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A Veneziano model is constructed for nucleon-nucleon scattering. Each parent trajectory in the model
has no parity or isospin doublets, and its residues satisfy the factorization theorem and positivity conditions.

I. INTRODUCTION

MODEL for scattering amplitudes that combines,

in a natural way, crossing symmetry, narrow
resonances, and Regge asymptotic behavior has been
recently proposed by Veneziano.! So far this model has
been discussed mainly in connection with reactions
involving only bosons. In this paper a Veneziano model
is constructed for the contribution to nucleon-nucleon
scattering of three exchange-degenerate trajectories—
the (w,f?), the (p,4.), and the (w,B). The model con-
tains nonleading terms, as was found to be necessary
by Jacobs,? but the residue functions of each parent
trajectory depend on only two arbitrary parameters.

Since “duality diagrams’? without exotic resonances
cannot be drawn for nucleon-nucleon scattering, one
might believé that it could not be described by the
Veneziano model. This belief is not really justified,
since Khuri* has shown that a large class of amplitudes
exhibiting crossing symmetry, narrow resonances in
two channels, and Regge asymptotic behavior can be
expressed as a uniformly convergent sum of Veneziano-
type terms. It is true, however, that the model cannot
be extended to octet-octet scattering in an SU(3)-
symmetric way. In particular, both the s and the »
channels are exotic for the reaction Z+*Z~— 32— so it
cannot be described by any form of dual resonance
model. Consideration of the nucleon-nucleon problem
nevertheless appears to be worthwhile.

Sections IT and III of this paper are devoted to the
necessary preliminaries. In Sec. II the helicity and
invariant amplitudes for nucleon-nucleon scattering
are reviewed. In Sec. III the Veneziano model is
discussed briefly, and its partial-wave projection is
calculated. The actual models for the (w,f°), the (p,45),
and the (v,B) exchange-degenerate trajectories are
constructed in Sec. IV. Since resonances occur only in
the two identical nucleon-antinucleon channels, each
trajectory can be and is treated separately. The Pauli
principle is maintained exactly, and the three parent
trajectories are free of parity and isospin doublets and
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have residues which satisfy the factorization theorem
and positivity conditions. In the model for the (w,B)
trajectory, a positive-parity, isospin-1 conspirator is also
included. While it must be degenerate with the (7,B)
trajectory, its residues vanish at =0, so that no low-
mass positive-parity resonance is required. The
conspirator can be removed by setting a certain parame-
ter equal to zero.

The model is compared with experiment in Sec. V.
Its contribution to the cross section at high energies
and large angles is negligible compared to the experi-
mental values, presumably indicating that only the
Pomeranchuk or Regge cuts are important there.

II. KINEMATICS

Let the s channel, having initial momenta p, and ps
and final momenta p. and p4, correspond to nucleon-
nucleon scattering. Then the ¢/ and # channels both
correspond to nucleon-antinucleon scattering. The
Mandelstam variables are :

s=(patps)?, t=(pa—p.)*, u=(pa—pas)*. (1)
They are not independent, but satisfy
sHt+u=4m?, (2)

where m is the nucleon mass. It is useful to introduce

also the three-momentum &, and scattering angle 6, in

the center-of-mass frame of the s channel. Let
2= C0S0;; 3)

then

2,=1+42t/(s—4m?). 4)

The corresponding quantities in the f and % channels are

z,=142u/(t—4m?) ,
2u=142{/(u—4m?).

—1
k2=1s—m?,

2=1¢_ 42
k;'——4t m*e,

21, _ 4,2
Ry2=ju—m?,

©)

Since each nucleon’s helicity can assume the values
=+, there are for each isospin 16 possible s-channel
helicity amplitudes®® f.q,q45°(s,t), the subscripts denoting
the corresponding helicities. (The isospin label will be
suppressed temporarily.) If for the single-particle states
the covariant normalization

(P[P N)=(p°/m)(2m)*6*(p—p")drn (6)

§ M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 1, 404 (1959).
6 K. Huang and S. Pinsky, Phys. Rev. 174, 1915 (1968);
181, 2154(E) (1969).
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2 VENEZIANO MODEL FOR NUCLEON-NUCLEON SCATTERING

is used, then the helicity amplitudes are related to the
unpolarized cross section by

4

— ed,ab’(5,0) ] 2. 7
0 167r23cdz,ab|fd »(5,0) | Q)

Thehelicity amplitudes have the partial-wave expansion

©

feaan'(s,t)= 2 (2J+1)(cd|F7(s)|ab)di? (65) ,
T=Am (8)
A=a—b, pu=c—d, An=max(|\],|u]),
where dy,’(8,) is the usual representation of a rotation
about the y axis and {cd|F’(s)|ab) is the s-channel
partial-wave amplitude.
Invariance of the S matrix under parity, time
reversal, and the interchange of identical particles im-

plies that only five of the helicity amplitudes are
independent. These five are conventionally taken to be’

Jr(s,8)= fraa+(s),
f2(s0= frr—="(s0),
[ = fems=2(s:) )
fest)= frems?(st),
[ ()= fraa="(s1).
The others are then given by

fl-?:f__’__s’
f2'= fems®s
= f—t—4%, (10)
fo=fgr =,
fo=f = = = =
=—frr'=—fr—t'= = fo- ",
so that the unpolarized cross section is
O el fe | £
0 s el 2P s
+ 1S4l f2]. (1)

The t-channel helicity amplitudes are denoted by
foa,ps'(s,t), the capital letters indicating antinucleons.
Their partial-wave expansion is

Foanssh= 5 QI+1)(cA |G (1) | Db)dr (0),
J=Am

A=D—b, p=c—A, \n=max(|\[,]u]).

There are again five independent amplitudes fi'(s,t),
which are defined analogously to f:*(s,f) in (9).

The helicity states |++), |+ =), | —+),and [ ——)
with definite angular momentum J appearing in (12)

7 M. L. Goldberger, M. J. Grisaru, S. W. MacDowell, and D. Y.
Wong, Phys. Rev. 120, 2250 (1960).
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Tasre I. NN helicity states.

