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Veneziano Model for Nucleon-Nucleon Scattering*t'

FRANK E. PAIGEf.

(Received 9 April 1970)

A Veneziano model is constructed for nucleon-nucleon scattering. Each parent trajectory in the model
has no parity or isospin doublets, and its residues satisfy the factorization theorem and positivity conditions.

I. INTRODUCTION have residues which satisfy the factorization theorem
and positivity conditions. ln the model for the (~,B)
trajectory, a positive-parity, isospin-1 conspirator is also
included. While it must be degenerate with the (vr, B)
trajectory, its residues vanish at n=o, so that no low-
mass positive-parity resonance is required. The
conspirator can be removed by setting a certain parame-
ter equal to zero.

The model is compared with experiment in Sec. V.
Its contribution to the cross section at high energies
and large angles is negligible compared to the experi-
mental values, presumably indicating that only the
Pomeranchuk or Regge cuts are important there.

MODEL for scattering amplitudes that combines,
in a natural way, crossing symmetry, narrow

resonances, and Regge asymptotic behavior has been
recently proposed by Veneziano. ' So far this model has
been discussed mainly in connection with reactions
involving only bosons. In this paper a Veneziano model
is constructed for the contribution to nucleon-nucleon
scattering of three exchange-degenerate trajectories-
the (a&,f'), the (p,A2), and the (~,B). The model con-
tains nonleading terms, as was found to be necessary
by Jacobs, 2 but the residue functions of each parent
trajectory depend on only two arbitrary parameters.

Since "duality diagrams"' without exotic resonances
cannot be drawn for nucleon-nucleon scattering, one
might believe that it could not be described by the
Veneziano model. This belief is not really justified,
since Khuri4 has shown that a large class of amplitudes
exhibiting crossing symmetry, narrow resonances in
two channels, and Regge asymptotic behavior can be
expressed as a uniformly convergent sum of Veneziano-

type terms. It is true, however, that the model cannot
be extended to octet-octet scattering in an SU(3)-
symmetric way. In particular, both the s and the u
channels are exotic for the reaction 2+2 —+ Z+Z, so it
cannot be described by any form of dual resonance
model. Consideration of the nucleon-nucleon problem
nevertheless appears to be worthwhile.

Sections II and III of this paper are devoted to the
necessary preliminaries. In Sec. II the helicity and
invariant amplitudes for nucleon-nucleon scattering
are reviewed. In Sec. III the Veneziano model is
discussed briefly, and its partial-wave projection is
calculated. The actual models for the (co,f'), the (p,A2),
and the (7r,B) exchange-degenerate trajectories are
constructed in Sec. IV. Since resonances occur only in
the two identical nucleon-antinucleon channels, each
trajectory can be and is treated separately. The Pauli
principle is maintained exactly, and the three parent
trajectories are free of parity and isospin doublets and

II. KINEMATICS

Let the s channel, having initial momenta p and pb
and final momenta p, and pd, correspond to nucleon-
nucleon scattering. Then the t and I channels both
correspond to nucleon-antinucleon scattering. The
Mandelstam variables are

s=(P.+P~)', t=(P. P.)', u=(P.—P.)' (1)—
They are not independent, but satisfy

(2)s+/+I = 4m',

where m is the nucleon mass. It is useful to introduce
also the three-momentum k, and scattering angle 8, in
the center-of-mass frame of the s channel. Let

(3)Ss COS~s j

then

k, '= ,'s m', s,= 1+-2t—/(s —4m') .

The corresponding quantities in the t and I channels are

k, '=-,'t —m', s, =1+2u/(t —4m'),
k„'=—,'u —m' s„=1+2t/(u —4m')

Since each nucleon's helicity can assume the values

+~, there are for each isospin 16 possible s-channel
helicity amplitudes' ' f,d, b'(s, t), the subscripts denoting
the corresponding helicities. (The isospin label will be
suppressed temporarily )lf for th.e single-particle states
the covariant normalization
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3 H. Harari, Phys. Rev. Letters 22, 562 (1969).
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(p,~l p', l ') = (p'/m)(2~)'&'(p —p') 4~ (6)
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is used, then the helicity amplitudes are related to the
unpolarized cross section by

State Parity G parity

TABLE I. EN helicity states.

Known trajectories

m4d0
~ I f",.»'(s, t) I

'.
dQ 16m's «,~I

The helicity amplitudes have the partial-wave expansion

) 0+)

[1+l

+(—1)'
—(—1)'
+(—1)
—(—1)'

+(—1)I+J

+ ( 1}I+J

+ ( 1)I+J

( 1)I+J

I=O
P,or,f'
7f

P,co,f'

I=1
p, A2

7r,B
p,A2

A1

fi'(s, t) = f~i ++'(s,t),
fo'(s t) = f++; '(»t)-
f»'(s, t) =f+,+ '(s,t),
f '(s, t) = f , +'(s t)—-
f» (s t) = f++,+ (s t) .

(9)

f.e,,»'(s, t) = p (2J+1)(cd!Fr(s)I
ab)di„s(8,),

J='Aors (g)

~=a b, —t =c—d, l-=m»(ll l, lt I),

where d&,„r(8,) is the usual representation of a rotation
about the y axis and (cd!F (s) lab) is the s-channel

partial-wave amplitude.
Invariance of the 5 matrix under parity, time

reversal, and the interchange of identical particles im-

plies that only five of the helicity amplitudes are
independent. These Ave are conventionally taken to be'

are not eigenstates of parity. It is useful to introduce
linear combinations

I
X&) of them, namely, "

I
oy&= (I++ &+ I

——&)/~2,

I
o—

&
= (I++ &

—
I

——&)/~2,

I1+&= (I+—&+ I

—+&)W~,

I1—&= (I+—
&
—

I

—+&)/~&

The good quantum numbers of these states and the
known Regge trajectories coupled to them are listed
in Table I. Since the only allowed o6-diagonal transition
is that between !0+) and !1+),one can de6ne 6ve
new partial-wave amplitudes with good parity and
6 parity:

G,„'+(t)=(lpga!G'(t)l a&.

