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Feynman Rules for an O(4) Family with No Ghosts
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(Received 17 February 1970)

When a resonance is observed in an experiment, it is usually assumed that the resonance has a definite
spin J. Should, however, an O(4) family of Regge trajectories hit the physical region, we could expect to
see a family of resonances of different spins roughly degenerate in energy. For such a family of resonances,
there should presumably be a master 6eld which contains all the spins in the family and which interacts as
a unit with other hadrons. In this paper we discuss the general tensor construction of such multispin fields.
We believe that the splitting of the A~ meson is a manifestation of a master field and, in a following paper,
study the phenomenology of the O(4) resonance system.

I. INTRODUCTION

'HK 0(4) classification of Regge trajectories has
long been accepted at the unphysical point

s=0.' ' While the dynamics of Regge trajectories is
not known, it is a popular belief that trajectories are
parallel and linear so that when the parent trajectory
passes through, say, an integer, the daughter trajec-
tories of an 0(4) family also pass through integers
below the parent spin. If daughter trajectories stay
parallel, then the daughter trajectories could become
physical at the same energy as the parent. 4

When such a family of resonances appears, it becomes
interesting to ask if the family of mesons, say, can be
described in terms of one master held instead of a
phenomenological 6eld for each spin that is present in
the family. The resonances being physical realizations
of an 0(4) family of trajectories, one would expect the
master field to be a field belonging to 0(4), or more
accurately, 0(3,1) in the physical region.

The analytic continuation implied in going from
0(4) to 0(3,1) cures two defects of an 0(4) 6eld. theory:
(i) the problem of nonpositive residues at an 0(4) pole
(i.e., ghost states), and (ii) for MAO the problem of
parity doubling within the multiplet.

The 0(3,1) multispin 6eld theory that we discuss is
interesting also from another point of view. The success

~ M. Toiler, Nuovo Cimento 54A, 295 (1968).
'D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560

(1967).' G. Domokos, Phys. Rev. 159, 1387 (1967).
4 For an interesting discussion of this in connection with the

Gell-Mann —Zweig model, see H. Harari, in Proceedings of the
Folrteenth International Conference on High-Energy Physics,
Vienna, 1968', edited by J. Prentki and J. Steinberger (CKRX,
Geneva, 1968).
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as well as popularity of the Veneziano aInplitude' has
led to efforts at a deeper understanding of the dynamics
of the Veneziano model. It appears that an 0(4) dual

quark model leads to the Veneziano amplitude, ~' with
all levels of the model having 3f=0.

Within the context of the dual quark model, the
production of an excited state of the system is not for-
bidden. Since there are ghosts among the excited states,
the quark model, in principle, can lead to production
amplitudes for ghosts.

The point of view we take is that the success of the
quark model suggests a dynamical reason for an 0(4)
degeneracy of energy levels, but that the ghosts are due
to an improper use of 0(4). At the present level of
phenomenology, we are simply asking the following

question: If such a family of resonances has been
physically produced (no ghosts), what can be said

simply about the systems
Phenomenologically, granted that a family of reso-

nances has been produced, it is then a problem of how

to describe the decay characteristics of the family. For
the case of a particle of definite spin J, 0(3) tensors
can be used very effectively to describe the angular
distributions of the decay products. " In the present
case, 0(4) tensors appropriately continued should be

~ G. Veneziano, Nuovo Cimento 57A, 190 (1968).
S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969).

~K. Sardakci and S. Mandelstam, Phys. Rev. 184, 1640
(1969).

s Y. Nambu, in Proceedings of the International Conference on
Symmetries and Quark Models, Wayne State University, 1969
(unpublished) ~

L. Susskind, Phys. Rev. Letters 23, 545 (1969); Phys. Rev.
D 1, 1182 (1970).

"See the comprehensive article by C. Zemach, Phys. Rev.
140, 897 (1965).
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used. Since 0(3,1) tensors" are less well known than
angular momentum tensors, we shall construct them
in this paper.

