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General broken-SU(3) sum rules for baryon transitions B' —+ (~)++8 (B' denotes a nonet or octet baryon
with arbitrary spin and parity) are derived. The approach is based on the use of a chiral SU{3)|SSU(3)
charge algebra, the hypothesis of partially conserved axial-vector current (PCAC) and, in particular, the
assumption of asymptotic SU(3) symmetry formulated for the matrix elements of the vector charge Vz.
The P'~ is the SU(3) raising or lowering operator. The sum rules thus obtained are always compatible with
the Gell-Mann-Okubo mass splittings of hadrons. They exhibit a simple modification of exact-SU(3) sum
rules, but the e8ect is, in general, quite signilcant. As a speci6c application, the Fo (1405) transition
is discussed in some detail in order to compare with the recent result of Gell-Mann, Oakes, and Renner
(GOR), based on a diBerent approximation for broken SU(3) symmetry. It is shown that, in the ab-
sence of singlet-octet mixing, both approaches give the same result in this particular case, and that the GOR
approximation can, in fact, be derived from our asymptotic SV(3) symmetry. Our asymptotic SU(3) sym-
metry, however, appears to be a more general and far-reaching prescription, useful in broken SU(3) symme-
try when combined with the use of equal-time commutation relations involving the charge V~. A comment is
also made about the hard-kaon and g-meson extrapolation resulting from the use of kaon and g-meson PCAC.
The result is applied to the derivation of the values of the hSE and ZSE couplings from the experimental
information on the axial-vector semileptonic couplings of hyperons. The result is consistent with experiment.

I. OUTLINE OF APPROACH AND SUMMARY

V ARIOUS attitudes have been taken toward the
broken SU(3) symmetry. The naive procedure

most commonly utilized (especially in the experimental
analysis) is to use exact SU(3) with the usual modi-

fication due to particle mixing. If we seek higher

accuracy, this is certainly unsatisfactory. In general,
there is no guarantee that these exact-SU(3) sum rules

are compatible with the observed hadron mass splittings.
This problem persists in a number of fundamental
questions we would like to ask, such as: Are the vector
and axial-vector Cabibbo angles equal? The original

Cabibbo analysis' is based on exact-SU(3) sum rules.

We need to hand broken-SU(3) sum rules which are, at
least, compatible with the Gell-Mann —Okubo (GO) mass

splittings. It is also desirable that the prescription to
derive such sum rules be simple, unique, and syste-
matically applicable to any problem.

We have proposed' a prescription which seems to
satisfy such criteria. The approach is based essentially

on the following two basic ideas: (i) Instead of using the
notion of exact SU(3) symmetry, we use a set of equal-

time commutation relations (such as the well-known

chiral SU(3)8SU(3) charge algebra) involving the
vector charge Vx which is an SU(3) raising or lowering

operator. As Gell-Mann stressed, ' these commutators
are valid even in broken SU(3) symmetry. (ii) We use

* On sabbatical leave from Center for Theoretical Physics,
Department of Physics and Astronomy, University of Maryland,
College Park, Md. 20742.

' N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
Matsuda and S. Oneda, Phys. Rev. 158, 1594 (1967};

174, 1992 (1968); Nucl. Phys. 39, 55 {1969).
~ M. Geol-Mann, Physics 1, 63 (1964).
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the idea of asymptotic SU(3) symmetry formulated
for the matrix elements of the vector charge V~ in
the infinite-momentum limit. One can explicitly demon-
strate' that this asymptotic assumption can be made in
the presence of the GO mass splittings (including mix-
ing). As a matter of fact t although the argument is
slightly more dependent on the model of SU(3) break-
ing j we are also led to conclude that if the asymptotic
SU(3) symmetry holds, there exist not only the GO
mass splittings, but also simple imtermultiPlet mass
relations among hadrons. It turns out that they include
the SU(6) mass formulas as special cases. ' '

These two ideas alone are already sufficient to derive
some important sum rules such as the broken-SU(3)
Cabibbo sum rules for the hyperon axial-vector semi-
leptonic decay couplings. ' Also, for the vector meson —+
3+1 decay couplings we obtain, among others, the sum
rules'

(G 2/~ 2)+ (G 2/~ 2) —(G&e2/~&s2) (G 2/I 2)

which are also derived' by using spectral functions and
imposing a different form of asymptotic condition from
ours. Broken-SU(3) sum rules for the radiative decays
of hadrons are also derived. ' For the problems involving
the pseudoscalar mesons, it is convenient to add another

4 For bosons, see S. Matsuda and S. Oneda, Phys. Rev. 179,
1301 (1964); for baryons, see S. Matsuda and S. Oneda, Phys.
Rev. D 1, 944 (1970).

~ S. Matsuda, S. Oneda, and P. Desai, Phys. Rev. 178, 2129
(1969).' S. Matsuda and S. Oneda, Phys. Rev. 171, 1743 (1968).

7 S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 137 {1967);T. Das, V. S. Mathur, and S. Okubo,
ibjd. 19, 470 (1967).

8 S. Matsuda and S. Oneda, Phys. Rev. 187, 2107 (1969).
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well-established hypothesis: (iii) partially conserved
axial-vector current (PCAC).

The broken-SU(3) sum rules thus obtained are dif-
ferent from exact-SU(3) sum rules by the factors in-
volving physical masses and mixing angles. I A notable
exception is the Cabibbo sum rules mentioned before.
In this case broken-SU(3) sum rules take the same form
as the hypothetical exact-SU(3) sum rules. '] For
example, for the strong decays 1 —+ 0 +0 and
2+~ 1 +0, we obtained, ' among others,

(2gx* x-- )/(g. '-= )=(~x*/~.)
aIld

(g~, + 0)/(2gx'*+x* 0) = (in~ —pip )/(igrr** —iitrr* )

respectively. These ratios of coupling constants are
unity in the SU(3) limit. For the baryon transitions,
(l)+ ~ (l)++x, (l)+~ (l)++~, and (l)'~ (!)++~,
we have shown that exact-SU(3) sum rules will be
modifmd' (sometimes significantly) in broken SU(3)
symmetry.