In terms of these,

The others are then given by

d0
L I

fi'I '+
I
f»'I '+

I
f»' '

dQ Sx's

m4

fo f —++-
f» f + +)- —

f4 f ++—
f»'= f .+ '= f +, —'=f-+,++-'=—f -, +'—---

f++, +*= f—+ ++-'=— f-+,
—

so that the unpolarized cross section is

(10)

(++ I
G I++)=-,'(Goo'++Goo ),

(++ I
G'I ——)=-', (Goo'+ —Goo' ),

(+—IG'I+ —&=-', (Gii'"+Gii' ),
(+—

I
G

I

—+)=
o (Gii'+ —Gii ),

(++
I
G'I+ —&= G o+io.

The parity-conserving helicity amplitudes g~r (s,t) are
dered by their partial-wave expansions' '.

gir'(s, t) = p (2J+1)G»o rr+(t)eoo +(si),
J=O

The t-channel helicity amplitudes are denoted by

f,~, n(»ts), the capital letters indicating antinucleons.

Their partial-wave expansion is
(16)

+Giir' (t)ei,i' (si)),

f,~,n»'(s, t) = P (2J+1)(cA IGr(t) IDb&di„r(8,),
J=Xor» (12)

&~=D —b, tr =c—A, l~„=max(l Xl, It»I) .

There are again five independent amplitudes f (s,t),
which are de6ned analogously to f (s,t) in (9).

The helicity states I++), I+ —), I

—+), and
I

——)
with definite angular momentum J appearing in (12)

7 M. L. Goldberger, M. J. Grisaru, S. W. MacDowell, and D. Y.
Wong, Phys. Rev, 120, 2250 (1960).

g»r'(s, t) = P ( J2+1) I Grri(t)eii +(s~)
J=l

+Gii, r +(t)eii (si)),

g "(,t)=Z (»+1)G ."+(t) .'+( ),
J=l

where the isotropic spin label I has been restored. The
functions ei„r+(s,) are polynomials in s, related to

' M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and

F. Zachariasen, Phys. Rev. 133, B145 (1964).
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db„s(&1) by the equations They can be expressed as linear combinations of the

Legendre polynomials':
d&,„$(tl&)= (1+z,)bl&+el(1 —z, )ml&

—ol

x[..„'+(.,)+.,„'-(.,)7,
eb„z+(—z,) =+(—1)$ ""eb„z+(z,),

l1 =max(fXf, fuf).

coo'+(z1) =PI («),
(17)

c11 +(z,) = [(J+1)PI 1(z&)+JPI+z(z,)]/(2J+1),
cu' (z1) =PI(z~),
c1Q +(z,) = —[J(J+1)7"'[P$1(z,) —Ps+1(z,)]/

(2Jy1).

(24)

Explicitly, '

eoo'+(z1) =PI(z1),
e '+(z)=[P '(z)+z P "(z)7/LJ(J+1)7
e„'—(z,) = —Pz"(z1)/[J(J+1)],
ero'+(z )= Pz (z1)/—[J(J+1)7"'

where PI(z) is the Legendre polynomial. Hence'

f'"(s,t) =2 ~' (z1)g "(s,t), gzz'(s, t) =k, 'grz'(s, t),
g2I (s,t) ~t goz ($ t),
goz (s,t) =goz (s,t)

g4I'(s, t) =g4r'(s, t),
gbz'(s, t) = t' 'gbz'(s) t) .

where
(25)1 0 0

—1 0 0
0 (1+z,) (1+z,)
0 (1—z,) —(1—z,)
0 0 0

1
1

Z(z,)=-,' 0
0
.0

0
0
0
0

(1 z 2)1/2J

(20)

Furthermore, the g;z'(s, t) must satisfy certain kinematic
constraints to cancel singularities in the crossing
matrix. Of these constraints, the most important, which

corresponds physically to the requirement that angular
momentum be conserved in the forward direction in

the s channel, is

Similarly, g;I'(s, t) with isospin I in the s channel is
defined by

f,z'(s, t) =Z &; (z,)g, r'(s, t) (21)

Since the eb&$+(z&) appearing in the partial-wave

expansions (16) are polynomials, the only singularities

of g,z'(s, t) in z, come from divergences of the series:

They have no kinematic singularities in s&. However,

they still have kinematic singularities in t, being related
to amplitudes g,z (s,t) free of all kinematic singularities
by'

The inverse relations for (16) are'

1 +'
Goo, I'+(t) = — dz2 g 1r'(s, t) coo'+(z1),

2

+1

GpQ, I (t) — dz1 g2I(s~t)cpQ ('zf) 1

2

where the functions cb„z+(z,) are polynomials in z,
defined by

d& &(g,) = (1+z,)—bl&+el(1 —z,)
—11&—Ql

X[cb„z+(z~)+cb„' (z1)],

"."(- )=~(-1)'-'- ."( ),
Z =max ( f

l1 f, f tr f ) .

(23)

+1

G11,II+(t) = — dz, [goz'(s, t)crrz+(z, )
2

(22)
+g4z'(s, t)c11 (z2)],

+1

G11,I (t) = — dz1[g4I'($)t)c, 1 +(z,)
2 1

+g21'(s, t)czr (z&)],
+1

Gzo, z +(t) = — dz2 gbz'(s, t)clo +(z2)
&

2

~=u(P.)u(P-)u(pe)u(Pb),

T= ',u(p, )o &"u(p.)u(pd) o „,u(p-b),

A =u(p. )V"Vbu(p. )u(p. )V.V bu(pb),

U= u(p.b"u(p. ) (pu. )v. (pub),

P=u(P.)27»(p.)u(Pd) 27»(p b)

(28)

and S, T, A, V, I' are given the same expressions with

P, and Pd interchanged. The Pauli principle therefore

' L. L. Wang, Phys. Rev. 142, 1187 (1966)."R. J. N. Phillips, Nucl. Phys. 32, 657 (1967).
~The p matrices satisfy p„p„+p,&„=2g„„»=ip'p'p'p3,

0.„,=-,'i(y„,y,$. This divers from the conventions of Ref. 7.

g21'(s, t) z&g»'(s, t) g—4z'(s, t) =0 at —t= 0. (26)

This relation is known in Regge phenomenology as the
"conspiracy condition. ""

Since the Veneziano model has only dynamical
singularities, it is an appropriate representation not for
the helicity amplitudes, but for the invariant ampli-

tudes, which are free of kinematic singularities and
constraints. The s-channel invariant amplitudes F,z'(s, t)
for isospin I are related to the Feynman amplitude by'

Kr'= &Iz'(s, t) (S S)+For'(s, t) (T—+T)
+Foz'(s, t) (A A)+ F4I'(s, t) (U+ —U)

+F,z'(s, t) (P P), (27)—
where"
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1
6

S= S-'=-,' —4
4

—1 1 —1
—2 0 0 —6
0 —2 —2 —4
0 —2 —2 4
—1 —1 1 1 .