This paper is organized as follows. In Sec. II we
review briefly the spinor formalism for the description
of particles with spin. This serves to define our notation
as well. In Sec. III we describe a formal construction of
O(3, 1) tensor fields which could be used for an O(4)
family of trajectories becoming physical. The propa-
gators for the tensors are written down in Sec. IV. A
compact form for the fully contracted propagator is
given in terms of the Gegenbauer functions C„', for
M=O, and represents a particularly simple analytic
continuation away from s=0. While our construction
remains equally as simple for the &&0 case as for the
case M'=0, the propagator at p„=0 does not belong
to one irreducible representation of the O(4); it is re-
ducible. This is because of our requirement that there
be no parity doubling in the family of resonances that
we deal with.

We believe that the A2-meson multiplet is an example
of the master fields we have constructed, belonging to
(n=2, 3E=O). In the following paper" we discuss the
phenomenology of the 3 2-meson system in terms of our
master field.

II. REVIEW

It is helpful to review briefly the usual construction
of the field for a particle of spin J." It will serve to
introduce our notations as well as set the stage for our
generalization of the procedure.

We begin by recalling the canonical annihilation
operators for particles with definite spin J, which under
Lorentz transformations behave as fp„—= (p, ioo)j
U(A)a(p; j,o) U'(A)

representations of the full Lorentz group rather than
the little group. I'or a finite-component field, nonunitary
representations are used. For our purposes we shall use
only (j,0) and (0,j) representations (p=nm sinh8):

D- ""(L(P))=Lexp( —«J)3- —=D- "'(p), (2 4)

D„'o "(L(P))=t exp(8n J)j„=D„&'—&(p). (2.5)

For arbitrary Lorentz transformations, the relation

D~ i(il.) =PDi i(~-') jt (2.6)

holds. There is a charge conjugation matrix C which
acting on a (j,0) representation changes it to a (0,j)
representation and vice versa, viz. ,

CD(A.)C—' = fD (il.)j*.
The matrix C satisfies the well-known properties

C'C=1, C*C= (—)' .

(2.7)

(2.8)

The usual construction of fields proceeds to introduce
spinors by considering the following linear combina-
tion of the canonical operators:

8(p; 7 p) = (~/~)"' 2 D—-"'(p)a(p; j,o), (2 9)

such that under Lorentz transformations they trans-
form simply as

U(A)e(p; j,n)U'(A)=QD. p '(A ')e(p'; j-,P). , (2.10)

The field p i»(x) is just the Fourier transform of (2.9)
and the appropriate antiparticle creation operator. A
notable feature of this construction is that under parity
this field goes over into another field x C'i(x) which
transforms differently under A, viz. , ss the (0,j) repre-
sentation. For, under parity,

where

I/2

g D,.&&'&(Rs —'(A, P))a(p'; j,a'), (2.1) +~t(pl j)&)+ '
CO =n(~/~)"'2D-"'( —p)a( —p; j,o) (211)

and o is the component of spin along the s axis. Rir (A,P)
is the Wigner rotation

=—ito', (—p; jn), (2.12)

Rs (A,P) =L '(AP)AL(P).
and I.(P) is the boost

lp; j,o) =(~/~)i&'U(L(P)) lO; j,o.). (2.3)

D„&&' is the usual unitary representation of the rota-
tion group.

To construct fields which transform locally under
the Lorentz group, it is necessary to use explicitly

"We mean by an O(3, 1) tensor the Geld whose propagator at
P„=O becomes an O(4) propagator.

"N. P. Chang and C. A. Nelson, following paper, Phys. Rev.
D 2, 966 (1970).

U(~)tt(p; j, ')U'P) =ZD.o "i(~ ')~(P';i, P) (213)

Since basically there is no parity doubling in the theory,
the new fields X (&'i(x) are not independent of &p

~"(x).
The dependence between X '&'i(x) and p &&'i (x) has been
studied by Weinberg. "In his 2(2j+1)-component field
formalism, the dependence between p and X is in
fact a "generalized" Dirac equation.