Recently, Gell-Mann, Oakes, and RennerP (GOR)
suggested a theoretical correction to the exact-SU(3)
sum rules for the transitions of Fp*(1405), the (p)
SU(3) singlet. They also use PCAC for the pseudoscalar
densities. They furthermore assume that at small four-
momenturn transfers the axial-vector currents retain
their octet character even in the presence of symmetry
breaking. They show that these prescriptions lead to
a large violation of exact-SU(3) sum rules.

In Sec. II we compare our approach with that of
GOR in the same problem. We show that our asymptotic
SU(3) symmetry contains, as one of the results of its
specific application, the GOR approximation. Therefore,
our asymptotic SU(3) symmetry appears to be a more
general and far-reaching formulation in broken SU(3)
symmetry, and it is, in particular, explicitly consistent
with the GO hadron mass splitting.

In Sec. III we write down the general form of broken-
SU(3) sum rules for the transition F' ~ (pi)++F.
Here 8' denotes the nonet (or octet) baryon with arbi-
trary spin and parity, J~. We obtain an interesting
interplay of the physical masses in these sum rules.
The effect of SU(3) breaking is, in general, significant
and depends on the relative spacings of the SU(3) mass
spectra of baryons involved. We use PCAC, pI„A„(x)
=F m '@ (x), it„A„rr(x) =Fxmx'@x(x), etc., in the
following way. We regard PCAC as an exact condition
which provides a definition of a local pseudoscalar-meson
field. "The values of Ii and Ii~ will then be fixed from
the rates of x —+ p+v and E —& p,+v decays. A reason-
able estimate of the value of (Fir/F ) is around 1.22."
In our approach, where the use of infinite-momentum

' M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 1'75,
2195 (1968); see also C. Weil, ibid. 161, 1682 (1967).

"For example, K. Nishijima, Phys. Rev. 133, B204 (1964),
and papers cited there."We assume one Cabibbo angle and use a value sine~0. 22.

frame is always implied according to our asymptotic
symmetry, the use of PCAC always involves a hard-
pion or hard-kaon off-mass-shell extrapolation. As usual,
we neglect the e6ect of hard-pion extrapolation. The
hard-kaon extrapolation (which will be still much safer
than the soft-kaon extrapolation) is certainly a, con-
siderable extrapolation.

In Sec. IV we gather some evid=nce which suggests
that the eBect of the neglect of hard-kaon extrapolation
in our approach is of the order of (Fx/F ) —1, i.e.,
around 20%, in the amplitude. Furthermore, we suggest
that the effect may be egectk ety taken into account by
neglecting the extrapolation while at the same time
replacing the value of F& (which always accompanies the
kaon PCAC) with that of F, i.e., by setting Fir= F .

In Sec. V we compute the (p)+ ~ (p)++X coupling
using this prescription with the values of the axial-
vector coupling constants of senlileptonic hyperon
decays determined from recent experiments. The values
of the AXE and Z3,'E couplings thus determined are
consistent with the ones determined from recent
experiments.

II. Yp*(1405) TRANSITIONS AND COMPARISON
WITH GOR APPROXIMATION

Consider the following weak. matrix elements of the
a,xial-vector currents (for notation, see Appendix A):

&F'(tl')
I 4. (o) I

&+(a))= tL~/&(&)7"'I:F'/~(F')7'"
Xgr z'(t)Nr(tl')~. »(q)+ ",

and

(F'(a')
I (0) IP(a) &='I P/&(P)7'"t:F'/&(F')7'"

Xg'.(t)Nr(tl')V. ~.(a)+
Here t= —(g' —g)' and F'=—Fp*(1405). (Here and here-
after, we use the particle symbol to denote the mass of
the particle unless confusion arises. For example,
Z—=M'z. ) The essence of the GOR approximation' for
broken SU(3) symmetry is gr z+(0)~gr ~(0) Lin exact
SU(3), gr.z+(t)=gr ~(t)7. Using the generalized Gold-
berger-Treiman (GT) relation, they obtain gr z+(0)
X (V' —Z) F.g .z . and gr.„(0)(P—P) Fxgr. „x.
Therefore, they obtain for the ratio of the coupling
constants of the F' decay,

instead of the SU(3) value, unity.
We now study the same problem from our approach

including the possible singlet-octet mixing which was
not considered in deriving Kq. (1). Our asymptotic
SU(3) symmetry' states that for particles with extreme-

ly high momenta the Inatrix elements of the V~ behave
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as if the Vx were exact-SU(3) generators. " In other
words, our asymptotic symmetry implies that the "in"
and "out" states of a field transform according to a
definite irreducible representation of SU(3) even in
broken symmetry, but only in the ingate momentum
limit. " If the particle mixing takes place, the proper
in and out states must be introduced by diagonaliza, tion.

This asymptotic symmetry is always compatible
with the GO mass splittings. To see this, let us denote
the usual (~~)+ baryon octet as (X,A. ,Z, ) and the (2)
baryon nonet as (E',A', Z', ') and F'—= Fo*. Here
iV = (P,n), 1P-= (P',n'), etc. If we assume that the SU(3)—
breaking interaction H'(x) transforms like an I= V =0
member of an SU(3) octet, the commutator
[Vx', Vx'j =0 always holds. Vxo is the time derivative
of V~o. Consider the equations

»m &=-'(q) I[Vx., V tl~(q')&=0

and
(=-'(q) I[V,V jl '(q')&=o.

By using our asymptotic SU(3) symmetry for the V»o,
we obtain the GO mass formulas from these equations, "
namely,

SU(3)SU(3) charge algebra:

[Vrro, A -j=drr-.
Here A —, for example, denotes the isovector axial-
vector charge. With our asymptotic SU(3) symmetry,
we obtain in the limit

I q I
= ~

&F'(q) l~x-IP&= &F'(q)
I « l~'&&~'l~--IP&

-&F'(q) l~.-i~ &&~'I v-
I p&.