(30)

Hence (27) can be written as

requires'
F,z'(s, u) = (—1)'+zF,z'(s, t) . (29)

The sets of covariants 5, T, A, V, I' and S, T, A, U, P
are not independent, but are related by the Fierz
matrix

Then crossing symmetry requires"

1
—1
—1
—1

6 —4
2 0
0 —2
0 2

—6 —4

4 —1
0

—2 —1
2 —1
4

1 5

F;z'(s, t) = p p Kzzr;, F,z'(s, t),
J=0 j=1

where

r =(r-') =(-I)'+'~-

(34)

(33)

K '= P F; '(s, t) [8,,+(—1)'P;zj

where
Xu(p, )r u(p. )u(p„)r u(p, ), (31)

and

1 —1
E=K—'=—

2 —1
(36)

I"=1, I"=(1/v2)~~" I"=q~q„
I'4= ~~, I'5= i~5,

(32)

and repeated Lorentz indices are to be contracted. Since
the t channel has initial momenta —pq and pb and final
momenta p, and —p„with p, =p, for forward scatter-
ing, the corresponding expansion for it is

The invariant amplitudes do not have simple partial-
wave expansions or definite quantum numbers, so it is
necessary to relate them to the parity-conserving
helicity amplitudes. This can be done' by explicitly
evaluating the covariants in (33) for spinors of the
appropriate helicities. The result is

Ks'= P F,z'(s, t)P;,+( I)'&,,]— g'"(,~) =Z 0', (», )F,"(,~), (37)

Xu( —p,) r&'u( —pg)u(p, ) r&'u(pg) . (33) where

—k]2

(E 2+m')
Q(t,s,) = — 0

m k2
0

2Eb s$
—2k(2s]

2m2

0
—2mE|

4k]2

(48/+ 2m')
0

—2k 2

0

2m2s

0
2E,'

0
—2mEt,

k]2
—k]2

0
—k]2

0

(38)

E 2 —1

Also, since the s and t channels are treated equivalently, is the linear Regge trajectory, which is assumed to be
the same in both the t and the I channels. Therefore

,"(,~) =i e';(,')F,''(, ~), (39) V, '~(n(t), n(u)) is a meromorphic function of s and
j=1 whose only singularities are simple poles at

where g;z'(s, t) is defined by (21).

III. VENEZIANO MODEL

n(/)=a, a+1, a+2, . . . ,

n(u)=b, b+1, b+2, . . . .
(42)

n(t) =no+cz't (41)

To construct a Veneziano model for the invariant
amplitudes of nucleon-nucleon scattering, it is necessary
to generalize the original model to the class of functions

r(a —a(~))r(b —~(u))
V.'(n(t), n(u)) =

I'(c —n (t) —n(u))

max(a, b) & c& a+b. (40)

Here a, b, and c are non-negative integers, I'(s) is the
gamma function, "and

The condition max(a, b) ~& c~& a+b in (40) ensures that
there are no simultaneous poles in t and I and that the
residue of the pole at n(t) =n is a polynomial in s& of
degree not greater than n. It is shown in Appendix A
that, as n(t) ~n,

n+b —c

V,~'(n(t), n(u)) Q (2l+1)R„(*'Fi(s,) —, (43)
~=0 n —n(t)

"The derivation of this is essentially identical to that given
in Ref. 7 for the s-I crossing matrices."E.T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge U. P., Cambridge, England, 1965).
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+I
g abc

—a

ds, I')(s,)

XRes{V.'(a(~),a(N)), a(~) =n}, (44)

V '(a(&) a(N))-r(a —a(&))(—a'I) ""
I

1+— {a'(+ap+b c}—
20.' Q

X (a'&+3ap —b —c+1)+. , (46)

so that the pole actually corresponds to a superposition
of resonances with several spins. In particular,

(—1)' (n!)'R:"= (n ap —4m—'a')",
(n —a)! (2n+1)!

1 (—1) n[(n —1)!]'
2 (n —a)! (2n —1)!

g (n ap —4m—'a')"

(—1) L(n —1}!]',
~n, n—1 (R Qo 457 A )

{n—a)! (2n —1)!

The asymptotic behavior of V b(a(t) a(n)) can be
obtamed by usmg the Strrhng approxrmatron" for r(s).
As u ~~ with

I argu
I
)0 and ~ 6xed,

which result, like the resonance spectrum, corresponds
to an in6nite family of Regge poles:

ap(t)=a(/) —b, k=0, 1, 2, . . . . (47)

As I-+a with 0(
l
argu

l
(s and. s 6xed, the amplitude

decreases exponentially, there being no Regge poles in
the ~ cha»ei. »»1!y, a»~~ with l«g. l&~ »d
zs fixed~

V.'( (~), ( ))
(2~) 1/p(1 s )»—»p—q(1+s ) p »&p &(—2)

—&:+p»p+—&.

g (2a'k, ') +~'—'* exp{—2a'k, '[1n4
—(1+s,) ln(1+s.)—(1—s,) ln(1 —s,)]}. (48)

For physical s, the square bracket in the exponent is

always positive and is given approximately by'

In4 —(1+s,) ln(1+s, )—{1—s,) ln(l —s,)
= ln4 sin8, . (49)

Hence the gross behavior of the large-angle cross
section depends only on k, sine, .

The finite-energy sum rule" for the amplitude

~(.,~) = V."( «), ( ))+V."( (~), ( ))
ls

r(1—a(t)) sins-(a(t)+b —c){n) +(
'a)n"'

dn'(n') Imd (s', t) = ——
a(t)+b c+m+1—

2r(1—a(t)) sinn. (a(/)+b —c)(N)"+'(a'I)'"

a(()+b c+m+1—

where ImA(s', f) is a sequence of b functions. The
original Veneziano model has the remarkable property
that it satis6es this relation approximately even for
small N. ' The functions (50) share this property for
b=a, but not for b&a, as is illustrated in Fig. 1. Of
course, (51) must be satis6ed in all cases for large N.