An alternative procedure for construction of fields
is to use the tensorial basis. (For half-integer spins, the
tensorial basis is added on to a basic Dirac field. ) The

"S. Weinberg, Phys. Rev. 133, B1318 (1964); 181, 1893 (1969).
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E~(p; i, ),~*(p'; i,e)j.
=( / )b(p —P')&-s"'(P)/( ')' (2 15)

Lo'( ' ) &*( '.»P)j+=( / )b( — )b (216)

where

~--"rr., ~ ~(p) =Letup( —2&a J)j., (2.17)

= ( )' (t„,„, —„„).pp„,p„..,. .. p„„. (2.18).
The matrices (f„„,...) s satisfy the following im-

portant properties (see Weinberg)": (i) symmetry in

pi, p2, . . . , p», (ii) traceless in any pair of p indices;
(iii) as matrices they satisfy

Dii~(s)~„,...„„.D& ~(X)i =X„,„~X„„„„-«„,...„„.. (2.19)

The matrices II'» are tabulated for j&3 in Ref.
13, from which the matrices t'»». .. can be directly
calculated.

III. n= INTEGER TENSOR FIELDS

Let us imagine that we have a system of particles
degenerate in mass but each having a different spin,
with the spin content

(3.1)

For purposes of our discussion we may either suppose
that these are the spin states of an 0(4) quark model or
that these particles are an 0(4) family of Regge tra-
jectories becoming physical. In either case we assume
these states to be physical (no ghosts) and that they

'4 See, e.g., M. D. Scadron, Phys. Rev. 165, 1640 (1968).
"The O(4) propagators at P„=O have been constructed by

H. F. Jones, Nuovo Cimento 59A, 81 (1969).

advantage of the tensorial construction is that under
parity the tensors do not "double up. "The construction
of tensors from the basic canonical annihilation opera-
tors is easy and well known for a particle of spin j.'4 It is
not so well known for an 0(4) system of particles with
different spins. '5

The situation may arise, if Regge trajectories form
0(4) families, that an 0(4) family with (n,M) quantum
numbers becomes physical at a given energy where we
should expect the system of partides to have spins from
m=A+B to minimum spin M= ~A —B ~. Such a system
of particles will have to be described by a master field
belonging to the (A,B) representation of the 0(3,1)
group. It is the construction of such a master field that
we shall discuss in Sec. III.

To complete our review, we note the quantization
condition for the particles

I:a(p; i, ),a*(P'; i, ')j~=b(P —P')b-, (2 14)

where the ~ refers to the Fermi and Bose statistics, re-
spectively. In terms of the spinor operators, the quanti-
zation condition becomes

can be described by the annihilation operators

a(p; A,a; B,b), (3.2)

=( '/ )'" 2 D '"'(~ ')D "'(~ ')
a', b'

Xa(p'; A, a'; B,b') . (3.3)

Since the transformation matrices are but rotation
matrices, the operators of definite spin S can be pro-
jected from the operators (3.2) covariantly,

8 5
a(P ~ S iib) —Q ( )A B+m— (25+1)"'

a, b a b —m

&(a(p; A, a; B,b), (3.4)

where the 3j symbol is as defined in Edmonds' with
the property

8 S
D. .&"'(E)Db b&s'(E)

a', b' g
8 S

, &s&y)( )~ —m (3.5)
a b —m'

In the usual spinorial way of constructing fields, the
procedure would be to form the operators

O', (p; A,o, ; B,P)

=(/ )"'ZD-'"'(p)Ds ' '(p) (p;A, B») (36)

which transform under A like the (A,B) representation.
The Fourier transform of these spinor operators, to-
gether with the appropriate antiparticle operators, then
is the p& ~ field. Under parity, the fields go over into
a new field p& "'(x) which, however, is not independent
of the original q & ~ ' field. This complicates somewhat
the construction of the propagator for this field. As
noted before, the tensorial construction does not su6er
from this complication.

Consider the following pseudotensor combination of
the operators (3.2):

K'4i"'.).b

8=M a, b, a', b', m

&&a(p; Aa', Bb') . (3.7)

~' A. R. Edmonds, Angular Mo7nentunz in Quantu&n 3fechanics
(Princeton U. P., Princeton, N. J., 1957).

where we set, n =A+B, 3f=
~

A —B
~

. For definiteness,
we take 3 to be greater than B.