State Parity G parity Known trajectories
I=0 I=1
04) (=17 H(=D™ Puf pds
0=)  —(=D7 (=D g B
[1+) +(=1)7 +(=nrs P, pd2
[1-) —(=1)7 — (=1 Ay

are not eigenstates of parity. It is useful to introduce
linear combinations A=) of them, namely,®*

[0+)=(++)+|——N/2,
[0=)=(++)—[==N/2,
[1+)=(+—)+=+)/2,
[1=)=(+—=)=—+N/2.
The good quantum numbers of these states and the
known Regge trajectories coupled to them are listed
in Table I. Since the only allowed off-diagonal transition
is that between |0+) and |14), one can define five

new partial-wave amplitudes with good parity and
G parity:

(13)

G :=(O) =0 |G7 (1) |ut). (14)
In terms of these,
(++ l GJ] ++ ) = %(Goo""”‘f‘ Goo"_) ,
(++167| —=)=5(Go"—Go"),
(+ =167 |4+ —=)=3Gu"+Gu"), (15)

+- | GJI —+)=3Gu’ " =Gu’"),
<++ |GJ] + ->=%‘G10"+~
The parity-conserving helicity amplitudes gir(s,?) are

defined by their partial-wave expansions®-®:

arl(s,) =3 (QT+1)Goo ™ (Dews’(20),
J=0

0

gar'(s,) =2 (2T +1)Goo, 1" (e’ (20,

J=0

g6 = £ QIHDGur  Den’* 2

- +Gu = (Den’ ()],
(5= 3 T+ DG Oen’ (z0)

- +Gu, " (e’ (21) ],
gsr'(s) =3 QT+1DGio. " e’ (@),

J=1

(16)

where the isotropic spin label 7 has been restored. The
functions ex,’*(z;) are polynomials in z related to

8 M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, B145 (1964).
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dy.”(6,) by the equations

d)mJ(et) = (1+Z[)%| Mul (1 _zt)%l A=l
X [e)\M‘H_(Zt)‘{—e)\uJ—(Zt)] ’

(17)
e H(—z) = (—1)7en 5 (z1)
Am=max([\[,|u]).
Explicitly,8
o’ (z0)=Ps(20),
en’*(z) =[P/ (z)+2Ps" (z)]/[JU+1)], (18)
en’(z)=—P,"(z)/[JU+1],
ew’(z)=—Ps (2)/[JJ+1) ],
where P;(z) is the Legendre polynomial. Hence®
fiI'(S,¢)=§1 Lii(z)gir'(s,1), (19)
where
1 1 0 0 0 ]
1 -1 0 0 0
£E)=3(0 0 (1+z) (1+31) 0 (20)
0 0 (1—z) —(1—3z) 0
0 0 0 0 (1—z2)12)

Similarly, gir(s,t) with isospin 7 in the s channel is
defined by

5
firt(5,0) =20 L£4i(2:)gir*(s,0) - (21)
=1
The inverse relations for (16) are®
1+t
Goo,l”(l):E/ dze gart(s,t)coo” T (20)
—1
1 +1
Goo,1’~() = '2'/ dzt gort(s,)coo”(21) ,
-1
1
Gu,[""'(i) = —2'/ dzi[:ggz‘(s,t)cn‘”(z:)
- (22)

Fgart(s,)c1’(20) ],
1
Gu.r’~(t)= 5 / dz[gar'(s,t) et (20)

—1

+gar'(s,H)en’ (201,
1 +1
Guo, 17t (f) = —2‘ / dz g511(5,t)0101+(zz> ’
-1

where the functions c\,/*(z;) are polynomials in sz
defined by
d? (0= (15) I (15 )
X[ena?* (2 +on” (2],
o E(—32) = £ (—1)7 e :(z0),
Am=max([\],|u) .

(23)
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They can be expressed as linear combinations of the
Legendre polynomials®:

coo’t(2)=Ps(21),
et (z)=[(J+1)Pra(z)+TPria(z)]/(2T+1),
en?(z2)=Ps(z),

o’ (z) = —[J T+ DTV [Pra(z) = Pra(z)]/
2J+1).

Since the e),’*(z;) appearing in the partial-wave
expansions (16) are polynomials, the only singularities
of gir'(st) in z, come from divergences of the series:
They have no kinematic singularities in z,. However,
they still have kinematic singularities in ¢, being related
to amplitudes g.r'(s,t) free of all kinematic singularities

by?®

(24)

gurt(s,) =kt (s,0),
gar'(s,0) = kg (s,0)
gar'(s,)=gar'(s,1),
gar'(s,t)=gar'(s,1)
g51‘(s,t)= t1/2g51t(s,t) .

Furthermore, the g;r'(s,f) must satisfy certain kinematic
constraints to cancel singularities in the crossing
matrix. Of these constraints, the most important, which
corresponds physically to the requirement that angular
momentum be conserved in the forward direction in
the s channel, is

gort(s,t) —zigart(s,0) —gar'(s,t)=0 at t=0.

This relation is known in Regge phenomenology as the
“conspiracy condition.”*?

Since the Veneziano model has only dynamical
singularities, it is an appropriate representation not for
the helicity amplitudes, but for the invariant ampli-
tudes, which are free of kinematic singularities and
constraints. The s-channel invariant amplitudes F,7°(s,t)
for isospin I are related to the Feynman amplitude by’

EIRISZ Fu"(s,t) (S*S)‘FFQIS(SJ) (T+ T)
+ Py (s,0) (A —A)+Fars(s,)(V+T)

(25)

(26)

+Fsr5(s,t)(P—P), (27)
where!!
S=a(p)u(pa)i(pa)u(ps),
T=31i(po)o*u(pa)i(pa)ouwu(ps)
A=a(pe)yrysu(pa)i(pa)yiysu(py) (28)

V= ﬁ(?C)'Y"“(Pa)ﬁ(Pd)'YMM(P 5),
P=u(po)iysu(pa)a(pa)ivsu(ps) ,

and S, T, 4, V, P are given the same expressions with
p. and p, interchanged. The Pauli principle therefore

9 L. L. Wang, Phys. Rev. 142, 1187 (1966).

10 R, J. N. Phillips, Nucl. Phys. B2, 657 (1967).

1 The + matrices satisfy vuvotvevu=2gw, vs=Y"vYv*3,
04» =%i[vu,v»]. This differs from the conventions of Ref. 7.
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requires’
(29)

~ o~ e

Fir(sp) = (=1 Fip(s,0).

are not independent, but are related by the Fierz
matrix '

1 1 -1 1 —1
6 -2 0 0 —6
F=g-i=1l—4 0 -2 —2 —4|. (30)
4 0O —-2 -2 4
1 -1 -1 1 1
Hence (27) can be written as
5
M= 3 Fur(s,)054(—1)1F ]
2,7=1
Xa(pe) Tiu(pa)i(pa) Tiu(ps), (31)
where
=1 , I’= (I/VZ)UW 3 I3=rykys, (32)
Té=qy+, Di=iys,

and repeated Lorentz indices are to be contracted. Since
the 7 channe] has initial momenta — p4 and p, and final
momenta p, and —p,, with p,= p, for forward scatter-
ing, the corresponding expansion for it is

Vii= 3 P05+ (—1)i5]
1

X (= pa)Piu(—pa)a(pe) Tu(py) . (33)
_ktZ 2E¢2Zg
1 (Etz-}-mz) —ZktZZg
Q(l,z;) =— 0 2m2
Y 0
0 —2mEt

Et2 =

PN

t.