The Vcneziano model constructed in Sec. IV for
nucleon-nucleon scattering contains terms like (50)
with b»u, so it will satisfy the finite-energy sum rules
o»y asymptotically. It is very dificult to tell whether
or not this is true of the physical amplitudes. To deter-
mine uniquely the imaginary parts of these amplitudes,
it is necessary to measure not only the cross section and
polarization, but also various spin correlation functions.
Even if this were done, there still would remain the
problem of determining the amplitude in the large
unphysical l cglon bctwccn $ =48$ and f =4'ffI .

14 R. Dolmen, D. Horn, and C. Schrmd, Phys. Rev. 166, 1768
(1968}.

The s channel, corresponding to nucleon-nucleon
scattering, contains no known resonances except the
deuteron, which will be ignored. The identical f and u
channels, corresponding to nucleon-antinucleon scat-
tering, both contM'n meson resonances which are
assumed to lie on straight, exchange-degenerate Regge
trajectories a(t). This assumption of exchange de-

generacy, and hence of a real amplitude in the s channel,
is necessary because the Veneziano model has no
imaginary part in a channel without resonances. Unless
exotic resonances are assumed to exist, therefore, the
Vcneziano model cannot be used for the Pomeranchuk
trajectory. "

Since the invariant amplitudes F&r'(~&~) in (2/) are
free of kinematic singularities and constraints, it is

"H. Harari, Phys. Rev. Letters 20, 1395 (1968}.
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2 3 4
I I

6 u
0

-l6—

-lp

-l2

-28— -14

-32— -16

—l8

4p—
(a)

-20—
(b)

Fxc. 1. Comparison of the left-hand side (smooth curves) and right-hand side (broken curves) of (51) for t =0 and n(t) =-,'+t. In (a),
2 (s,t) =2'"(0.(t) n(N) ). In (b), 3 (s,t) = VP(n(t), o.(I))+VP'(n(t), n(N) ).

appropriate to write them as a sum of terms of the
form V,~'(zz(t), zz(N)). It assumed here, as has already
been done in Sec. III, that the same trajectory o. appears
in both the I, and the I channel of any given term; the
full model is then obtained by adding the separate
models for each trajectory. This assumption, which
greatly simplifies the calculation, is, of course, not
possible for some other scattering processes.

For a given Regge trajectory n(t), the most general
Veneziano model consistent with the Pauli principle
(29) is

F'z'(V) =2 P*z 'Ã (zz(t) zz(&))

zz(t) =np+zz't,

where it is to be understood that

P;z ' ——0 unless a& b &c&~a+b (53).
In general, the pole of such a model at n(t) =n, n =a,
a+1, a+2, . . . , appears in all of the partial-wave
amplitudes Gq„,zz+(t) with J~&n+1 The problem. is to
choose the coetizcients P;zo" so that the resonances on

the ancestor trajectory (those with J=n+ 1) are
eliminated and so that the resonances on the parent
trajectory (those with J=n) have definite parity and
isospin and have residues which satisfy the factorization
theorem and positivity conditions. This can be done
by choosing an appropriate set of terms in (52) and
calculating for them the residues Gq„z+(n, J) defined by

Gz,„z+(n,J),
Gi„, (zt)

z— —,a(t) ~n,
n n(t)— (54)

where Gq„,z +(tz) are the t-channel partial-wave ampli-
tudes (22). The problem is then reduced to forcing
Gi,„,z+(n, n+1) to vanish and Gi„,z+(n, n) to satisfy
certain constraints. Since the initial model (52) satisfies
the Pauli principle, there is no need to consider the
u-channel resonances separately. Furthermore, the
asymptotic behavior and the resonance structure of the
Veneziano model are correlated by the finite energy
sum rules (51), a,nd this is sufficient to ensure that all
of the amplitudes have the Regge behavior appropriate
to the given parent trajectory. "

"This correlation is sometimes referred to as "duality. "
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In what follows, the above procedure is carried out
foI' thI'cc exchange-degenerate pai'' of trRjcctollcs thc
{pp,fo), the (p,A2), and the (4I,8)."For simplicity these
pairs will be called the +, the p, and the m trajectories,
respectively.

p. 1, , +0[bylib+( 1)c'+Iybblj'
p . 2, 0, 0+1[y0120+ ('I)c+Iyb2j'(59)

give polynomials yb„,z+(/) of higher degree than those
coming from (57). Hence the simplest possible residue
function. for the parent trajectory is obtained by
choosing to include in the model just those terms in
(57) and {59).In the absence of any better criterion,
this choice is made herein.

The calculation for these terms of the residues
Gb„z+(n, 22+1) and Gb„,z+(n, 22) defined by (54) is
carried out in Appendix B. It is shown there that the
absence of ancestors,

implies
Gb„z+(22, n+, 1)=0 for all 22

Qc (P lbb 2P, lbb P lbb) 0
b& 1

(60)

Pc (p lbb 2P lbb+P lbb) —0

~ Trajectory

Tllc rcs1 duc fiillctlolis pea, z+(/) fol tlic Rcggc pole
a,t J=n(t) are defined by

C.,"{t)=I P- (t)3G, ."(~). (55)J-+a (/)

For any choice of terms in (52) they have the form

P.a I'(~) = [1/r(~(~)+2) j(~')04') "' 'v", I+(E) (56)

where the yb„,z+(/) are polynomials. If the model for
the ~ trajectory is to contain a pole corresponding to
the 40 resonance itself, it must include in (52) terms of
the form

P. lbb[y lb+( 1)4+Iyblj' (57)

foI' some values of 5. Thc degrees of thc polynomials
yb„z+(3) c,orresponding to these terms are independent
of b. Now the only other terms which can contribute to
the parent trajectory are

p. a, b, b[y ab+( 1)4+Iy baj 42) 2iz b b c m c (5g)
p, , a, +blb[y ab+ ( 1)c+Ey baj 42) 1

Of these, all except

reality of the coupling constants demands

Gpp, 0+(zz, l)/(n zzp 4m'a )" '—
~& 0,—

Gl1,0+(n,n)/(22 np 4mzzz )" 1—& 0.— {68)

In Appendix 8 lt ls shown that thclc ls a Ilontrlvlal
solution to these conditions having two free parameters,
which Rlc chosen to be AyI and A5y, Then

The residues Gb„,z+(22,n) of the parent trajectory then
depend only on certain combinations of the p;I'b',
namely,