Under A., the operators transform as

U(A)a(p; A, a; B,b) P(A)
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Under A., these operators transform as follows: (3.15), while in terms of the original operators (3.2),
the law is

where

U(i1) e„,...„„(y)V(X)
= (6t ')„„, (6t ')„„„„e,„,...,„(p'), (3.8) (Pa(y; A, a; B,b)tP '

N.„„=[I (Xp)t I.(p)$„„ (3.9)

is the 4&4 matrix representation of the signer rota-
tion. The ordinary tensor operators can be obtained
from (3.7) by simply contracting the pseudotensors
with the 4X4 matrix representation of the boost:

A. -'.(P) =[I-(P)7", [I(P)j...o,-'.(P) (3 1o)

The matrices [I.(p))„„satisfy the simple properties

[L (P)j"[I-(P)j. =~. P.[L (P)3"= irrtb. (3 11)

The pseudotensor components are equal to the tensor
components in the rest frame. We use the pseudotensors
merely as a convenience, although formally they look
very much like 0(4) tensors. (They are not for 3II&0;
see below. )

By construction, the tensors A»». ..„„(y) have the
following expected tensor properties: (i) symmetry in
all p's; (ii) traceless for N&1,

b„,„,A„,„,„, „„(p)=..0.
&

(iii) for %=A —BAO,

(p„, p„„,)A„,„,...„„(p)=0, N'=2B+1. (3.13)

Properties (i) and (ii) are obvious, while (iii) needs to
be shown. In terms of the pseudotensors, the property
(iii) reads

84...4„„,„,...„„(p)=0, 0'=2B+1, M&1. (3.14)

Because of condition (3.14), the pseudotensor A„,...„„(p)
is not an 0(4) tensor.

Condition (3.14) follows immediately from the obser-
vation that the operator A4. ..4„„,+„...„„(p)describes spins
from e—e', e—e' —1, down to 0, i.e., spins=M —1,
M —Z, . . ., 0. But by construction those spins are
absent from (3.7), and thus, those operators have to
vanish.

Next we discuss the parity transformation. Our con-
struction is general enough to allow' for any set of
intrinsic parities among the system of particles. The
two sets of intrinsic parities that would be simplest from
the tensor point of view are (i) when all the members
of the multiple have the same spin and (ii) when the
parities alternate from one spin to the next lower spin.
The first case is trivial.

In the second case, the parity transformation law is

&&a(—p; A, a'; B,b') . (3.16)

IV. n= INTEGER PROPAGATORS

We shall take

[a(p; A, a; B,b),a*(p'; A,a', B,b')]
=b(p-y')b- b» (4 1)

to be the basic rule for quantization for our system of
particles. This rule of quantization guarantees that
there are no ghosts present in the multiplet.

From (4.1) the commutation rule for the pseudo-
tensors becomes, formally,

[tt„-..(p), ~„-'.'(y') 7
=(~/re)b(p —y')~„-'. , -..'" ', (4 2)

where

(n, M)~uI" ~n, » ~ ~ ~.n
S=M a', 5', a, 5

(Ct». ..,„).a

X(t„,...,„tc),.... (4.3)

For 3f=0, the commutator reduces to

Because of (3.16), the spinorial construction of fields
in the case of an alternating sequence of parities is quite
cumbersome.

Before going to Sec. IV, a remark on the particular
choice of construction in (3.7) is perhaps in order.
It is of course a trivial affair to write down general
tensor fields which contain various spins and which
satisfy the contraints (3.12) and (3.13).It is& however,
not clear what combinations of nth-rank tensors formed
out of varying spin-tensor fields would give rise to a
propagator which when analytically continued to the
point s=0 would correspond to an 0(4) propagator.
The construction (3.7) has that property. It is in this
sense that we call (3.7) an 0(3,1) tensor versus the
0(3) tensors for particles of definite spin even though
the latter are also tensors with Lorentz indices.

tpA11 "1a(p)+ = %1 vl tl1 & A&1"'& ( P) 1 (3'13) [Q»...„„(y),g„,...„„*(p')j
glm ~ $ns g44& g« =g« =0. The parity trans-

formation law for the pseudotensors is the same as
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For a self-conjugate system of particles, a local field where
can be constructed (A p+=—gp„A,*): PQ —(P2Q2) 1/2 (4.13)

The propagator for this fMld is, in momentum space,

where

1 5„,...„„,......„(" )(p; ))3')

p +r)3 20(2)r)42
(4.6)