Our asymptotic SU(3) symmetry implies (only in the
limit

I q I
~~ )

&As(q) I Vx'I~'(q&&= —(v'l) &Fi(q& I
Vx'Iri'(q) &=0,

&~'(q) I
V-

I P(q) &
= —I

Therefore, the above equation becomes, with
I ql = ~,

&F'(q) l~x-IP&=&F'(q) l~--l~'&
+(g-,') sin8(n'(q) l~ I p& (

By using PCAC for the 3 —, we can relate, for
example, the quantity

lim (F'(q) IA —IZ+(q))

and
Z'+3k. '= 2(n'+ ')

2"+3h."—2(n"+ ")+3(F"—A.") sin'8 =-0.

to the off-mass-shell coupling

gr x+.(F",Z', ir2= 0)—=gr z+.(ir'= 0)

(For a general argument, see Appendix B.) In the above
sum rules, 8 denotes the I"-A' mixing angle defined only
in the infinite-momentum frame (I q I

= ~) by

I
A'(q)& = cos8I As'(q))+sin8I Fi'(q))

and (2)

I
F'(q)) = —sin8IAS'(q)&+cos8I Fi'(q)),

where
I

A') ~
I
As'& aild

I
F') —+

I
Fi') in the SU(3)

limit. Note that we always define the mixing angle only
in the frame Iql

—&~, where the actual masses of the
particles are not playing an important role.

Now we consider, for example, the following chiral

~ By this we mean that the Uz has nonvanishing matrix ele-
ments only between the states belonging to the same SU(3)
multiplet (in the absence of mixing) and the values of the matrix
elements take the SU(3) values. However, this is assumed only
in the asymptotic limit. We also emphasize that the mixing angles
are defined only in this asymptotic limit. At finite momentum,
the mixing will not, in general, take such simple forms. We think
that the usual mixing angle introduced in the GO mass formulas
find a correct interpretation only in our formulation of mixing
problems. For more details, see S. Oneda, H. Umezawa, and S.
Matsuda, Phys. Rev. Letters 25, 71 (1970).

"Intuitively speaking, we assume that the SU(2) and SU(3)
symmetries are well realized among particles with extremely large
momenta where masses are not important.

'4 For the earlier use of the commutator fY~O, U~oj=0 to
derive the GO mass formulas see, for example, S. Fubini and
G. Furlan, Ann. Phys. (N.Y.) 1, 229 (1965); G. Furlan, F.
Lannoy, C. Rossetti, and G. Segre, Nuovo Cimento 40, 597
(1965); K. Nishijima and J. Swank, Nucl. Phys. B3, 553 (1967).
The concept of asymptotic SU(3} symmetry was not introduced
in this literature.

as follows (see Appendix C for normalization):

»m (F'(q) l~--I& (q)&=
F.gr z .(ir'=0)

(4)

I et us for the moment set. 8= 0, i.e., the F,*(f405) is
predominantly an SU(3) singlet. Then we obtain

(6)

This is essentially the result, of GOR given by Fq. (])
(Our hard-kaon and hard-pion extrapolation corre-
sponds to the neglect of terms other than the kaon or
pion poles in deriving the GT relations. ) However, in
the above derivation we did not use the approximation
gr z~(0)—gr ~(0) utilized in the approach of GOR.
However, we easily see that the above GOR approxi-
mation can, in fact, be derived from our asymptotic
SU(3) symmetry.

This is, in fact, an example of the generalized GT
relations. Thus by using kaon PCAC as well as pion
PCAC, Eq. (3) now reads

F~gr „rr(E'=0) F~gr z+~(n'=0)-
F' —p F' —Z

~-g-'-( '=o)
+(+2) sin8 . (3)e' —P
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Furthermore, we think that unless our asymptotic
SV(3) symmetry is valid, the GOR approximation
cannot be justified. To see this, tet us now consider
each term of Eq. (3) as the weak matrix elements of
the axial-vector currents. Then Eq. (3) reads

gr. (0) =gr (0)+(+-')»n8 g-'(o) (7)

Kim and Von Hippel'5 obtained E. 2.6&0.2 from the
analysis of experiment. The rather impressive agree-
ment seems to indicate that the GOR approximation
or our asymptotic SU(3) symmetry (and also our
prescription for the hard-kaon extrapolation) are
sensible approximations. Of course, one should test the
more accurate formula, which includes mixing, ob-
tained from Eq. (5),

gy~~~ gF'Z gaby~
+(g-,') sin8

y' —p p' —5 e' —p

A preliminary test of the broken-SU(3) sum rules, such

"J.K. Kim and F. Von Hippel, Phys. Rev. 184, 1961 (1969).
Other theoretical approaches will be found here. See also R. D.
Tripp, R. O. Bangerter, A. Barbaro-Galtieri, and T. S. Mast,
Phys. Rev. Letters 21, 1721 (1968).

The essential step in deriving Eq. (7) is the use of asymp-
totic SV(3) symmetry If .there is no F'-h. mixing, we
reproduce the GOR approximation gr ~(0) =gr x+(0).
Of course, in the presence of mixing, Eq. (7) is the correct
sum rule which is compatible with the GO mass formulas
for the (—', +) and (—', ) baryons with mixing derived above.
The asymptotic result gr „(0)=gr z+(0) coincides with
the exact SU(3) result. However, this is a rather
accidental situation in our approach. If the I", for
example, has a higher spin, the asymptotic relation
between the g& „(0) and gr z+(0) involves the physical
masses and does not coincide with the exact SV(3)
relation. Thus we have seen that the GOR approxi-
mation is justi6ed (in this particular case) from our
approach as one of the specific applications of our
asymptotic SU(3) symmetry formulated for the vector
charge V~.

As an approximation in broken SU(3) symmetry,
our asymptotic SU(3) symmetry is certainly a more
general one which can be utilized in a systematic way
combined with the equal-time commutation relations
involving the charge V~. The sum rules obtained are
guaranteed to be consistent with the GO hadron mass
splittings including mixing.