~u = 2'Pli"',
b&I

Qc g(p lbb 2p 1 bb p lbb)
b&1

I—Pc b(P ibb 2P 1bb+P 1bb)

b&l

Q& p lbb

b&l

g I—Q~ (P lbb+, 1 , 2P l, bb+1 , P l, b, b+1)
b&1

—Q& p l, b, b+1

b&1

Qc (P 1,b, 0+1 2P 1, b, b+1+P 1,bb+1),
b& 1

—Qc (P 2, bb+1 2, P 2bb+1 , ,p 2, b, b+1)
b&2

+( 1)E( P 122 2P 122+/ 122)

g&P 2, b, b+1

b&2

C I—Pc (P 2, b.b+1 2P 2, bb+1+.P, 2, b, b+1)
b&2

+ ( 1)I( P 122 2P 122 P 122)

Actually, C~I and C4I appear only in the combinations

~2E Cpz c ~21+C2zc c44I G4E c ~4E+C41 c (64)

so there are eight free parameters for each isospin.
These parameters are constrained by the conditions

imposed on the leading trajectory, From Table I, the
absence of parity and isospin doublets on the parent
trajectory 1cqull cs that

Goo, o (n,m) =Gll, p (22,22) =Gb„,l+(12,22) =0. (65)

The factorization theorem implies that

G-."{,)G,"(, ) =[G.,o"(,.)j' (66)

Finally, since

(n —42 —4mpu')"-'= (442'k ') a&'1 'i (67)

P& p. abc ( 1)4+Ip. aac+ Q p abc

b& 0 b~c

Fxchange. degenerac& in pion-pion scattering requires in
addition that the p and f' trajectories be degenerate. Of course
this does not force their residues in nucleon-nucleon scattering to
be equal, and in fact the I= 1 residues are much smaller than theI=0 ones.

~lp=~~l,
A 2P

—C2P =32I.—C2~= —4A ~~,
A4p —C4p= A4g —C4I =0,
~5O=~~~,
+20+G20 ~21+G21 442& 01 )

820=821———2m'n'2 lid bl/(A 11+301),
2l40+G40 @41+C41 12m 02 + ii+01/(~11+@01)c

Cep =Csi =0,
All+Apl&0.

(69)
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(tr)'" (n'k ') ("
poo, l+(t) = —— (All+A „,)

4m'n' I'(n(t)+28)F'I'(»t) = 2 P'I'"I I'5"(n(t) n(N))
b=l

Hence, a Veneziano Inodel for

thecal

trajectory satisfying The nonzero residues for the parent trajectory are
all of the desired conditions is given by

+(—I)'"I' "( (t), ( )))

+p /.'t;I' ' '+'[&5+1"(n(t),n(24))
b=l

+(—I)'+'I'5 "(n(t) n(24)))

A 51 A 11+A51

The square roots appearing in Pro p+ in (71) are just
the kinematic singularities of Glp OI+(t) arising from
(24) alld (25). Howevel' tile factors of n(t) 111 ppp p+(t)

and of n't[n(t)+1) in pll p+(t) are dynamical predictions
of the model. They imply' that the co trajectory chooses
sense at n(t) = —1 and nonsense at n(t) =0; the com-
pensating trajectory at n(t) =0 is of course just the
first daughter trajectory.

y Trajectory

While the p trajectory has isospin 1, it couples to the
same spin states as the co, so the two cases are virtually
identical. The solution analogous to (69) is

—-,'A lp
——A 11,

3 (A 20 C20) A 21 C21 4A 51 t—3(A4p —C4p) = A41 —C41= 0,
—3A5p= A51,

8 (820+C20) 821+C21 4npA 51 t—-,'85p =851———2m'n'A11A 51/(A 11+A 51),
3 (84p+ C40) 841+C41= 12m'n'A 11A 51/(A 11+A 51)

—3Cep =C31=0,
A 11+A 51+0 ~

(72)

+P P;I' ' '+'[Vb+1"(n(t),n(N))
b=2

+(—I)'+ll'5+1"(n(t),n(N))), (70)

where the coeKcients p;I " are chosen to satisfy (61)
and (69). From Appendix H, the nonzero Regge residue
functions for the parent trajectory of this model are

(~)1/2 (nt75 2) a(t) —1

Poo, o+(t) = — (—All —A 51)
4m'n' I'(n(t)+-,')

All
X( (t)]( 't —ta' '

A 11+A51

(~)1/2 (ntP 2)a(t) —1

Pll, o+(t) = —— (-All-Abl)
4m'n' I'(n(t)+-,')

A 51
XLn(t)+1)(n't) (4m' ') — —,(71)

A 11+A51
(~)1/2 (ntP 2)a(t) 1—

810,0+(t) = (—A 11—A 51)
4m'n' I'(n(t)+-28)

X( (t)[ (t)+1)j'"( 't)"'(4m' ')'"

A 11+A51 A 11+A51

Of course, the values of A 11 and A 51here are independent
of those for the co trajectory.

~ Trajectory and Conspiracy

Since the m trajectory is lower than the or and the p,
it can ordinarily be ignored. It is important only for
proton-neutron charge exchange scattering, the cross
section for which has a sharp forward peak with a
width on the order of the pion mass. By itself, the x
trajectory cannot explain such a peak. : It couples only
to the amplitude golt(s, t), and its contribution must
therefore vanish at t=0 to satisfy the kinematic con-
straint (26). Suppose, however, that there is a natural-
parity isospin-1 trajectory which is coupled to gbl (s,t)
and is degenerate with the m. at t=0. Then both it and
the 7r can have nonzero contributions at t=0 if these
contributions just cancel each other in (26). This
possibility" is known as conspiracy, and the other
trajectory is called the conspirator.

It is often assumed that the conspirator has a very
small slope so that it does not produce a low-mass posi-
tive-parity meson. In the framework of the Veneziano
model, this is not possible, for if the t and I channels of
the same term contain trajectories of different slopes,
then the amplitude grows exponentially with t for cer-
tain angles in the t channel. If the z and the conspirator
trajectories appear in different terms, then the pion
residue is required to vanish at t = 0. Hence the conspir-
ator must be degenerate with the ~, and its residue must
be forced to vanish at n(t) = 0.