(n, M)
S)(4 le e ePn 3 Vl e ~ ~ Vn

L,„i„(Lg)„„(Lg),„.„
(n, M)X+$] ~ ~ e$ pl ~ ~ e p

with

L"=LL(p)j"
(4 7)

A„,...„„(x)=(22r) "'(-',m)')'

$3p
[~p -..(p)c" +~. -..'(p)c "j. (45)

By the rules (4.8) and (4.9), we f')nd immediately

D(""(PQ p 2)22)=(PQ)"2 "C '(z) (4.14)

z=(P Q+2P PQ P/2242)/PQ. (4.15)

C„' is the Gegenbauer function, " also known as the
Tschebyscheff polynomials.

An important property of (4.14) and (4.15) is that
while by construction the propagator describes a family
of spins I, 23 1, .—. . , 0 on the mass shell p'= —2)22, it at
the same time gives a very easy continuation off the
mass shell to the point p„=0 where the propagator is
an 0(4) %=0 propagator.

The spin content of the propagator (4.14) can be
exhibited in terms of the corresponding contracted
propagator for a particle of de6nite spin J:

(4.16)

(4.17)

:x~+0(x~ '). (4.18)

Sy the addition theorem for Gegenbauer functions, "
we findby 4;2;+p2;p2;/2)2',

!)2;44;4 by —p),pi, /2)22,
(4 8) n

D(n 0)(P Q p 2)22) = p g (P Q p 2)32)(PQ)n J
J=o

It is important to note that the 6("~) are a set of
Kronecker 6's and for the %=0 case are in fact the
O(4) propagators that are known. For our derivation it
has been convenient to introduce the pseudotensors for
precisely the reason that their propagators look like
O(4) propagators.

The contraction with the boost matrices can be (p~(g)=[2&(JI)2/(2J))jP~(g)
done by the following set of rules for replacing the
Kronecker 8's in 5(

Replace

!)),,, by ()2,.„+p2,p„/2)3',

()2446 p&4 by +PA(Pp&/2N
(4.9)

and for the Kronecker 5's in p;p;, use the same rules as
in (4.8). These rules follow easily from an explicit repre-
sentation of the boost matrix

D(nM) (P Q
~

p ,~ 2r42)

~ ~ ~ (ne~)A e e e A
Iz 1 P I)(l' "I))n, vl ~ ~ vn—Pn ~ $(n, ir) ~ Qn (4.11)

The full propagator can be obtained by differentiation.
Consider 6rst the case 3f=0. Then 5("o) is a set of

four-dimensional Kronecker 8's and the fully contracted
propagator in that case is'""

P":A("'): Q"=(PQ) "2 "C '(P Q/PQ), (4.12)

"R. Delbourgo, K. Koller, and R. M. Williams, J. Math. Phys.
10, 957 (1969).' H. J. Jones (Ref. 15). See also Y. Iwasaki, Phys. Rev. 17'3,
1608 (1968).

L„4 2P„/~, L;——;=—!);,+P;P;/[2)3(u&+21)j (4.10).
The simplicity of the rules (4.8) and (4.9), as well as

the propagator (4.6), can best be appreciated by con-
sidering the fully contracted propagator

X. JJ+'
Pp Qp

(o J+1
m( —p')"' m( —(p)"')

with
X[c„,J j2, (4.19)

(2J'+1)! (I!)'
[c ~]2-2n—J (4.20)

(34+J+1)!(J!)'(24 —J)!

('„g~+'(00) 2~ "[(n=—J)!J/I!j—

XC g~+'(x) .-xn+O(24n '). (4.21)

198ateman Manuscript Project, Higher Transcendental Iilnc-
tioes (McGraw-Hill, New York, 1953),Vol. II, Sec. 10.9.

"Reference 19, Vol. I, Eq. (3.15.19).

The meaning of the relation (4.19) will be made clear
when we consider the construction of these O(3,1)
tensors from a more general point of view. As is well
known, there are many mth-rank tensors one can write
that have spin content e, m —1, . . . , M. To each spin-J
tensor we can attribute an arbitrary weight c„,J. The
full propagator of such a collection of spins will depend
on the coefficients [c„~]'.Not all such coefficients will
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have the property that at p„=0 the propagator be
identi6ed with O(4) propagators. The coeKcients (4.20)
will. Of course, to make this remark meaningful. we
would have to agree on a normalization for the tensors.