Also, since the s and ¢ channels are treated equivalently,

gr6O=E Qulea)Fusl),  (9)

where g:1°(s,?) is defined by (21).

IOI. VENEZIANO MODEL

To construct a Veneziano model for the invariant
amplitudes of nucleon-nucleon scattering, it is necessary
to generalize the original model to the class of functions

T(e—a@))T(b—a(w))
T(c—a(l) —a(n))
max(a,0)<c<a+b. (40)

Here a, b, and ¢ are non-negative integers, I'(z) is the
gamma function,’® and

a(t) =apta't

Vea())a(u)) =

(41)

923
Then crossing symmetry requires!'?
1 5
Fu'(s,t)= 2. 20 KrsTiiFi5°(s,0) (34)
=0 j=1
where
Tyj= (TN y= (=15
1 6 —4 4 -1
-1 2 0 o0 1
=1l-1 0 -2 -2 —1| (35
-1 0 2 2 -1
-1 -6 —4 4 1
and
Ir—1 -3
K=K"'= —[ :I . (36)
2L—-1 1

The invariant amplitudes do not have simple partial-
wave expansions or definite quantum numbers, so it is
necessary to relate them to the parity-conserving
helicity amplitudes. This can be done’ by explicitly
evaluating the covariants in (33) for spinors of the
appropriate helicities. The result is

5
g”t(sat) =Z Qij(t;zt)Fjlt(s)t) ) (37)
=1
where
4kt2 Zmzzt k;2
(4E 2+2m?) 0 —k?
0 2B 0|, (38)
—2k2 0 —k?
0 —2mE, 0

is the linear Regge trajectory, which is assumed to be
the same in both the ¢ and the # channels. Therefore
V.*¥(a(t),a(%)) is a meromorphic function of s and ¢
whose only singularities are simple poles at

alty=a, a+1, a+2, ...,
a(u)=b, b+1, b+2, ....

The condition max(a,d) < c¢<a+b in (40) ensures that
there are no simultaneous poles in ¢ and # and that the
residue of the pole at a(t)=# is a polynomial in z, of
degree not greater than ». It is shown in Appendix A
that, as a(t) —>n,

(42)

n4b—c 1
V #b(all) ) ~ 3; QDR P, ()

n—a(t

2 The derivation of this is essentially identical to that given
in Ref. 7 for the s-u crossing matrices.

18 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge U. P., Cambridge, England, 1965).
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where

1 +1
R,ote= 5/ dz, Pl(z;)

XRes{Ve () a(w)a()=n}, (44)

so that the pole actually corresponds to a superposition
of resonances with several spins. In particular,

e e
(n—a)! Cn+1)!
R, n_lubbz_l_ (=1 n[(n—1)17]?
. 2(n—a)! (2n—1)!
X(3a0+4m2a1_2b+1)

X (n—ag—4m?a/)*1,

(=1 [=D1F,

\n——ao—4m2a’)"—1 y
(n—a)! (2n—1)!

R, o0 (n—ag—4m?’)",

(45)

Rpp @bt = _

Rp#be=0, I>n+b—c.

The asymptotic behavior of V,**(a(f),x(%)) can be
obtained by using the Stirling approximation®? for I'(z).
As u— o with |argu| >0 and ¢ fixed,

FRANK E.

PAIGE ‘2
V 2¥a(t) a(u))~T(a—a(f))(—a'u)=O+>e
x[1+ %L,u(a't+ao+b—c)

X (@t4-3a0—b—c+1)+- - ] , (46)

which result, like the resonance spectrum, corresponds
to an infinite family of Regge poles:
ar()=al)—k, k=0,1,2,.... 47
As u— oo with 0< |argu| <w and s fixed, the amplitude
decreases exponentially, there being no Regge poles in
the s channel. Finally, as s— with |args|<w and
2, fixed,
V.2¥a(t),a(w))
~ (2m) V21 = 5,) o0 (14 7,) b-a0—3(2)—e+2arth

X (2a'k2)o+ 4 exp{ —2a'k, Y In4

—(142,) In(142,) —(1—z,) In(1—2,)]}.  (48)
For physical z, the square bracket in the exponent is
always positive and is given approximately by!
Ind—(1+3z,) In(1+2,) — (1 —z,) In(1—2z,)

=~]n4 sinf,.

(49)

Hence the gross behavior of the large-angle cross
section depends only on k,? sinf,.
The finite-energy sum rule'* for the amplitude

/ du' (') ImA(s' ) = —
ug

) A(sp)= V2 ¥a(t),c(u)+ Voia(t),a(u))  (50)
is
T'(1—a(?)) sinw(a(t)+b—c)(w) ™ (' u)*®
s b>a,
at)+b—c+m+1
—a inm(a — m+1(og9) ()
: 2T (1 —a(?)) sinm(a(t)+b—c) (u)™* ' ('n) , ba, 51)

a()+b—c+m+1

where ImA(s’f) is a sequence of § functions. The
original Veneziano model has the remarkable property
that it satisfies this relation approximately even for
small #.! The functions (50) share this property for
b=a, but not for b>a, as is illustrated in Fig. 1. Of
course, (51) must be satisfied in all cases for large .
The Veneziano model constructed in Sec. IV for
nucleon-nucleon scattering contains terms like (50)
with 5> a, so it will satisfy the finite-energy sum rules
only asymptotically. It is very difficult to tell whether
or not this is true of the physical amplitudes. To deter-
mine uniquely the imaginary parts of these amplitudes,
it is necessary to measure not only the cross section and
polarization, but also various spin correlation functions.
Even if this were done, there still would remain the
problem of determining the amplitude in the large
unphysical region between {=4m,? and t=4m?.

1“4 R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968).