Reasoning analogous to that used for the co trajectory
leads to the inclusion in the model of the terms

/tt Obb[II Ob+ ( . 1)4+1@50)'
P. 1,55+1[II 15+( , I)4+III bl)

(74)

All
X( (t)]( 't —ta' '

All+A 51

(~) 1/2 (ntP 2)a(t)—1

Pll, l"(t) = (All+Apl)
4m'n' I'(n(t)+-28) A„' (73)

X[n(t)+1)(n't) (4m'n') ——
A ll+A 51

(~)1/2 (ntP 2)a(t)—1

/310, 1 (t) (All+A 51)
4m'n' I'(n(t)+-', )

X(n(t) [n(t)+1)) '/'(ntt)'/'(4m'n')'"
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The trajectory n(t) is to be interpreted as a Ir trajec-
tory degenerate with a natural parity, isospin-1
conspirator trajectory; the latter must produce no
resonance at n(t) =0. By Table I this requires that

. E

bf- -S
O

-IO

Hence,

Gb„,o+(n, n) =0,
Gll, I

—
(n, n) =0,

Gb„,I+(0,0) =0,
GDD, I (12 I2)GII, I (22,22) =

ALGID, I+(n, n)g'.

ail D2T D4l' E3'I E4?
—3D50= D51,
—3E20= E2i.1

(79)

-I4—

F10. 2. The solid curve is the phenomenological formula (82)
for the proton-proton cross section. The dashed curve is the
approximate prediction (81) of the Veneziano model for Ot'=0. 87
GeV ' as required by PCAC I C. Lovelace, Phys. Letters 28B,
264 (1969)j.

(There can be no terms of the form

If (76) and (79) are satisfied, then the nonzero residues
of the parent Regge trajectory are

(~)l/2 (ntf4 2)a(t) —I

Poo, l+(t) = (n't) I:n(t)3(E»)
4m'n' I'(n(t)+-22)

(~)1/2 (nt/t, 2)a(t)

coo, -(t) =
4m'n' I'(n(t)+-,')

xLn't(4DOI)+n(t) (—E»)j,
0, bb+It lrb , ob+ ( I)I+I@0

boj (75)

since these have simultaneous poles in t and 24.} The
conditions required to eliminate the ancestors are

(~)1/2 (ntg 2)a(t)—I

PII,I (t)
4m'n' I'(n(t)+-,')

X I n(t)+1](4mon') (E21),

(80)

Pt (P
Obb 2P Obb P Obb) —Q

b&0

Pt (p Obb 2P Obb+P Obb) Q (76)

(~) I /2 (n
t
P 2) a (t )—I

&ID, I+(t) = (n(t)Ln(t)+I)}'"
4m'n' I'(n(t)+ —',)

b&0

P Obb —0
X( 't)'"(4m' ')"'(E ).

Qt p Obb

b&0

g Pt f/(P Obb 2P Obb P Obb)

D4z = p' tt(ttlrob 2p4robb+p robb)
b&0

Setting E21=0 makes the natural-parity residues vanish
where the p' notation is defined by (62). The residues and gives a model for an evasive pion trajectory.
Gb, , r+(Ib,n) of the Parent trajectory then dePend only on The residue P» I+(t) in (80) does not vanish at the

nonsense point n(t)=0. However, since it is propor-
tional to E21, (77) implies that it receives contributions
only from terms of the form Vb+IIb(n(t), n(N)), which are
regular at n(t) =0. Hence the apparent pole in Gll I +(t)
at n(t) =0 is absent, being removed of course by the
compensating trajectory mechanism. '

D —Qt tt Obb

b&0

—Qt (tt l, b, b+I 28 l, b, b+I p I,b, b+I)
b&1

+( I)r( P 011 2P 011+P Dll)

P Ptp lbb+I

(77)

V. COMPARISON WITH EXPERIMENT

The Veneziano model is of particular interest in
connection with high-energy large-angle scattering, for
which the Pauli principle is expected to be important.
According to (45) and (46), its contribution to the cross
section in this region has the approximate form

do/dt= 3 exp( —in4n's sin/t, ), (81)—Qt (p l, b, b+I 2p I, b, I+b+p l, b, b+I)
b&1

+( ] )r( P 011 2P 011 P 011)
independent of the details of the model. In the same
region the experimental proton-proton cross section can
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be represented by the phenomenological formula"

do/dt=8 exp( —s sine, /g),

where for s sine, (16.0 GeV',

g= (1.24&0.01) GeV'

8= (134.6~11.7) mb GeV ' (83)

advice and encouragement. I also wish to acknowledge
the generous support of the National Science
Foundation.

APPENDIX A

The behavior of the function V, b(n(t), n(u)) defined

by (40) as n(t) —+n, n= a, a+ 1, . . . , is given by
and for s sine, )20.0 GeV',

g=(2.77~0.02) GeV '

8=(56.4&3.4) pb GeV '. (84)

The model fails to reproduce this break in the experi-
mental cross section. Furthermore, comparison of (81)
and (82) shows that the values of the trajectory slope
needed to obtain agreement on either side of the break
are

where r„(x) is the Pochhammer polynomial,

r„(x)= r(xnan)/r(x)
= x(x+ 1) (x+n —1). (A2)

V."(n(t),n(u))

( 1)a—a—r„„b .Lc—n —n(N)]-, (A1)
(n —a)! n —n(t)

o,'=0.58 GeV ' for s sin8, (16.0 GeV'
(85)n'=0. 26 GeV ' for s sin8, )20.0 GeV'.

From"
P(s) P(1—s) = m/sin7rs, (A3)

Since these values are both significantly less than the
slope of an ordinary Regge trajectory, the contribution.
of the Veneziano model to the cross section is negligible
for large values of s sin8„as is shown in Fig. 2. The only
parts of the amplitude which are important there are
those which have been omitted from the model, such as
the contributions of the Porneranchuk trajectory and of
cuts. This is supported by the fact that the large-angle
data have been successfully fitted by a phenomenologi-
cal model including just these contributions. '

A detailed phenomenological fit to forward nucleon-
nucleon scattering has been made including the contri-
butions of the Pomeranchuk, the s&, and the f trajec-
tories. "The compensation method used in this fit differs
from that predicted by the Veneziano model (71) for
the co and fP trajectories, but this difference may not be
significant. A more serious problem is that the phenom-
enological fit requires that the co residues change sign at
t= —0.2 GeV', whereas no change of sign occurs in (71).
Perhaps this could be corrected by including more terms
in the model, but then the same zero would have to
occur in the f'residue function, and there is no evidence
for it in pion-nucleon scattering.