As will be discussed in Sec. IV, the effect of the hard-
kaon extrapolation may be effectively taken into ac-
count by neglecting the extrapolation and at the same
time replacing Frr by F„.Then we obtain from Eq. (5)
(neglecting, of course, hard. -pion extrapolation) for the
physical couplings (with 8=0)

g~,K F' —Pg — .—~— — ~2 2
grz

as Eq. (8), has been already carried out by Tripp and
his co-workers. " Our impression is that the time is
getting ripe for the test of broken-SU(3) sum rules.

I~l-"
For example,

6'-—= »m &P'(q) l~-'l~(q)),
I glance

G"x=—»m &P'(q) l~x"IA(q)),
I'I "

(10)

G'-—= »m &p'(q) I ~.I p(q)), «c.

In Appendix A we list our notation and conventions in
Inore detail. We express the 6's in terms of fourinde-

"R.D. Tripp, LRL Report No. UCRL-19361 (unpublished).The treatment of the ~ ~ —',++I' transition discussed in this
paper using the correction factor of SU(3) breaking is justified
from our asymptotic SU(3) symmetry. The quantities xI, x2,
x3, yI, y2, and y3 defined in this paper which denote the coupling
strengths of the A'Z7f. , A'Ap, A.'EE, Y'Zm. , I"Ap, and FEE decays,
respectively, are related to our G's in the following way. If we
parametrize the G's by taking Gz z+ = —sine(+-,')gp+cosg{+8)gI,
Gp +A = (g5)gq, and Gp +po = —gj, then xI ———GA.q+, yI —GI .q+,x2= (v'3) GA Aq, y2 = —(v'3) Gr A~, x3 = —(Q-'.)GA,~, and y3( 4/ 3)Gy'~~. However, the sign of our mixing angle g is oppositeto the one used by Tripp.

"There is also no difhculty in extending our discussion to the
cases where more partial waves are involved. The cases {-,')+{l)++o, {l)+ (l)++o, (-') {l)++o, and {-.')+ (-')+0—were treated by, G. Fourez, thesis, University of Maryland,1969 (unpublished); Nucl. Phys. 318, 189 (1970).

III. GENERAL BROKEN-SU(3) SUM RULES FOR
TRANSITION: NONET (OR OCTET) BARYON~ (-,')+ OCTET BARYON+ P
We now generalize the argument presented in Sec. II.

I.et us denote the nonet baryon with an arbitrary J~ as8' (1P, A', Z', ', and F'), where F' belongs to an SU(3)
singlet in the symmetry limit. Let 8 (1V,A,Z, ") denote
either the (—,')+ or (—',) octet baryons. Extension to the
case where the 8 is a nonet is straightforward. We
consider a general transition 8' —+8+I'. The transi-
tion involves only one partial wave with a definite
parity. ' The A' —I"mixing is taken care of by defining
a mixing angle 0 through the equations

(A'(q) I =cos8(As'(q) I+sin8&Fr'(q) I, (9)
(F (q) I

= —sin8(As'(q)
I +cos8(F&'(q)

in the frame jqj =~. Here (A'(q) I ~(AB'(q)j and
(F'(q) I

~ &Fz'(q) I
in the SU(3) limit. As explained in

a specific example in Sec. II, we make a full use of the
usual chiral SU(3)3$U(3) charge algebra involving
the charge Vx (which holds in broken symmetry) and
apply our asymptotic SU(3) symmetry. We then obtain
a set of sum rules involving various matrix elements of
the axial-vector charges, &8'(q')

I 2;IB(q)) with
I q I

= ~ .
Here 2, stands for A, A~, and A, . We list these sum
rules by introducing the hypothetical couplings



G. -.=(~:)d -(v-' .')f,-
Gi))tlx zd+ zV3f )

z'x= V~d+ zf
Gz",x= (v'z)d+(v'z) f,

Gz"=- x= (v'2)d (v'k—)f,
Gi,.z+ = (1/cos8)d+ tan8 s,

(12)

(14)

(15)

G+.~x
——(——,

' cos8+ 1/cos8)d+ IzV3 cos-8 f+tan8 s, (1&)

G)l.-.-x——(—z3 cos8+ 1/cos8)d —zzV3 cos8 f+ tan8 s, (18)

Gr ~x= 3z sin8 d ——', v3 sin8 f+s,
Gr)g x= & slll8 d+ zv3 s1118f+s)
G ) z'x= zv3d zf, —
Gz' &ir zd 2~~f )

G=- =-"=(v'2-)d+(v'2)f,

G...= —z(v'z)d —l(v'$)f

(22)

{24)

Gz"z"= (v'k) d, (25)

GI,.J,„=—(v'zl)(2 cos8 1/cos8)—d+(v'z) tan8 s, (26)

pclldcllt quantltlcs) l.c., Gz) +)I)):d) Gz) +zo)):f,
Gr z+ =—s, and the mixing angle 8. LNote that in exact
SU(3) we also have four parameters: D and F couplings,
gq and g&, singlet coupling, g„and 8.) The sum rules
thus obtained are

The choice of 1 or y5 depends on the spins and parities
of 8' and B. Now by using PCAC for the charges A;
(3, Ax, A„), we can relate the Gz.zr, to t. he off-mass-
sheii 8'-+8+F; coupling g& SI,. (8",8', F =0). As
in Sec. II, we identify these couplings with the physical
couPling gs si, We find (see APPendix C for derivation)
the following general relation:

GB aI;=&a aI;F'ga aJ;. (29)

242 8 8 8'

8'=(z)'(2), (l)'," »d 8=(z')

8'=(l), (l)',(l)," »d 8=(-'),

Here, corresponding to I;=x, E, and y, we have
F;=F„, F~, and F„, respectively. According to our'

prescription for taking into account effectively the
hard-F-meson extrapolation (see the discussion in
Secs. IV and V), we set" F =Fx (1/v2)——F„.Then thc
F; will disappear from the sum rules for the physical
collpllIlgs gz)III;. LIn Eq. (29) WC SCt F))=Fx= 1 Rnd
F„=&2 so that the y coupling is multiphed by v2.]
Then the correction due to SU(3) breaking comes solely
from the factors nz SI, They are given (8' has'"''spin

n+-', , where n= 0, 1, 2, ~ ) by

Gr.g„=v2 sin8 d+ (V'-', )s,
G=" =-,= z(v'z)d—+z(v'z) f &8'8Ps (31)

For the SU(2) couplings see Appendix A.
These sum rules hold irrespective of the spins and

parities of the baryons involved and they are the broken-
SU(3) sum rules which are compatible with the GO
mass splittings with A.