IV. VENEZIANO MODEL FOR NUCLEON-
NUCLEON SCATTERING

The s channel, corresponding to nucleon-nucleon
scattering, contains no known resonances except the
deuteron, which will be ignored. The identical ¢ and #»
channels, corresponding to nucleon-antinucleon scat-
tering, both contain meson resonances which are
assumed to lie on straight, exchange-degenerate Regge
trajectories «(f). This assumption of exchange de-
generacy, and hence of a real amplitude in the s channel,
is necessary because the Veneziano model has no
imaginary part in a channel without resonances. Unless
exotic resonances are assumed to exist, therefore, the
Veneziano model cannot be used for the Pomeranchuk
trajectory.1s ’

Since the invariant amplitudes F;r°(s,t) in (27) are
free of kinematic singularities and constraints, it is

15 H. Harari, Phys. Rev. Letters 20, 1395 (1968).
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.
ar 2|
TN & 3 + 5 &% NUTE s[4 s e
-4 N ok
-8: \\ _4:
-2+ -6:
—I6: -8:
-20: -IO: o
_24: —IZ:
-28: -14:
-32‘: -I6:
-36: -I8:
_40: —20:

(@)

()

Fi1c. 1. Comparison of the left-hand side (smooth curves) and right-hand side (broken curves) of (51) for =0 and a(f) =342 In (a),
A (s =2V(a@),e(w). In (b), A(s,) =Vs®(a@®),a(u))+ Vsl (a@),a®)).

appropriate to write them as a sum of terms of the
form V. *%(a(t),a(u)). It assumed here, as has already
been done in Sec. ITI, that the same trajectory a appears
in both the ¢ and the % channel of any given term; the
full model is then obtained by adding the separate
models for each trajectory. This assumption, which
greatly simplifies the calculation, is, of course, not
possible for some other scattering processes.

For a given Regge trajectory «(f), the most general
Veneziano model consistent with the Pauli principle
(29) is

Fir'(s,t) =2 Bur®* LV e (a () ee(w))

abe

H(=DHV o) ()], (52)
a(l) =artda't,
where it is to be understood that
Bir?*=0 unless a<b<c<La+b. (53)

In general, the pole of such a model at a(t) =#n, n=a,
a+1, a+2,..., appears in all of the partial-wave
amplitudes G,,r’%(f) with J<n-+1. The problem is to
choose the coefficients 3;7%% so that the resonances on

the ancestor trajectory (those with J=n+41) are
eliminated and so that the resonances on the parent
trajectory (those with J=u) have definite parity and
isospin and have residues which satisfy the factorization
theorem and positivity conditions. This can be done
by choosing an appropriate set of terms in (52) and
calculating for them the residues Gx,,r=(%,J) defined by

G)\ ,zi(n,J)
Gt (t)~ —— L
n—all

(54)

all)—n,

where Gh,,17%(f) are the {-channel partial-wave ampli-
tudes (22). The problem is then reduced to forcing
G, it(m,n+1) to vanish and Gy, r=(n,n) to satisfy
certain constraints. Since the initial model (52) satisfies
the Pauli principle, there is no need to consider the
u-channel resonances separately. Furthermore, the
asymptotic behavior and the resonance structure of the
Veneziano model are correlated by the finite energy
sum rules (51), and this is sufficient to ensure that all
of the amplitudes have the Regge behavior appropriate
to the given parent trajectory.®

16 This correlation is sometimes referred to as “duality.”
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In what follows, the above procedure is carried out
for three exchange-degenerate pairs of trajectories—the
(w,f9), the (p,45), and the (,B).Y” For simplicity these
pairs will be called the w, the p, and the = trajectories,
respectively.

o Trajectory

The residue functions By, r%(f) for the Regge pole
at J=a(t) are defined by

Brrt ()= lim [J=a()Ion’*0).  (55)

For any choice of terms in (52) they have the form
B2 () =[1/T(()+3) N’ k2)* O yn, 7 5(),  (56)

where the vy, r£(¢) are polynomials. If the model for
the w trajectory is to contain a pole corresponding to
the w resonance itself, it must include in (52) terms of

the form
Bir D[ V1o (— 1)1 ,b1] (57

for some values of ». The degrees of the polynomials
Yau,1E(l) corresponding to these terms are independent
of . Now the only other terms which can contribute to
the parent trajectory are

ﬁua,b,b[Vbub__{_(__1)i+IVbbaJ’ (Z; 2’

. 58
Bir® 2 o V1@ (= 1)V 1%, a2 1. 8
Of these, all except
ﬂiIl,b,b+1[Vb+11b+(___1)75+IVb+1b1] s (59)

ﬁ“,2, b,b+1[Vb+12b+ (.___ 1)1‘+1Vb+1b2]

give polynomials ya,,r=(f) of higher degree than those
coming from (57). Hence the simplest possible residue
function for the parent trajectory is obtained by
choosing to include in the model just those terms in
(57) and (59). In the absence of any better criterion,
this choice is made herein.

The calculation for these terms of the residues
G it (,m+1) and Gy, rE(nm) defined by (54) is
carried out in Appendix B. It is shown there that the
absence of ancestors,

Gt (mym+1)=0 forall» (60)
implies
Z' (B1Ilbb—25211bb-‘3511bb) =O,
b>1
2 (Burtbe—2B4, 100435100y =0, (61)
by 1
B lbbzo’
where o
Z/ 6”41170_._. (_ 1)i+16”aac+ Z 6ﬂaba . (62)
b; a b=a

¥ Exchange degeneracy in pion-pion scattering requires in
addition that the p and f0 trajectories be degenerate. Of course
this does not force their residues in nucleon-nucleon scattering to
l;e ea;ual, and in fact the 7 =1 residues are much smaller than the
=0 ones,

FRANK E.
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The residues G, r¥(n,n) of the parent trajectory then
depend only on certain combinations of the B;r%%,
namely,

A= 3 B,

b1

Aor= 37 b(B1712°—2B51120 —B571%7)
b>1

Agr= 3 b(B1r'**—2B41204-B511%?),
b3 1

A5I= 21185[1“7,

b1
Bzr= Zr (6111‘b'b+1"'Zﬁztl‘b'b+l—ﬁ5zl'b'b+l) ,
51

By= 3/ Bart b,

by 1
Bur= X' (Bu P —2Bus bbb
b1

CZX= Z’ (8112,b,b+1_26212,b,b+1_6512,b,b+1)

b3 2
F(—=1)1(—B1r 22—~ 28122485122 ,
Csr= Y Bsr®®¥+1,

b>2

Car= 2 (Bar? P b1 =28,y 0 bHf By 2.0 04T)
b2
(= 1) (—B11122— 2847122 —B5r122)

Actually, Cyor and Cyr appear only in the combinations
Asr—Cor, Bart+Cor, Au—Cuy, By+Cu, (64)

so there are eight free parameters for each isospin.