The models for the (P,Ap) and for the (m. ,B) with a
conspirator both contribute to proton-neutron charge-
exchange scattering at small angles. Since ordinary
Regge-pole theory, even with conspiracy, does not
explain the measured cross section, " the Veneziano
model cannot do so either. It is probably necessary to
include the contributions of Regge cuts.

it follows that

r ( x)=(——1)"r„(x—n+1). (A4)

This, together with (5) and. (41), implies that, as
n(t) +n, —

( 1)a+bjc
r„+b,(n p 2kcPn—'+2kcPn'sc b+1—)

(n —8)!

(A5)
n —n(t)

n

r.(X) = P P„bXa-",
k=o

(A7)

where the coefficients p„& are given by

pno= ~ p

pn„=0, e)0, (A8)

so that the residue of the pole at n(t) nis a=polynomial
in sc of degree n+b —c. Hence R„pb'in (43) is given by

( 1)a+5+a +i
g abc

nl
2 (n —a)!

Xr„+b-,(np —2kcPn'+2kcbn'sc —b+1)Pi(sc). (A6)

This integral can be evaluated by noting that
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&i'= (rb —~o)/4o' —~'.
dh, «c'Ei(«), (A10)

Then, by {A7) and the binomial theorem,

1 (—1)'+~' +'- + —-'( +cC —c —
)~— Z i.+b-., '

2 (n-a)!
X (n 2k 'n—' —b —1)s+~~' &(2k 'n') &

2'+'i l(2i+2I)!
dss&Pi(s)=,j~& l,j l e—ven

(li —ll)!(i+i+1)!

=0, othcrwlsc.

From (A9)—(A11), it is easy to obtain (42).

APPENDIX 8
For the general Veneziano model (52) the t-channel parity-conserving helicity amplitudes g;q'(s, f) are obtained

by using (34) and (37). They are

1

gir '(s, t) = — Q Er r P {[V,"+(—1)'V."j[Ec2(—12P»'"—SPcr'")+m'(12P» bc+SPbr'")
4~2 I=O abc

+E 's (4pmi '")+in's (4pbr") j
+LV."—(—1)'V."][~'(—6P '"—SP ""—2P "")+ '(6P ""+Sp "+2P "")

+g bS ( 2p sbc+2p ebc)+~2s ( 2p ebc+4p abc 2p &abc)]}

1
,C{g ~)

— g It, P {[Vsb+( 1)iV bej[+R(12P abc SP ebc)+~2(4P sbc)
4m2 I=O ave

+&c'si( 4P»'"—)+~'sc(4P»")j
y[V ab ( 1)r@be][g2('2p sbc Sp abc 6p abc)+trb2( 2p abc 12p &abc 2p abc)

s (2P-abc 2P-abc-)+rpbbs (-2P .abc+2P-ebc) j} (ll1)

1

e"(~~) = — Z Er'2 {[V b+( »'V"X~—c'{4pb"")+~'(4P»'")I
4~2 I=O abc

+LV ( 1)'V.'—3L&—c'( 2Pir '+OP—»'" 2pbr b')+~—'{—2pir"'+2pbr'")]},

1

g "(,t) =—Z &'.Z {[V +(-»'V."j[~ {-4P"")+ '(4P.")j
4~2 I=O abc

+[V ab (»IVba j[Fb(2P bc+'. 12aP abc+2p ebc)+rrbb{ 2p ebc 12p sbc 2p sbc) j}
j, 1

g»"{V)= Z &i.&Z {[V.b+(—1)rV.'3[~&,(—4P» b —4P„b)3
4yg2 I=O ace

+[V sb ( 1)1V bej[~F (4p abc 4p ebc) j}
V."=V. b(n(t), a(e)).

The partial-wave amplitudes Gq„,r~+(t) are then given by (22), where the bqe~+(s, ) are linear combinations of
Legendre polynomials. The residues Gagee, z+{n,J) in (54) are therefore expressible in terms of the R i b' defined
in (44) and evaluated in Appendix A. The extra factors of s, in {Bl)are handled by using"

si2'i(«) = J'~+i(sc)+ &i-i(sc).
2l+1 2l+1
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Hence

1 1

Goo, r+(n,J)= —P Jc r rP [R r'bc+( —1)rR rb ']
165$2o.'~=0

X[(n n )( 12p abc gp abc)+4man (12p abc+gp abc)]

J+1 J
[R abc+ ( 1)zR bac]+ [R abc+ ( 1)rR bac]

2J+1 2J+1

X[(n—n )(4p b')+4m'n'(4p ')]+[R '—(—1)"R "']
X[(n np)( 6pzzabc Sp z

bc 2p—„ab )+4man'(6p, za'+Sp, reb'+2p, zabc)]

J+1 J
+ —[R„r z

'—(—1)'R. r~.z"]+ —[R r a"—(—1)'R r z"]
2J+1 2J+1

X[(n—np) (—2prz b +2psze')+4m'n'( 2paza—"+4p, ze" 2p, ze—')5

1 1

Gpp, z (n,J)= —p Zr r p [R„r"+(—1) rR. r"][(n np)(1—2par'" Spare—')+4m'n'(4psze')]
16m'a' r=o

J+1 J
+ . [R abc+( 1)ZR bac]+ [R abc+( 1)IR bac]

2J+1 2J+1

X[(n—no)( —4Par ")y 4ma'n( 4Pz ')]y[R„, "—(—1)'R,'-]
X [(n no) ( 2pzz—ebc Sp—arab' 6—psr'b')+4—m n'( 2pzrab' —1—2Pareb' 2Pszeb')]—

J+1 J
+ ——[Ra r+i '—(—1)'R rpi"']+ —[R. r i '—(—1)'R r ze']

2J+1 2J+1

X[(n n,)(2Parab' —2Pszeb')+4—m'n'( 2Plz +2P—sr )]

Gzz, r +(n,J)=
1 1 J+1—2 ~&zrZ —[R.,r i "+(—1)zR.,r i"]

16man r o abc 2J+1

J
+ [R &+&

b +(—1)zR,rylb ] [(n np)(4Psrabc)+4man (4Pazabc)]
2J+1

J+1 J
+ [R r labe ( 1)rR r lb ]+ [R J z

b —(—1)zR rylbac]
2J+1 2J+1

X [(n—np) (—2Pzrebc+ 4Pazabc 2Pszabc) y4man ( 2Pzrabc+ 2Pszebc)]