' —Y' mixing, By using the com-
mutator LVx), Vx)]=0, we can explicitly demonstrate
this. {Furthermore, we can show that the GO mass
splittings and our asymptotic SU(3) symmetry are
consistent with having commutators such as (V'x),AIroj
= 0. See Appendix B.) If we identify the Gz.zp with the
coupling for the transition 8' —+ 8+I", these sum rules
are, in fact, of the same form as the ones obtained by
using exact SU(3) and the usual prescription of mixing.
However, the 6's are not the physical coupling constants

gz zI. They are defined Lwith ( —z-')y (x)= —J (x)1
by

&8'(ll')
I ~-(0) I8(e))=«g'»—

&(8') 8(8)

XN. -'.(ll') L»r 7-3 Ns(e)P. " P.-.
Here p=q' —q, and u„,...„„ is the Rarita-Schwinger
wave function (p,;= 1, 2, 3, 4) of the 8' which has spin

n+z (n=0, 1, 2 . ). Nz is the Dirac spinor for the 8.

8'=(-',)-,(-:),(-,')-," -d 8=(-;).
or when

(&*+&) -".*

(~~));+~)
(32)

~8 See Appendix A for the de6nition of the A~.
» If we use the usual method of spin summation for the (+~)+

particles we obtain, for example, (g„-.*g }/(gg*y. }= (&~+X)
( ~+ }-~(g*~+ *2+g~ ~)(3g~') ' (see, for e ample, Ref. 1'7)
compared with the one given in this paper, (g-. *„-. )/(gy. *z )
=(&~+5}( *+ ) ~(™~/Z*},which is obtained by choosing a
particular spin-wave function for the (-,')+ particle. However,
these two expressions are essentially equivalent, since ( /Z*)~(gg2+~+2+yQ~g) (3y Qp}—g

8'=(z)+,(z),{z)+, " and 8=(z) .

Ke consider some specihc examples below. For the
trRllsltlolls (z)+ ~ ( )++8 (scc Scc. V) —Rlid (—)+~
{Iz)++F;,we obtain n= {8'+8) ' and n ~ (8'+8)/8',
respectively. Although the (z3)+ baryons belong to a
decuplet (6, Z*, *, 0), we can immediately read o6
the effect of SU(3) violation'" since there is only one
independent coupling,
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(6+&v)

gear ( *+")
giiN (2"+A)

gz'g, (6+1V) Z*

(33) A' —Z
gx z+~=

(34)

gz"x~
cos8

y/
+tan& griz+~ ~ (40)

y/

These coupling ratios are normalized to unity in the
SU(3) limit.

Since the masses appear summed in the 0.'s for the
transitions (iz)+~ (iz)++P; and (3z)+ —+ (—',)++P;, the
SU(3)-breaking effects are not very significant.

I
If

the predictions, Eqs. (32)—(34), are not consistent with
experiment, we have to take into account the effect of
mixing, presumably between the ground-state and
higher-lying (—,')+ baryons. 'Oj However, in general, the
n involves the nonzero power of the mass diGerence
(8' —8), and the eEect could be very conspicuous in
some cases, such as the Fo* transition discussed in Sec.
II. For the (z3) ~ (iz)++P;, we have n~ (P' 8)/P'. —
Corresponding to the sum rule, Eq. (8), for the I'o~

transition, we obtain for the V'—=A.(1520) )I=0, (—,')
baryonj

Fl y/

gy~~K = gF'Z ~

—p
+(Q-', ) sing —g„„. (35)e'

Here the primed particles belong to the (—,') nonet. "
0 is the V' —A.

' mixing angle.
Since the hard-pion extrapolation is least dangerous,

the pion transition sum rules will be the most trust-
worthy ones. Equations (11), (16), and (23) read, for
the (—,') —+ (—,')++m. transitions,

1 1—g. ..= (V'~)- gz"~.
p' —e Z' —A

—(&2)-, g"z -, (36)

1 1 1—g~ z'~ = — — gz"x~
X/ —Z cosex/ —~

1
+tan8 grenz+~ & (37)

Y' —5
1 1

Z' —A.—
g=- -=- -=(&z)-~/ g/

For the kaon coupling, we have to be aware of the
hard-kaon extrapolation involved. However, our pre-
scription (neglecting the extrapolation and at the same
time setting Fx=F,) may be reasonable as exemplified
in Secs. IV and V. Therefore, it is inetresting to see
how well the sum rules obtained Lby setting Fx=F
= (1/v2) F„and neglecting extrapolation] are satisfied in
reality. However, for the p coupling, we have an extra
complication besides the hard-g-meson extrapolation.
That is, in broken SU(3) symmetry the g-meson PCAC
should be written, in general, as

B„A„"(x)= F„m,'y„(x)+F, m„'y„(x),

where j' is q'(958). In this paper we set F„=O. The
neglect of the g' contribution should be kept in mind.
We expect that the sum rules involving the q-meson
coupling may be less well satisfied compared with the
ones involving only the pion and kaon couplings.

So far we have used only the algebraic information
given by the chiral SU(3)SU(3) charge algebra.
Actually we think that we have a commutator involving
Vir, LVrro, drroj=0. This commutator is valid under a
rather general assumption of SU(3) breaking and
always gives rise to the GO mass formulas when
combined with our asymptotic SU(3) symmetry (see
Appendix B). This commutator gives a constraint for
the couplings. In the case when the 8' is also an octet,
this commutator fixes the ratio of the G~ +~ =—d and
Gz +zo =—f couplings which corresponds to fixing the
D/F ratio in exact SU(3). This is discussed in Appendix
D.