These parameters are constrained by the conditions
imposed on the leading trajectory. From Table I, the
absence of parity and isospin doublets on the parent
trajectory requires that

(63)

Goo,0~(n, 1) =Gr1,0-(n,1) =Gy, 1t (n,m) =0.  (65)
The factorization theorem implies that
Goo,0T(1,1)G11,0T (1) =[Gro,6t(0,m) 2. (66)
Finally, since
(n—ao—4m? )" 1= (4'k,2) 2D nmn,  (67)
reality of the coupling constants demands
Goo,ot(n,n)/ (n—ag—4ma’)12> 0, 68)

G0t (nm)/(n—ag—4m’a’)*12 0.

In Appendix B it is shown that there is a nontrivial
solution to these conditions having two free parameters,
which are chosen to be A1 and A5 Then

Aw=A4u,

A20"C20=A21—'C21= *-41451,
A40—C40=A41“C41=0,

A50=A51,

Bzo+C20=321+021=4010A51,

Bsy=Bs1= —2m%’'A nd 51/(A n+4 51) y
By+Cyp=By+Cu=12m%'A1,4 51/(/1 ut+4 51) ’
C30=C31=0,

An+45<0.

(69)
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Hence, a Veneziano model for the w trajectory satisfying
all of the desired conditions is given by

Fir(s) = X Bur V(a0 0(w)
(= DTV 2 a() aw))]
+§p¢@wwvwm@@ﬂw»
(=D (0),aw))]
+§fﬁmwivﬁmm@aw»
(= DV a@(D,a@)], (70)

where the coefficients ;7% are chosen to satisfy (61)
and (69). From Appendix B, the nonzero Regge residue
functions for the parent trajectory of this model are

(,n.) 1/2 (a/ktﬁl)a(t)—l

Boo,a* (1) = (—Au—A
i) (s

X[a(t):](a’t—4m2a’

(7!') 1/2 (a/kt2)a(t)——l

11 )2
Au+Az)’

()= (—du—4
Pt O e Te 4" “jl 2
X[a(t)+1,](a't)(4m2a')<—— 51—), (71)
Au+As
()12 (b 2)a—1
Bro,0" () = 1n—As1)

s T+
XA{a@®)[a()+1]} 2 )M 2(4m*a") 2

A51 All
% -_)(au_4maw _—).
An+A4s Autda

The square roots appearing in Big,¢t in (71) are just
the kinematic singularities of Guio,0/*(f) arising from
(24) and (25). However, the factors of a(f) in Boo,0t(f)
and of o/t a(f)+ 17 in Bi1,07 () are dynamical predictions
of the model. They imply? that the w trajectory chooses
sense at a(f)=—1 and nonsense at a(f)=0; the com-
pensating trajectory at a(f)=0 is of course just the
first daughter trajectory.

o Trajectory

While the p trajectory has isospin 1, it couples to the
same spin states as the w, so the two cases are virtually
identical. The solution analogous to (69) is

—3410=4u,

—%(Azo—cm) =An—Cun=—44s,
~—%(1‘140—C40)=A41'—C41=0,
~%A50=A51,

—%(Bzo—f-czo) =B+ Car=40ayd 51,
—%Bao=331= —2m2’'A ud 51/(/1 ut+4 51) ,
—%(B4o+c4o) =Bu+Cu= 12m%’ A nd 51/(A ut+4 51) ,
—§C30=C31=0,

Au+4:a>0.

(72)
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The nonzero residues for the parent trajectory are

()12 (@' R 2)x -1
Boo,it(t) = —— —————(Au+45)
Am?e’ T(a(t)+3)

2
X[ (t)](a/t—- 4m2a'———-1———> ,
AutAda

(11,)1/2 (a/ktZ)a(t)—I

+ {)= A A5
Bll,l () 4m2a/ I‘(a(t>+%)( 11+ 1)
Ast 2 (73)
x@m+u@w@ww(—— ),
An+As
1|.)1/2 (a/kt2)a(t)—l
Bio ()= ( (Aun+A45)

dm’a T(a()+3)
X{a(@)[a()+1T} 2" t) 2 (dm* )12

A 51 A 11
X > a't—4m2a'——> .
A11+A51 A11+A51

Of course, the values of 41; and 45, here are independent
of those for the w trajectory.

= Trajectory and Conspiracy

Since the = trajectory is lower than the w and the p,
it can ordinarily be ignored. It is important only for
proton-neutron charge exchange scattering, the cross
section for which has a sharp forward peak with a
width on the order of the pion mass. By itself, the =
trajectory cannot explain such a peak: It couples only
to the amplitude gs1%(s,t), and its contribution must
therefore vanish at =0 to satisfy the kinematic con-
straint (26). Suppose, however, that there is a natural-
parity isospin-1 trajectory which is coupled to gsi’(s,t)
and is degenerate with the 7 at £=0. Then both it and
the = can have nonzero contributions at (=0 if these
contributions just cancel each other in (26). This
possibility!® is known as conspiracy, and the other
trajectory is called the conspirator.

It is often assumed that the conspirator has a very
small slope so that it does not produce a low-mass posi-
tive-parity meson. In the framework of the Veneziano
model, this is not possible, for if the / and % channels of
the same term contain trajectories of different slopes,
then the amplitude grows exponentially with ¢ for cer-
tain angles in the ¢ channel. If the = and the conspirator
trajectories appear in different terms, then the pion
residue is required to vanish at = 0. Hence the conspir-
ator must be degenerate with the m, and its residue must
be forced to vanish at a(f)=0.

Reasoning analogous to that used for the w trajectory
leads to the inclusion in the model of the terms

ﬁiIObbl:VbOb+ (_ 1)i+IVbb0] ,

4
6i11,b.b+1[Vb+l1b+(_1)i+1Vb+1b1]_ (74)
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F16. 2. The solid curve is the phenomenological formula (82)
for the proton-proton cross section. The dashed curve is the
approximate prediction (81) of the Veneziano model for o’ =0.87
GeV~2 as required by PCAC [C. Lovelace, Phys. Letters 28B,
264 (1969) 7.

