be &0. For the same reason, the second
integral is bigger than the same integral with the
numerator replaced by its value at the lower limit and
the denominator replaced by its value at the upper
limit. We therefore have

APPENDIX A' INFINITE RISE OF OUTPUT
REGGE TRAJECTORY

Since 3II is fixed, we can always take / big enough so
that v ))43II ', where the asymptotic form of E& can be
used. From Eqs. (4.6) and (A7) we then haveWe will show here that, at least for the determinantal

approximation, the output Regge trajectory will rise to
infinity if the potential contains the exchange of angular
momentum &S/4. It is quite likely that this latter
condition is different if we improve on the determinantal
approximation, although it is probably safe to conjec-
ture that the infinite rise of the trajectory will persist in
all cases of interest.

Suppose for simplicity that we obtain V from the
exchange of a single particle of mass m and spin l', so
that

1—ReD)EP" &'"&M&'"& "e 'sr (A8)

where E is a fixed constant which depends on g, /', and
m2. Now since M and K are fixed, we can always find an /

big enough so that K/'" ('/ ))3I ('/4)e'M, provided that
vt & 5/4 From Eq. . (A8) we then have

(A9)ReD(v= v /4M) &0

for suKciently large /.
I.et us now turn to v=0. Here we use the fact that

Qi+i(x)(Qi(x) for any x) 1. Since the only l depen-
dence in I(v), and hence in 1 D, comesfrom the Q—i, this
means that the magnitude of 1—D decreases with in-
creasing /. Thus, if the magnitude (1for some particu-
lar /, it will remain so for all higher /. But in our case,
this condition is in fact met for /= 1. We must therefore
have D&0 for all /& 1 at v=0. But this, when combined
with Eq. (A9), means that, no matter how large l is, we
always have a zero of Rea and hence a resonance. The

tr
' cor t ereforerie t i

v (l s) =gP i.g1+ (2s/its' —4)78 (t —m'), (A1)

where g is a constant; it is trivial to extend our argu-
ment to the exchange of several particles. We have
taken the external mass p, =1.For h =1 and s=8, the D
function in Eq. (4.6) then contains the integral

dv—p(s')F(v'),I(v) =P (A2)

In Sec. IV, e was approximated by ReA & up to t= t..
One difficulty with this is that it is not analytic in s. One
model which does not have this difFiculty and still

(A4) reduces to Eq. (3.14) would be
exp' —(~i&') (l+l)7

F(v') (-', m.m) "'
/1/2vi 5/4

Regge aje t y h s s o infin ty.
where v=q2=~s —1 and

F (v~) —(I/v~)Q i (I+ (~2/2v~) ) (A3) APPENDIX B: CONSTRUCTION OF POTENTIAL
FROM ABSORPTIVE PART

Since we shall be concerned mainly with large / let us
approximate Qi by its asymptotic form, " so
2.'»m2

"See, for example, W. Magnus and I'. Oberhettinger, FNnctioes
of 34cthemaA'ca/ I'hy~ics (Chelsea, New York, 1949), p. 23.

v'(t, s)—Q Prr A~" "(t.,s,t)0(t, t), '—
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with A p defined as in Eq. (2.4). This prescription is
nonsingular for s(s~ and thus does not introduce any
spurious inelastic effects in the elastic region.

If, however, we wish to construct v from some given
A ~, we must go to Eq. (3.11), but this time with the
value at s= 8 subtracted out. Thus

A,r(s, t,s) =A &r(t, s)

$p

1
ds' p. 'i(s', t, s)

—— (B2)
$ —$ S —&

ImA t(t)—
d$" 2$"

+l 1+
)+4 t —4 t —4

1 d$'
p.i'(s', t,s")——. (B3)

/ II
$0 s

Equations (B3), (3.11), and (3.12) now form a closed
system of equations with the ImA &(t) as input. As

before, the nth iteration gives us a v up to t= (n+1)'to.

APPENDIX C: SOLUTIONS CONSTRAINED
BY AVERAGE DUALITY

In Sec. V, calculations were made in which the cutoff
t, was taken to be a constant, adjusted so that the
output p have the same mass as the input. It was then
found that duality was approximately satisfied by the
solutions. We shall now turn this around and require the
cutoff to be such that Eq. (5.9) is satisfied. We could do
this at some particular energy (say, the mass of the p)
and continue taking t, to be a constant. But we will,

Starting from a given A, r(t, $) we can construct p, ir by
iterating Eqs. (B2) and (3.12), .with A,r(s, t,$) =A,r(t, s)
in lowest order. As usual, m iterations give an exact p, ~~

up to t= (n+1)'tp. Once we have determined it up to
t=t„we can obtain v from Eq. (3.11) evaluated at
s= s.

The above procedure requires an A &~ which itself
comes from a unitary model. If, for example, we only
have the contribution of a small number of t-channel
partial waves ImAi(t), with /(L, we would again
generate a complex ~' for t)t~, with the attendant
spurious inelasticity. This can be avoided by keeping
only the contribution of the same number of partial
waves in e and using Eq. (3.11) evaluated at s= S. Then

L 2$
m'(ts) =P, (2t+1)Pi 1+

i=0 t —4

instead, determine it separately at each energy. In
practice, the absorptive part A, in Eqs. (5.'7) and (5.9)
will be simply calculated from p, fo, and g exchange in
this case. We have already seen that this does not differ
too much from using Eq. (5.2).

We shall restrict ourselves to the neighborhood of the
p meson, both in / and in s. This means that we must
consider unphysical as well as physical values of t. The
integrals of the determinantal approximation are diffi-
cult to handle then and so we make exactly the same
Pagels-type approximation as was used in Ref. 15. The
potential is also approximated further as in Ref. 15,
rather than the way it is in Eq. (5.4).

Suppose we take the experimental values of 765,
1250, and 1630 MeVfor the p, f', and g masses. If wefix
the separation point ti in Eq. (5.9) midway between the

g and f' resonances, take the experimental va, lue of 125
MeV for the input p width, and adjust the input f'
width so that the output p mass has the correct experi-
mental value, we obtain an input f' width of 130 MeV,
an output p width of 172 MeV, and n'=0.0144. If,
instead, we set t,= t,+ ,'(t, tr), -take—the experimental
values of 125 and 140 MeV for the input p and f'
widths, and adjust the input g width so that the output
p mass has the correct value, we obtain an input g
width of 58 MeV, an output p width of 161 MeV, and
o.' =0.0154.

Instead of taking t& midway between two resonances,
we could fix it by requiring Eq. (5.7) to be satisfied for
m=2, as well as m=0. We can then repeat the above
calculations. Thus, with ti between the f' and g mesons,
we get an input f' width of 103 MeV, an output p width
of 193 MeV, and o.'=0.0129. With t~ above the g, we
obtain an input g width of 38 MeV, an output p width of
171 MeV, and n'=0.0145. These values are not too
diGerent from the ones calculated in the preceding
paragraph.

Instead of taking given inputs and obtaining outputs
which are only approximately consistent with them, we
could try to determine our parameters self-consistently.
In such a program it is better to use Eq. (5.2) in the
sum rule (5.9), since we then have fewer parameters to
determine. Now since the Veneziano model satisfies this
sum rule automatically, at least to a very good ap-
proximation, we would get the same relation between P
and n from the sum rule as we would from the Veneziano
model directly. Thus our calculation reduces to the one
in Ref. 15, where the latter relation was used and where
self-consistent Veneziano parameters were actually
obtained.