IV. COMMENT ON HARD-KAON MASS
EXTRAPOLATION

+(v'z)-, gz"zo. (38)

For the (—,') ~ (-,')++1r transitions, we have

p' —N Z' —A

gn -=(V'z—) -gz"~--
/ g/

Z' —Z—(&z)- g'" -, (39)
g/

"For di6erent approaches see, for example, R, Graham,
S. Pakvasa, and K. Raman, Phys. Rev. 163, 1774 (1967).

We may reinterpret our previous calculations' in
the following way. In our approach we can relate the
off-mass-shell coupling, for example, gx*x (E'= 0)

gx*x~(E', E'=0,—x'), to the physical coupling gx*x
as follows. Consider, for example, a commutator
z&rr-=LVrr-, A aj and insert it between the states
&x'(q)l and II~."+(q)& with Iql —~. By using our
asymptotic SU(3), we obtain a sum rule

k& '(q)I ~x-I It *'(q))
=—(&l)&~'(q) l~- I/t"(q)&,
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Then the use of kaon as well as pion PCAC for the AK
and A gives

gx'x. (K' =o) ~0.82.

Here we set gx*x,(x'=0) gx*x . In the same way we

also obtain for the K**(1420) (I= 2, I"=2+ meson)

Coupling
constant

gh~z'/4~
gy.&„K'/4~
g~-~oK/47'
gr. hK /47r
gg+h '/4n-

gy, oy,
—'/47'

ggog- ~/4'

Asymptotic
SU(3)+PCAC'

17.5
0.678

26.0
2.92

10.2
15.9
1.82

Experiment

16.0&2.5's 13&3~
0 3~0 5c'. 0~1d

Exact
SU(3)b

16.1
0.59

14.5
2.24
6.54

10.3
0.744

TABLE L Determination of the ~+ ~ &++I couplings.

gx* x (K'=0) K**'—m' F
0.92,

Q2 P

and for the x (I= s', I =0+ meson)

(43) gran(0) =1.27, g&h(0) = —0.94S, gq+h(0) =0.618, and (gP& ~/4~) =14.6
are input (see Ref. S).

b f=-F/(D+F) ~0.42 and (g»~~/4~) =14.6 are input.
o Reference 21~

d Reference 22.

g„x (K'=0) x' —s' F„
~' —E' FKg~K~

g@OK K

gK K+w 0

= —V3 cosa — ~—V3 cosO

For the 2+-decay A2'~K++K, we also predict' (see
Ref. 19)

It is interesting to see whether experiment is con-

sistent with the SU(3)-breaking factors obtained above

by using the asymptotic SU(3) and. PCAC. For the

case of baryon couplings it is not possible to make a
similar study and we simply determine whether the

prescription described above will work here. The sum

rule obtained in Sec. II, Eq. (8) (which was obtained by
setting Fx= F ) will also provide us one such test. In
Sec. V we test the above prescription for the AX% and

ELVER couplings.

For a mass of ~ around 1100 MeV, the ratio is about 1.
These results indicate that for the E,"Ex coupling,

gjc Km (K'=0)/gx x ~(F /Fx) if the mass of K' meson

with an arbitrary J~ is su%.ciently larger than the kaon

mass. The effect of the neglect of the hard-kaon extra-

polation in these cases is less than FJr/F 1~0.2 —in the

amplitude. Furthermore, these examples indicate an

interesting tendency for the hard-k. aon extrapolation
effect to be compensated if we replace the F» (which

always accompanies the use of kaon PCAC) by F
This prescription is not terribly good in the case of the

K meson, since the e mass (around 1100MeV) is relatively

small. For the g meson, we obtain a similar result and

we use a similar prescription. If we use this prescription,
we predict for the Q' —+K++K coupling' (0 is the

ra-P mixing angle)

V KAON COUPLING IN (x2)+~ (-,')+yK
INTERACTION

Here we determine the (&)+~ (2)++K coup»ngs
using the generalized GT relation for the charge AK and
the prescription for the hard-kaon extrapolation dis-
cussed in Sec. IV. The (—,')+~ (-,')++~ couplings were
discussed previously. '

We 6rst consider the APK coupling. From Eq. (29),
kaon PCAC gives

»m (P(q) I
~x"

I A(q)) -Fx(p+&)-'g..x(K'=0) .

However, we also obtain

»m (p(q)l~x'IA(q)) "g.~(0)

g„g(0) is the weak axial-vector coupling (at zero four-
momentum transfer) for the Ae —+ p+e +r decay.
Thus g„q(0) =Fx(P+A) 'g„qx(K'= 0). This is the
generalized GT relation. The well-known GT relation
for the n~ p+e +f decay is g „(0)=F (p+n)
&&g~„(x'=0).Thus we obtain

(g" /g. -)= (P+ )(P+A)-'Lg..(0)/g..(0)].
Here we have used the prescription Lg~q&(K2= (l) = g„&A
and Fx=F j discussed in Sec. IV. Previously we have
determined the values of the weak g's by using the
broken-SU(3) sum rules for the g's Lobtained by using
asymptotic SU(3) symmetryj and some experiments on
hyperon leptonic decays. Using the values thus de-
termined, ' i.e., g„(0)~1.27 and g~q(0)~ —0.945, and

(g» 2/4x)~14. 6, we then obtain from the above
equation (g~z&'/47r)~17. 5. Kim" deduced a value
(g„qx'/4n. )~16.0&2.5 from experiment (see also Chan
and Meiere" and Soln"). In broken SU(3) symmetry

"J.K. Kim, Phys. Rev. Letters 19, 1074 (1967); 19, 1079
(1967).

» {".H. Chan and F. T. Meiere, Phys. Rev. Letters 20, 568
(1968)~ For earlier determination see, for example, M. Lusignoli,
M. Restignoli, G. A. Snow, and G. Violini, Phys. Letters 21, 229
(1966);N. Zovko, ibid. 23, 143 (1966), and the papers cited there.