{There can be no terms of the form

,Bilo'b’b+1[Vb+10b+(_1)i+IVb+lbo:l, (75)

since these have simultaneous poles in { and #.} The
conditions required to eliminate the ancestors are

Z/ (5110“’ —2B1°%® —ﬁslobb) =0,

b0

Z/ (6110bb_2‘8410bb_|_6510bb) ___.0’

b>0

(76)
)8310bb=0;

where the Y’ notation is defined by (62). The residues
G, 1=(n,m) of the parent trajectory then depend only on

Dir= 37 B1°%,

b>0
Dor= Y b(B11°" —2B51°0% —B51°b) |
530
D= 37 b(B11°%" — 284" +B51°%%),
530

D51= z/ B.’)IObb,

b>0
E21= Z’ (5111’b’b+1—25211'b’b+1'—5511’b’b+1)
b>1
F (= DI (=11 =28 4-B5") ,
Eyp= 37 Bsr0:0H1

b>1
Eu= 3/ (Bur's» =28y b1t bt
b1
_{_(__1)[(_611011_2B41011_ﬁ51011) .

(77)
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The trajectory a(f) is to be interpreted as a = trajec-
tory degenerate with a natural parity, isospin-1
conspirator trajectory; the latter must produce no
resonance at a(f)=0. By Table I this requires that

G)\,"oi@’l,’ﬂ) =0 )
G11,1_(7’L,7I/) =0 ,

G 17(0,0)=0, (78)
Goo, it (n,m)G11,1H(n,m) =[Gro,H(n,m) 2.
Hence,
Dir= Dyr= Dyr= E3r=E4=0,
—3Ds50=Ds,, (79)
—3FE20=FEy.

If (76) and (79) are satisfied, then the nonzero residues
of the parent Regge trajectory are

(7r)1l2 (a’kt2)a(t)—1

0,1t () = @D (Ea),
Boni*() Amo! I‘(a(t)-f"%)\ OLe® 1)
~ 3 (,".)1/2 (a/kt2)a(l)
Booi™()= dm?’ T(a()+3)
X[ t(4D51)+a()(—Ea) ],
(w2 (k)1 (80)
() = s
Bt O i T D
X[a(®)+1]@4m* ) (Ex),
U2 (@ ]2)x 01
Bio,H ()= ™ ¢ A {a(®)[a®)+11}12

Am2’ T(e(@)+32)
X (@ H)12(4m2 )2 (Eqy) .

Setting Fy1=0 makes the natural-parity residues vanish
and gives a model for an evasive pion trajectory.

The residue Bi1,17(¢) in (80) does not vanish at the
nonsense point a(f)=0. However, since it is propor-
tional to Ea, (77) implies that it receives contributions
only from terms of the form Vy1'%(a(f),e(#)), which are
regular at a(f) =0. Hence the apparent pole in G11,17 ()
at a(f)=0 is absent, being removed of course by the
compensating trajectory mechanism.®

V. COMPARISON WITH EXPERIMENT

The Veneziano model is of particular interest in
connection with high-energy large-angle scattering, for
which the Pauli principle is expected to be important.
According to (45) and (46), its contribution to the cross
section in this region has the approximate form

(81)

independent of the details of the model. In the same
region the experimental proton-proton cross section can

do/di= A exp(—Indd’s sinb,) ,
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be represented by the phenomenological formula!®

do/dt= B exp(—s sinf,/g), (82)
where for s sinf,< 16.0 GeV?,
g=(1.240.01) GeV?, )
B=(134.6-11.7) mb GeV-2,
and for s sinf,>20.0 GeV?,
g=(2.7740.02) GeV—2, (84)

B=(56.4-£3.4) ub GeV—2.

The model fails to reproduce this break in the experi-
mental cross section. Furthermore, comparison of (81)
and (82) shows that the values of the trajectory slope
needed to obtain agreement on either side of the break
are

a'=0.58 GeV~2

a'=0.26 GeV—2

for s sinf,< 16.0 GeV?,

5
for s sinf;>20.0 GeV?2. (85)

Since these values are both significantly less than the
slope of an ordinary Regge trajectory, the contribution
of the Veneziano model to the cross section is negligible
for large values of s siné,, as is shown in Fig. 2. The only
parts of the amplitude which are important there are
those which have been omitted from the model, such as
the contributions of the Pomeranchuk trajectory and of
cuts. This is supported by the fact that the large-angle
data have been successfully fitted by a phenomenologi-
cal model including just these contributions.®

A detailed phenomenological fit to forward nucleon-
nucleon scattering has been made including the contri-
butions of the Pomeranchuk, the w, and the f° trajec-
tories.”® The compensation method used in this fit differs
from that predicted by the Veneziano model (71) for
the w and f° trajectories, but this difference may not be
significant. A more serious problem is that the phenom-
enological fit requires that the w residues change sign at
t= —0.2 GeV?, whereas no change of sign occurs in (71).
Perhaps this could be corrected by including more terms
in the model, but then the same zero would have to
occur in the fOresidue function, and there is no evidence
for it in pion-nucleon scattering.

The models for the (p,42) and for the (7,B) with a
conspirator both contribute to proton-neutron charge-
exchange scattering at small angles. Since ordinary
Regge-pole theory, even with conspiracy, does not
explain the measured cross section,? the Veneziano
model cannot do so either. It is probably necessary to
include the contributions of Regge cuts.

ACKNOWLEDGMENTS

I wish to thank Kerson Huang, my thesis advisor,
for suggesting this problem and for giving me valuable

18 J, V. Allaby et al., Phys. Letters 25B, 156 (1967).

19 W, Rarita, R. J. Riddell, C. B. Chiu, and R. J. N. Phillips,
Phys. Rev. 165, 1615 (1968).

931

advice and encouragement. I also wish to acknowledge
the generous support of the National Science
Foundation.

APPENDIX A

The behavior of the function V ,%¥(«(f),c(u)) defined
by (40) as a(f) > n, n=a, a+1, ..., is given by

Vb alt) a))
(~1)
~ —niv—c c—n—a(u)] , (A1)
(n—a)! n—a(f
where 7,(x) is the Pochhammer polynomial,
7a(x)=T(x+n)/T(x)
=x(x+1)- - (x+n—1). (A2)
From??
T'(2)T(1—2)=n/sinwz, (A3)
it follows that
ro(—x)=(—1)"r,(x—n+1). (A4)

This, together with (5) and (41), implies that, as
a(t) —n,

V ot(a (i) a(w))
(—1)atbte

( Tn+b~c(a0—'2kg20£’+2kg2a’2~'5_b+1)
n—a).:

~

1
X )
n—a(t)

(AS)

so that the residue of the pole at a(f) = is a polynomial
in z; of degree n+b—c¢. Hence R,;%% in (43) is given by

_Rnlabc= —
2 (n—a)!