Following the notation of Zemach, "let

T(~) (p. . .PH(o)

be an 0(4) tensor in the sense of (3.12) and (3.13),
where H") is the usual spin-1 tensor:

What actually happens is that instead of one
(m, MAO) family of O(4) trajectories making their
appearance, there are several O(4) families, the parent
(e,0) trajectory with daughters (0,0), (1,0), . . . ,
(M 1, 0)—which remove the spins 0, 1, 2, . . . , M —1 on
shell. This will become clear in an'example in Sec. V.

For M&0, therefore, our 0(3,1) tensor does not
belong at p„=0 to an irreducible representation of
0(4); it is reducible under O(4).

pl 8) ' ("P) '

(i) symmetric and traceless in any pair of )«'s,

(ii) PP1HP192" P) (P')

Then our normalization is PP= (—P')' —
])

Pn. T(n) (p. . .PH()))
p) ~ H(&)(P)n—lp l+((P.p/~p)

A few examples will make this transparent:

n=2 l=1.
T "& (pH&'&) = (1/2'«) (P„H,&')+P„H„('));

s=3 1=2.

(4.22)

(4.23)

(4.24) A„&"&(x)= V„(x),

S"""(P)=b"+P.p./~'= D"(P);-
(5.1)

(5.2)

V. EXAMPLES OF TENSOR FIELDS

It is useful to write down. a few examples of the
O(3,1) tensors that we have constructed. In the follow-

ing we display the spin content by using p(x), V„(x),
and T„„(x) as symbols for spin-0, -1, and -2 fields, re-
spectively. The propagators in momentum space are
written down in the uncontracted form for easy
reference.

m=1, 3f=1:

T „i&3) (pH (2))
= (1/3m) (P„H„, ' +p„H„, '+p„H„„&'&); (4.25)

m=4, 1=2.

a=1, le=0:
A „"P) (x) = V„(x)+(1/m) B„y(x),

S„„"(p) =b„„+2p„p,/m';

(5.3)

(5 4)

T"i.")(PPH"')
= (1/6))«') (P„P,H»&')+permutations)

—(p'/4gm') (b„„Hi,"'+permutations) . (4.26)

Thus, if we now display the spin content of (3.10) by
writing

+c.,„2T„,...„„(")(ppH'&" »)+, (4.27)

then the fully contracted propagator due to (4.27)
would be precisely that given by (4.19).

So far we have considered the case M=O. The
generalization to 3f&0 is easy. The only change is in
the spin sum in (4.19),

v=2, %=2:
A„.""(x)=T„„(x), (5 5)

S„„,p""(P)= 2(D„D„p+D, D„p)—-',D„„D p, (5.6)-
m=2, 3f=1.

A,„"')(x) = T„„(x)+ (1/&2m)

X (B„V,(x)+B„V, (x)), (5. .7)

S„,, p" "(p)= 2(b„b„p+b„,b-„p) ', b„,b p-—
+(1/~') (P.p-b.p+P.p-b. p

+PI Ppb~p+P~ppbr ~)

(1/3~') (P.P—b-p+P-P pb")
+ (g/3)p. p.p-pp/~' (5 g)

D " '(P, Q; p m')= Q A~(P Q p m')(PQ)"—
J=3f m=2, M=0:

=S,.-p""(P)+(1/2~') (P.P-D.p

+P P-D.p+P.PpD.-+P.PpD-) (5 9)

, PP QP
X('-. z~+' —— (.„z~+' Lc„,g]', (4.28)

we )r«Q

with c„,q as given by (4.20).
For M@0, this propagator when continued to p, =0

does not become the corresponding 0(4) M&0 propa-
gator. This is not surprising since it is known that the
O(4) MN0 propagators contain parity doubling, and
here, by construction, we do not have parity doublets
in the family.