23 For the approach using a chiral U(3) U(3) phenomenological
Lagrangian see, for example, J. Soln, University of Wisconsin-
Milwaukee report (uIIpublished), and the papers cited there.
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the (—,')+~ (z)++8; couplings do not satisfy the exact
SU(3) sum rules, although the axial-vector serni-

leptonic hyperon couplings do. ' If we nevertheless use
(for comparison) exact SU(3) with the F/D ratio de-
termined from the weak semileptonic decays' [n=D/
(D+F) 0.58 or f=F/(D+F) 0.42j, we obtain
(g,gx'/4x) 16.1 from (g„,.'/4z-) 14.6.

In a simila, r way, from the generalized CT relation
(with our prescription) we obtain (gzo~x'/4a)~0. 678,
where we have used5 g„z-(0)~0.244. From experiment,
Kim" deduced a value (0.3&0.5) (see also Refs. 22
and 23), whereas the hypothetical exact SU(3) with

f 0 42 giv. es 0.59.
In Table I we summarize the results. Our result is

based on these values of the g's: g„(0) 1.27, g~~(0)—0.945, and gz~(0) 0.618 (f 0.42). They are
subject to the errors (which are still rather large) in the
present experiments on the semileptonic hyperon de-
cays. The diiference between the broken-SU(3) sum
rules and the exact-SU(3) ones is not very large, since
the effect of SU(3) violation enters as the sum of the
baryon masses.
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APPENDIX 8: DERIVATION OF GO MASS
FORMULAS FROM COMMUTATORS

t V)co,'Vxoj=P AIVD LV)r~, Axon=0

IIl a quaI'k model) thc vector and axial-vector cuI'-
rents are de6ncd by lim (n'(q) ~LV)ro, V)r j~ ")=0.

If the SU(3)-breaking interaction transforms like an
I=V=0 member of the SU(3) octet, the commutator
t Vxo, Vxoj=0 holds. Our asymptotic SU(3) symmetry

APPENDIX A: NOTATIONS AND CONVENTIONS is always compatible with the Go mass splitting. For
example, consider the equation

V.*'(*)= iz(x)7.(l~~)s(x)

A„'(x) =ig(x)y~y„( ,'X;)g(x),-

respectively. i=x+, mo, x, E+, Xo, E', E, and g
correspond to Xq+A2, lj.q, X~ i)z, X4+—8&, X6+8&,
X6—iPV, X4—iA, q, and X8, respectively. The charges are
dehned, for example, as

V +=—i d'x V4 +(x,0)

A += —i d'x A4 +(x,0).

Among the complete set of intermediate states inserted
between the two charges VKp and VKp, we need to retain
only the states Z", A.', and I" from our asymptotic
SU(3) and. the values of the matrix elements of the
V)r take the SU(3) values. Then this equation gives the
QO mass formulas for the 8' nonet which are quadratic,
1.e.)

2(n'&+"-'2) (Z'&+3~'z) —3(V'2 ~' )—sinz2e=o. (B1)

Suppose now that the commutator LV)r~, A)roj=0 is
also valid, and consider the equation

lim,:(n'(q)
) LVx, A)r j) -")=0.

Instead of using exact SU(3), we make a full use of By using the asymptotic SU(3) symmetry, we obtain
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in the limit
~ q~

—&~

(g ', )—(n" Z—")Gz o o-.x (g 'o) cos8(n"—A")Gz -"Drr

+(+oo) sin8(n 2 V o)GY'"' K+(4 )(Z o P o)

XG z"rr —(Q$) cos8(A" "—)G i Ir

+ (Q$) sm8(V 2 g 2)Gn'Y'x

As we did in Sec. IV (but now both the baryons are
nonets), we express all the G's in the above equation in
terms of the three independent ones, G~ q +, G~ o~ +„,
and Gy ~ + . The coefFicients of the Gg g + and Gy y„+

turn out to be zero, whereas the coefficient of the
G~ o~+„ turns out to be

2(n"+ ")—(2"+33.")—3(F"—h.") sin'8

Therefore, unless Gz oz + = 0 (which implies that
gz oz + =0) we obtain again the GO mass formulas,
Eq. (B1). Consistent with this observation, the com-
mutator is, in fact, valid under a rather general assump-
tion of SU(3) breaking. Namely, for example, in a quark
model we can admit the following general SU(3)
breaking:

H'=nSo(x)+Pdo;, J„'(x)J„'(x).
Here

So(x) =q(x) Xoq(x),

d;;& is the Gell-Mann d symbol, and

Jj(x)Jj(x)= V„'(x)V„t(x)+yAj(x)A„'(x) .
The coefficients n, P, and y are arbitrary. We therefore
believe that the commutator [Viola, Arr07=0 provides
an important constraint for the theory. Indeed, we
have derived' simple internoultiptet mass relations from
this commutator combined with the use of our asymp-
totic SU(3) symmetry. These intermultiplet mass
formulas comprise the SU(6) mass formulas as special
cases. The commutator also gives a constraint for the
couplings. This will be discussed in Appendix D.

APPENDIX C: EVALUATION OF t ~~gp,

By using PCAC, we obtain

I a'a i~2

~ lim (2x)'8o(q —q')—
(qo —qo) qo qo

Xu„,...„„(q') (1 or ~,)

X a(q)p„, p„„ge ep, (P,'=0).
Th«a~«r Pi(qo' —qo)

' comes from the use of PCAC
and P&=q&' q„. We do not bo—ther about the irrele-
vant factors such as i. Ke obtain, in the limit,

2qoF'; (8'8) '('
Ga e~;i(: hm — — uo o(q')

q

X[1 or yo]ue(q) (po) "gs az;.

Here (Po)"=(8"—8')"(2qo) in the limit ~q~ ~~.
Therefore, the problem reduces to the evaluation of
llm(q( ~uo o(q )[1 or 7o]ui((q).