X7n+ b_c(ao—Zkgza,+2k;2a’2¢—'b+ 1)P1(Z¢) .

1 (_1)a+b+c +1
/ de

-1
(A6)

This integral can be evaluated by noting that

n
a(®) =2 pur™ ¥,
k=0

(A7)

where the coefficients p,i are given by

Pn0= 1 )

pan=0, n>0, (A8)

n—1

Pnk= Z

11<i9< . » « L Pg=1

k#0,n,

iliz' . 'ik,

and satisfy
Prk= P15+ H—1)pn_1,5-1. (A9)
% K, Huang and I. J. Muzinich, Phys. Rev. 164, 1726 (1967).



932 FRANK E. PAIGE 2

Then, by (A7) and the binomial theorem, But*®
1 1)atbte nype ntb—c—i fu+b—c—1 o
e LTV ( ) no MG
2 (n—a)! i=0 i=0 j dz3°Pi(z) = —- - , J21l, j—leven
o -1 G7—G+HH+!
X (to— 2k el —b—1)H—e=i=i(2h2a/)
+1 ) =0, otherwise. (A11)
>< dZt Z;JPl(Zt) y (AIO)
k2= (n—ay)/4’ —m?. - From (A9)-(A11), it is easy to obtain (42).

APPENDIX B

For the general Veneziano model (52) the /-channel parity-conserving helicity amplitudes gir*(s,t) are obtained
by using (34) and (37). They are

gurt(s,t) = — Z Krr Z {[V 24 (= )TV ] EA(—12B21°7 —8B4r°%¢) +m*(12351°%°+8B41>¢)
Am? 1=0
+E 22,(4B219%°) +m22,(48.41*%°) ]
F[Veoo—(=1)TV 2 E2(—06B11%%° — 88310 — 2851°%) +-m?(6811°°°+ 88515+ 28517%¢)
+ E22,(— 28110+ 2B51%%) +m23,(— 281122 +4B51%— 285:°%°) ]},
gorr (S t)—- Z__ Z KI'I Z {[Vcab+( I)IV ba][E22(12621abc_8'84Iabc)+m2(4ﬁ41abc)
m2 I=0
+ E23,(—4B21°%¢) +m?2,(4B21%%°) ]
+[Vcab_(_l)IVcba][Et2(_Zﬁllabc_.853’abc_6ﬁEIabc)+m2(_2611abc_12631,abc__2‘351abc)
+ E22:(28117%° — 2B851°%) +-mPa( — 2B811°%°+2B51%) ]}, (B1)
gs1’ (SJ)_ — Z Kpr E {[V 224 (=1)7V 2o ]LE2(4B4r") +m*(4B2r°>) ]
4m? 1=0

+ [:Vcab_ (__ I)IVcba][:Et2(_2Blrabc+4ﬂ31abc_2651abc) +m2(_2611abc+2651abc)]} R
1 1
gr'(s,)=—3% Kpr X {[V2 4+ (=1)TV 2 J[EA(—4Bar") +m?(4B41r*>) ]
4m? 1=0 abe

_'._[Vcab__ (___ l)IVcba][Et2(23Habc+12631abc+2651abc)+m2(_Zﬁllabc_ IZﬁglabc_ZBEIabc)]} ,

gsri(s,t)= :L— Z Ky 2 ALV (= 1)1V 2 [mE(—4B21°%° —4B4°%) ]

I=0 abe
+[Vca,b__( 1)chba][mEt(4'BIIabc_4ﬁ31abc)]} s
where

Vb=V a()a(n). (B2)

The partial-wave amplitudes G, 7=(#) are then given by (22), where the cx,/%(2;) are linear combinations of
Legendre polynomials. The residues Gy, r£(n,J) in (54) are therefore expressible in terms of the R,:%* defined
in (44) and evaluated in Appendix A. The extra factors of z, in (B1) are handled by using??

I+1 !
thl(zt) = Pl-kl(zz)‘i' —-——-———P;._l(zt) . (B3)
21 2141
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Hence

- Z I’ IZ {[anabc_l_(___l)IRanac]

m2a 1=0 abe

Goo,['+(%,.7) = 1

X L[(n—ao) (— 128572 —8B47°%°) +4ma’ (12B21°0°+8B47°°) ]

J+1 J
+|i—_’|:Rn,J+1“b”+ (=DIRy, 541% J+ ———[ R, 71>+ (— 1)1Rn,J—1b'”]:|
2741 2741

X (1 —cto) (4821°2) 4’ (4841°%%) 1+ [Ros™e = (= 1) Rys]

X[[(n—a0) (—6811°%°—8B572%° — 2851%) +4m?a’ (6811°°°+8B51°0°+2B57%) ]

J+1 J
+|:w[Rn J+1” _( l)IRn I+, Ibac]_l_ —-_'_[ n,J—1%°¢— (—' I)IRn,J—lbac:l:I
2J+1 27+1

X[ (n—a0)(—2B11°"+2B5°") +4m2a7(—2611“50—}—4631“”0—-265,“’")]} )

1
Goo,i~(nJ)= —— Z rry. [[RnJ“b°+(—1)IRan“:|[(”'—Olo>(12521“b°—8ﬁ41“b°)+4m2a/(4ﬁ41“b°)]

16m%’ 1=0 abe

J+1 J
+[_——[Rn,J+1‘””+ (=D'Ra, 71 I+ ———[Rn, s 12+ (— 1)IRn,J~1b“°]]
2741 2741

X E(na0) (—482r) 4l (48015 T [Rag = (= 1)1 R ]
X [(% -—C{o) (___ZBHabc___SﬂSIabc__QBﬁIabc) _|_4m2a/(_2‘811abc__ 12631abc_2651abc)]

J+1 J
+[~—*—‘[ g 4120 = (= 1)TR, b ]+ _—“[Rn 712 —(=1)TR,, 5 1“b°]]
2J+1

X [(n—00) (2B17°%° —2B57r°%) +4m? (— 2511“b°+2/351“b”):|} ,

J+1
~—Z Kpry {I:—J_""_[Rn.f 1994 (—1)IR,, 1 %%¢]

G11,11+(1’L,J) =
16m2a I=0 abe

J
+———[Rn,r1**+(— 1)’Rn,1+1"“°:|]|:(% —a) (4841°%°) +4mPo (4821°%) ] (B4)

J+1 J
+[——[Rn L e —(—1>1Rn,1+1buj]
2741 2J+

X [(2—ao)(—2B811°0*+4B57°>° — 2851°%) +4m?e (—2811°**+285r°*) ]