A,„&"&(x)= T,„(x)
+ (1/v2m)(B„V„(x)+d„V„(x))

+ (2/v3) (&7„8„«8„„&7')q (—x), (5.10)

S),„, p
' "(p) =-', (b„b,p+b,.b„p) «b„.bop- —

+(P Pb p+P P br p+P Pp. bu«

+p„ppb„)/m'+4P, P„P Pp/))«' (5.11)

S,„.p&' »(p=) ~-;,(p„p„+-' „„«b))r«

X (p pp+-«'m'8 p)/))&«. (5.12)
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The fully contracted propagator for the m= 2, M =0
case reads

VI. FIELD LAGRANGIAN

The fields A„,...,„(x) satisfy very simple field equa-
tions, viz. ,

(i)' —m')A„. ..„„(x)=J„...„„(x). (6.1)

j»...„„(x)is the source current for the field. For 3I=O,
there are rto further differential equations that the fields
must satisfy. The quantum field theory is therefore
very simple and free of worries about interactions
causing spontaneous breakdown of the subsidiary
conditions":

cC = 28„A@I...P *B„AP,I...P
,'e'A „—, —„„*A„,... „+g.;„.., (6.2).

Typical examples of 2;„~ will illustrate the simplicity
of this field theory compared with most phenomeno-
logical field theories of resonances. Suppose we deal
with the A~-meson multiplet and assume it to be an

(2,0) multiplet. Then the minimal coupling between
the A& system and pp, for instance, would be uniquely
given by

gA „i+(x)F„„(x)Gi„(x)+H.c. ,

F„„=—B„A„—B„A„,

G)~v= ~zpft. ~It,AA )

(6.3)

A „,p„being the photon and p-meson fields, respectively.

"There are many treatments of field theory for higher spins.
See Ref. 12, and W. K. Tung, Phys, Rev. 156, 1385 (1967).

D&'»(I'Q p m')
= (P Q+2P pQ p/nP)' ——,'P2Q', (5.13)

while the fully contracted propagator for the m=2,
M = 1 case is the difference between two (e,0)
propagator s,
D&''&(P Q p m')

=D""9'Q p ~') (4/3~—')I:(P p)'+ 'I"~'1-
XL(Q p)'+-', Q'rii']D" » (5.14)

=D&2»(P,Q; p; m~) ——;e,'(Z p/~Z)
Xe,'(Q p/mQ)D&"i(P, Q; p; m'). (5.15)

Note that for the M/0 case there are daughter e tra-
jectories which remain ghosts on the mass shell and
serve to "remove" spin 0, 1, . . ., 3II from the family,
on the mass shell.

This coupling is reminiscent of SU(12)~ coupling""
for it fixes the relative couplings of each of the mesons
in the multiplet 2+, I, and 0+. A phenomenological field
theory of resonance would have assigned a spin tensor
to each particle and the relative coupling between 2+,

1, and 0+ would have been arbitrary.
It is this simplifying aspect of what we call "0(4)"

field theory that we explore with regard to the A2-meson
system in a following paper. "

Of course, there will be occasions where even the
minimal coupling between the master field and the
decay-product fields is not unique. (This happens in
the A2~ xp decays. ) But in no case will using the
master field introduce more arbitrary coupling con-
stants than in a phenomenological theory.

For the case 3IIWO, the field A». ..„„(x)will satisfy an
additional equation

8» ~ ~ (jl„„,A». ..„„,„„,,...~„(x)=0, n'=g M+—1. (6.4)

This kind of subsidiary condition has appeared many
times before in quantum 6eld theories of arbitrary
spin. "As a Feynman rule, this subsidiary condition has
been taken into account in the construction of the free
propagator. Higher-order self-energy corrections to the
propagator may not, in general, preserve the condition,
but we have not studied this in detail.

Finally, we remark on the comparison between this
field theory without ghosts and a field theory with
ghosts. The propagators for our A». ..„„(x)fields diverge
as badly as before in higher-spin field theories. It is
thus an unrenormalizable theory. On the other hand,
if we had let the 6eld A». ..„„have ghosts, the propa-
gators would behave like (1/p)' as p„~ao. Such a field

theory, formally, is convergent. The choice between the
two may be a matter of taste; on the phenomenological
level at which we shall be using the theory, however,
it would appear to be best to use physical (no ghosts)
propagators for the 0 (4) family produced in a reaction.
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