We use the technique developed by Fourez" to
derive a conveinent explicit solution of the Rarita-
Schwinger equation. The Rarita-Schwinger wave
function satisfies

qadi uoi"'oi"'va(q ) 0 and vsiuvi'"oi"'an(I )

We now seek a solution of the form

(q ) = e (q ) ' ' ' e (q )u '(q ) .
Here u» (q') is a Dirac spinor with momentum q'.
e„,.(q') (i=1, 2, , n) are the identical four-vectors
which satisfy q„'e„(q') =0 and y„e„(q') u& (q') =0. We
take a coordinate system q„' = ( ~ q ~, 0, 0; iqo'), and choose
for the normalized spinor u& (q') a solution

u& '(q')= (qo'+8')"'(28') "'(100 ~q~ (qo'+8') —').
Then the normalized vector e„(q') is given by

e.(q') = (V'o) (qo'/8', i, 0, il ql/8') .
Thus

uo -o(q') - (V'l)"(Iql/8') "u (q')

By choosing

»*(q) =(q.+8)'"(28) '"(10o lql(qo+8) ')

we obtain

lim ue (q')»(q) = (28)—'~'(28') —'"(8'+8) .

By choosing

ue*(q) = (qo+8) 'I'(28) —'t'(0 1
i qi (qo+8)

—' 0)

we get

lim ue (q')youp(q) =(28)-"'(28')—'('(8' —8).

Combining these results, we arrive at the expression for
the G~ ~~,. given in the text.

APPENDIX D: CONTRAINT FOR B'~ B+P
COUPLINGS FROM COMMUTATOR

L4,Ax ]=&

Suppose 8' and 8 are the nonet and octet baryons,
respectively. By considering the equation

lim (n'(q)
~
[Vrro, Axa]

~ (q)) =0

and using asymptotic SU(3) symmetry for the Vx, we

obtain a relation

(go) (n" Z")G —zz (go) cos—8(n" A")G~ ori- -.

+(Qo) sin8(n" —V")Gr -.os+(Qo)(Z' — ')G„.soir

—(Q-,') (A' —')G„@ox=0.

We express the G's in the above equation in terms of the
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three independent parameters d, f, and s, defined in
Sec. IV. Then we obtain a constraint for the d, f, and
s couplings. By using the GO mass formulas
which can also be derived from the same commutator
[Fx',Axo7=0, we obtain

V3d[2(Z"+A."—n"—Z")—(2' —A.')]
+ fL( "—=")—(n' —="')j

+2@3 sings(A. "—F")=0. (D1)
The equation

are octets, Eq. (D1) takes a form

ad[(Z"—h.")—(Z' —')j
+2fL(n" —=")—(n' —')3=o (D2)

As an example consider the case 8'=(—,') and 8=(—,')+;
Eq. (D1) gives a constraint for the physical couplings:

V3(Z' —A)-'[2(Z"+h."—n"—")—(Z' —A.')jgx +g

+2(&'—&) 'L(n" —")—(n' —=")jgx"x'-
+2V3 sing(F —Z) '(A"—F")gr'x-~=0. (D3)

lim (n(q) ~[Vxo,~xog~-'(q))=0
Since this constraint is sensitive to the errors in the
mass values (because it involves mass differences), it

also leads to the same constraint. If both the 8 and 8' may not be very useful at present.
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The scheme of broken chiral symmetry given by Gell-Mann, Oakes, and Renner is generalized to include
the g meson with proper consideration of the octet-singlet mixing. It is shown that at least one of the g and
the p' must violate the partially conserved axial-vector current (PCAC) condition (or Adler's condition).
This is not simply because they are much heavier than the pion. The analysis of the decays g —+ 3~ and
g —+ 2y, which are known for large deviations from the simple SU3 predictions, indicates that PCAC for the
g is violated rather severely.

I. INTRODUCTION AND SUMMARY

K = —Np —cl8 (1 2)

with c= —V2. This Hamiltonian leads to a very satis-
factory understanding of the rnesons as far as pions and
I& mesons are concerned. It turns out, however, that
one needs something extra beyond the straightforward
extension of the scheme if one tries to include the g
meson in the consideration. The argument is given

briefly in Sec. II, together with a proposal of a possible
way out of the difFiculties. Although the same scheme
has also been proposed recently by Lee, ' we exploit its
consequence with a different emphasis. A natural and

* Supported in part by the U. S. Atomic Energy Commission.
t On leave of absence from the Institute of Physics, College of

General Education, University of Tokyo, Tokyo, Japan.' M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 17S,
2195 (1968).». Y. Lee, Nuovo Cimento 64A, 474 (1969).

A N investigation has been made by Gell-Mann,
Oakes, and Renner' of the consequence of the

Hamil tonian

K—Kp+K )

where Kp is invariant under SU'~XSU3, while K' takes
a simple form

interesting conclusion is that there is not as strong a
reason for assuming partial conservation of axial-vector
current (PCAC) for the g meson as that for the pion
and E meson. By PCAC we mean here that the ampli-
tude in the soft-meson limit can be calculated on the
basis of the equal-time commutator involving the
corresponding axial-vector charge. In this sense, its viola-
tion also leads to the violation of Adler's condition. "

One may argue that this is not surprising simply
because the g is much heavier than the pion. This
argument is, however, not always correct. Note, for
example, that there is so far no reason to prevent
PCAC from holding for the E meson which is as heavy
as the g. ' It is also interesting to note that Adler's
condition can be satisfied rather naturally for the
pion as well as for the E meson in the Veneziano-type
meson-meson scat tering amplitudes, while the same
is not true for the g, 4 7 indicating that PCAC does not
hold for the g. The last two sections are devoted to

~ S. L. Adler, Phys. Rev. 137, B1022 (1965); 139, B1638
(1965).

4 C. Lovelace, Phys. Letters 28B, 265 (1968).
5 K. Kawarabayashi, S. Kitakado, and H. Yabuki, Phys.

Letters 28B, 432 (1969);D. Y. Wong, Phys. Rev. 183, 1412 (1969).
R. Arnowitt, P. Nath, Y. Srivastava, and M. H. Friedman,

Phys. Rev. Letters 22, 1158 (1969).
' Y. Fujii, Phys, Q.pv. 188, 2423 (1969).