+[RnJabc+<_ 1)IRanac:]|:(n__a0)(__4641,41170)+4m2a/(4641abc)]+[Ranbc_ (_ 1)IRanac]

X[(n_ao)(Zﬁuabc_!_12331abc+265[abc)+4m2a’(_2611abc__IZleabc_Zleabc)]} ,
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1 1 +1
> K1Y, {[;"“[Rn.f 12 (=1)IR,, 1]

6m2a' I=0 abe

Gu_p—(n,]) = 1

J
+ ‘2J—+__I:Rn a41°0°+ (= 1)TR,, J+1b“”]][(ﬂ —a) (—4841°%) +4m’a’ (4841°%) ]

+[£_1_ER1L 7—1% __( I)IR T 1b“°]+°—{—‘[Rn T41® _(_l)IRn,J+1bac:|]
2741 274

X[ (n—a0) (28117 +12B37°%+2B5°5) +4mPa (— 281170 — 1285174 — 2B51°%°) ]

FLRas 4+ (—1) Rt J[(n —cro) (4841°%°) +-4me/ (4821%%%) ]+ [ R — (—1)Rp s2%]

X [(n—ao)( —'2ﬁ1l""°+4531“b°—2351‘”")+4m20/('—2[311“1’“’1—2351"“)]} )

L +1)Jue
m\/(a)lgo K =
—[Ru,7-1"% = (=) Rn, r1** T} [(n—a0)/2(— 2821~ 2B47°%) ]
L@+
241

{[Rn..f+1ubc+(—l)IRn,J-{»«lbac]

Gm,p"’(ﬂ,]) =

{[Rn,J+labc_(___1>IRn,J+1bac]_[Rn,Jﬁlabc_(_1)IRn’J_1bac]}

XL (n—ao)?(2B119%°—2B;51°%) ]

To proceed further it is necessary to make a particular choice of terms, as was done in (57) and (59) for the

o trajectory. For these terms, it follows from (45) and (B4) that
G, i=m,J)=0 for all J>n+2.

(BS)

The only nonzero contributions to G, r£(#, #+1) come from the R,,s_1!%® terms in (B4) and from the cross terms
Ry, s—1*'® with b=1; the latter are automatically included if the 3’53 1 notation (62) is used. Since from (45)

R,,1=R,,1* forall b, (B6)
these contributions are
1 n+1 1
Goo,rH(n, n+1)= Rl 2 Krr X [(n—ao)(4Bart?® — 2811100+ 285,14P)
16m2/ 2n+3 1=0 b3 1
+dm?o/ (434110 — 281110 +4B51100 —2851107) ],
1 n+1 1
Goo,r~(n, n+1)= Rpn? 2 K 3 [(n—a0) (— 48210+ 2811100 — 235,102)
16m2’ 2n+3 1=0 by 1
+Ama! (ABor" — 26,05 +28510%) ],
1 n+2
G11,I'+(%,1’t+1)= Rpnltt ZKI’IZ [(n 010)(45411bb 2511“’1’“1'4531”’”—23511"") (37)
16m%’ 2n+3 1=0 by 1
+dmPa (487100 — 2317100 +2B57108) ],
1 n-+2
Gu,r~(n,n+1)= Ryttt Z Ky 3 [(n—o0)(—4B4r22+2B11'00 412337100 — 235,109)
16m2’ 2n+3 1=0 by 1
+dm?a (484700 — 2817170 — 12857100 — 285,108 ],
1 [(12—!—1)(7;—1—2)]”2 1
G10'1,+(n’ n+1)= R > Kpr ' I:(n—-ao)llz( 28,7100 — Zﬁulbb__}_zlgulbb_2ﬁ311bb)]'

4m ()12 w 2n+3 1=0 by 1
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If there are to be no ancestors, these contributions must vanish, implying that

b1

S (Birt —2B7'0 —B51100) =0, 3 (B1r'®?—2B410 4851100 =0, 3/ Bartd=0. (B8)
b3 1 > 1

The last condition just reflects the fact that V!> grows more rapidly with # than does F3:°(s,f). Henceforth it
will be assumed that

Bur'?*=0, (B9)
in agreement with (61).

For the parent trajectory residues G,,r=(n,n), the only new cross terms R,;** in (B4) which contribute are
the R,,s_12%2 ones; these are explicitly taken into account in Cy and Cy in (63). Substituting (45) in (B4) and
using (61) and (63) yields

1 n(n!)
16m?%’ 2n-+1)!
+n[ —4Bor+4Cor+ao(—32411+44 51 —4Cor)+4m?e’ (— 324 11— 4441 —8C3r+4Cur) ]

[ (aot+4m?a")2(16A11)+ao(4dBar+4Cor) +4m?e (8 Bsr—4Bar+8Csr—4Car) ]},
1 n(nl)

Goo,rl'f'(n,’ﬂ) =

1
(n—ao—4m2a')" 1 S Kpp{n2[16A11—4A5r+4Cor]
I=0

1
Goo, 1~ (1) = n—ag—4m?2’)* Y, K
vy (2n+1)!( ’ P
X{n[4A2r+1645r—4Cor [+ [4Bor+4Cor+ao(—16451) 1},
1 (1) 1
Gu,rt(nn)= (n—ao—4m* )1 3 Kpr{n*[—4A440—8Cs+4Cur]
16m% (2n+1)! I=0 (B10)
+n[8Bsr—4Byr+8Csr —4Car+ao(4441+8Csr—4Cr) +4ma’ (— 44 51+4Co1) ]
+[oo(—8Bsr+4Bir—8Csr+4Car) +4m*’ (—4Bar—4Car) 1},
1 (m+1)! 1
Gu, 1 (nn)= — (n—ap—4m?*)* Y Kpr
16m%’ (2n+1)! 1=0

X{n[4A441—24C5r—4Car |+ [24Bsr+4Bar+24Cs+-4Cur ),
1 [n(m+1)]2m! 1
Gio,1 (nm) = (n—ao—4m?a )1 (4dm2' )\ 2(n—ao)2 Y Kpr
16m%’  (2n+1)! I=0

X{n[—4A421—4A44+4Cor—8Csr+4Car [+ [ —4B2r+8Bsr —4Bsr—4Cor+8Csr—4Car ]} .

The satisfaction of the conditions (65), (67), and (68) is now reduced to\ an algebraic problem, the solution of
which is given in (69). The residues (70) are obtained by substituting (69) into (B10) and replacing 7 by a(Z).