+[R abc+( 1)rR bac][(n n )( 4p abc)+4man~(4P abc)]+[R abc ( 1)zR bac]

X[(n—no)(2Piz +12Peaz'b'+2Psz b')+4m n'( 2Pire ' 12P—az'b' —2P—sz'b')]
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J+1
Gllz' ,(22eJ) = Z KI'I Z Pn I 1—+( 1) ~n I—1

16m'n'I=o ~~. 2J+1
J

+ = [g abc+( 1)zg bsc] [(lb. n )( 4p sbc)+4 II2Inc(4P sbc)]
2J+1

J+1 J
+ —[&.,I-1'"'—(—1)'~., z 1"'j+ —Ã. ,

I+I'"—(—1)'~ »"'3
2J+1 2J+1

y[(N n )(2p abcy12p abc+2p abe)y42222ne( 2p abc 12p abe 2p abe)j
+[&.'"+(-1)'&-.'-j[( —o)(4P '")+4 ' '(4P-.")1+[&.""-(-1)'~-."j

)([(12 n )( 2P abe+4P abc 2P b a)+c4222 2(n2P abc+2P abc)j
[J(J+1)3"'

Glo, z+(22,J)= —2 Kz I Z — (Ã, I+I '+(—1)'&,I+I"'3
4222+(n }I 0 abc 2J+1

—[&-.I-I "—(—1)'~. I I"'j)-[(~ no)'"—( 2poz"— 2Psz'—"))
[J(J+1)j'"

+ . ([g abe ( 1)zg bscj [g abc ( 1}zg & lbsc]}
2J+1

y[(22 n )1/2(2P abc 2p abe)j

To proceed further it is necessary to make a particular choice of terms, as was done in (57) and (59) for the
co trajectory. For these terms, it follows from (45) and (84) that

Gbs, z+(22,J)=0 for all J~&22+2 (85)

The only nonzero contributions to Gq„,z+(22, 22+1) come from the R„,z 1'bb terms in (84) and from the cross terms
R„,z 1"0 with b= 1; the latter are automatically included if the p b&1 notation (62) is used. Since from (45)

R„'"=E„„'"for all b,

these contributions are

12+1
Goo, z+(22, 22+1)= &.."' —p Kz~bz p' [(l2 no)(4PDI"' —2Plz'"+2Pbz—"')

16mon 222+3 I=o

+42222n&(4P lbb 2p lbb+4p Ilbb 2p Ilbb)]

1 22+1
Goo, z (22, 22+1)= &. '" Z Kz I 2' L(N no)( 4PDI"—'+2p—lz"' 2P»"')—

16m2o. 2n+3 ~=0

y42222ne(4P lbb 2p Ibb+2p lbb) j
1 m+2 '

Gll, z "(22, 22+1) = &..'"—2 KI I Z'[(ll no)(4P4I"' 2—Plz""+4pbz"—' 2PDI'")—
16m' 2tt+3 &=0

+42zzone(4P lbb 2P lbb+2P lbb))

A+2
Gll, z (22, 22+1)= R '" Q Kz z p' [(z2 no)( 4P4I'"+—2plz'"—+12P z"' 2pbz'")—

16m'~' 2yg+3 s=o

+42/one(4P Ilbb 2p lbb 12p lbb 2p zlbb))

(87)

8~+1)(~+2)3'" 1

Glo, I' (22e 22+1) +nn Q K&I Q [(Ib—no)"'(—2p2I 2P4I +2Plz 2pBI )]~

4m(n') '~2 2n+3
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If there are to be no ancestors, these contributions must vanish, implying that

2' (P»'" 2—P»"' P—»"')=o, 2' (P»"' 2—Psz"'+P»'") =o E' Psz'" =0
b&1 b&1 b~& 1

(a8)

The last condition just reflects the fact that Va ' grows more rapidly with I than does Fst'(s, t). Henceforth it
will be assumed that

P tlap 0
in agreement with (61).

For the parent trajectory residues Gz„,z+(n, n), the only new cross terms p„&s« in (B4) which contribute are
the R„,z t'" ones; these are explicitly taken into account in Cop and Cap in (63). Substituting (45) in (Q4) and
using (61) and (63) yields

1 n(n!) 1

Gpo, z.+(n,n) = - (n ap—4m—'o')" ' P Kr z(n'[16A» 4A»—+4Car]
16man' (2n+1)! I=O

+nP —4Baz+4C»+&o( —32A»+4A» —4Csr)+4m'&'( —32A» 4A 4z —8Csr+—4C4r)]

+$(no+4m'n') (16A»)+oso(4B»+4Caz)+4m a (8Baz 4Bsr+—8Csz 4C4r)]—),
1 n(n!) 1

Gpp r,
—

(n,n) = — (n ap —4ma—n')" Q Kz r
16m'n' (2n+1)! I=O

X (n [4A»+16A sr 4C2z]+ [—4B21+4C»+~o'( 16A 'sz)]) p

(n+1)! 1

Gtt, z.+(n,n) = — (n —&o 4—m'n—')" ' p Kr z(n'[ 4A» 8—Car+4—C4z]
16msn' (2n+1)! I=O

+n[8Bsr 4B4r+8Ca—r 4C4r+&o(4—A»+8Csr 4Csz)+4m &'( 4Aaz+4Caz)]

+[~a( 8Bsr+4—Bar 8Csz+4—Car)+4m (zs4Bar 4—Car)])—,

1 (n+1)!
G„z. (n, n, ) —= ——— (n np 4m'o—.')" P—Kz z

16mau' (2n+1)! r-o

X (n/4A4r 24Csr 4—C4r]+ $—24Bsz+4Bsr+24Csr+4C4r]),

1 Pn(n+1)]t "n! 1

G„.+(n,n) =- (n tao 4m—a~'—)" '(4m'zs')'"(n oo)'" —Z Kz r
16man' (2n+1)! I=O

(310)

X(nP 4A sr 4A—sr+4Cs—r 8Car+4C4—z]+[ 4Baz+8B—sz 4B» 4Cs—r+8Caz 4—C4r]) . —

The satisfaction of the conditions (65), (67), and (68) is now reduced to an algebraic problem, the solution of
which is given in (69). The residues (70) are obtained by substituting (69) into (B10) and replacing n by n(t).


